@article{SzczerbaZukrowskiPrzybylskietal.2016, author = {Szczerba, Wojciech and Zukrowski, Jan and Przybylski, Marek and Sikora, Marcin and Safonova, Olga and Shmeliov, Aleksey and Nicolosi, Valeria and Schneider, Michael and Granath, Tim and Oppmann, Maximilian and Straßer, Marion and Mandel, Karl}, title = {Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/c6cp04221j}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187390}, pages = {25221-25229}, year = {2016}, abstract = {The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH\(_3\)), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mossbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing'' with the atomic order in iron oxide nanocrystals.}, language = {en} } @article{BraunschweigKrummenacherMailaenderetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Mail{\"a}nder, Lisa and Pentecost, Leanne and Vargas, Alfredo}, title = {Formation of a stable radical by oxidation of a tetraorganoborate}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {43}, doi = {10.1039/c6cc02916g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191321}, pages = {7005-7008}, year = {2016}, abstract = {Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C\(_4\)Ph\(_4\))\(_2\)], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state.}, language = {en} } @phdthesis{Nahm2021, author = {Nahm, Daniel}, title = {Poly(2-oxazine) Based Biomaterial Inks for the Additive Manufacturing of Microperiodic Hydrogel Scaffolds}, doi = {10.25972/OPUS-24598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of this thesis was the preparation of a biomaterial ink for the fabrication of chemically crosslinked hydrogel scaffolds with low micron sized features using melt electrowriting (MEW). By developing a functional polymeric material based on 2-alkyl-2-oxazine (Ozi) and 2-alkyl-2-oxazoline (Ox) homo- and copolymers in combination with Diels-Alder (DA)-based dynamic covalent chemistry, it was possible to achieve this goal. This marks an important step for the additive manufacturing technique melt electrowriting (MEW), as soft and hydrophilic structures become available for the first time. The use of dynamic covalent chemistry is a very elegant and efficient method for consolidating covalent crosslinking with melt processing. It was shown that the high chemical versatility of the Ox and Ozi chemistry offers great potential to control the processing parameters. The established platform offers straight forward potential for modification with biological cues and fluorescent markers. This is essential for advanced biological applications. The physical properties of the material are readily controlled and the potential for 4D-printing was highlighted as well. The developed hydrogel architectures are excellent candidates for 3D cell culture applications. In particular, the low internal strength of some of the scaffolds in combination with the tendency of such constructs to collapse into thin strings could be interesting for the cultivation of muscle or nerve cells. In this context it was also possible to show that MEW printed hydrogel scaffolds can withstand the aspiration and ejection through a cannula. This allows the application as scaffolds for the minimally invasive delivery of implants or functional tissue equivalent structures to various locations in the human body.}, subject = {Polymere}, language = {en} } @phdthesis{Ryma2022, author = {Ryma, Matthias}, title = {Exploiting the Thermoresponsive Properties of Poly(2-oxazoline)s for Biofabrication}, doi = {10.25972/OPUS-24746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this thesis, non-modified POx, namely PnPrOx and PcycloPrOx, with an LCST in the physiological range between 20 and 37°C have been utilized as materials for three different biofabrication approaches. Their thermoresponsive behavior and processability were exploited to establish an easy-to-apply coating for cell sheet engineering, a novel method to create biomimetic scaffolds based on aligned fibrils via Melt Electrowriting (MEW) and the application of melt electrowritten sacrificial scaffolds for microchannel creation for hydrogels. Chapter 3 describes the establishment of a thermoresponsive coating for tissue culture plates. Here, PnPrOx was simply dissolved in water and dried in well plates and petri dishes in an oven. PnPrOx adsorbed to the surface, and the addition of warm media generated a cell culture compatible coating. It was shown that different cell types were able to attach and proliferate. After confluency, temperature reduction led to the detachment of cell sheets. Compared to standard procedures for surface coating, the thermoresponsive polymer is not bound covalently to the surface and therefore does not require specialized equipment and chemical knowledge. However, it should be noted that the detachment of the cell layer requires the dissolution of the PnPrOx-coating, leading to possible polymer contamination. Although it is only a small amount of polymer dissolved in the media, the detached cell sheets need to be washed by media exchange for further processing if required. ...}, subject = {Thermoresponsive Polymere}, language = {en} } @phdthesis{Schott2015, author = {Schott, Marco}, title = {Neuartige Elektrodenmaterialien auf der Basis von Metallo-Polyelektrolyten und Hybridpolymeren f{\"u}r elektrochrome Fenster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116904}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Rahmen der vorliegenden Arbeit wurde die Herstellung von elektrochromen (Nanokomposit-) Materialien auf der Basis des Metall-Komplexes Fe(ph-tpy)2 und eines Metallo-supramolekularen Polyelektrolyten (Fe-MEPE) f{\"u}r den Einsatz in glas- und kunstoffbasierten elektrochromen Elementen (ECDs) mit elektrisch schaltbarer Transmission untersucht. Mittels Layer-by-Layer (LbL)- und Tauchbeschichtungsverfahren ist es m{\"o}glich, homogene Fe-MEPE-Filme auf transparenten, leitf{\"a}higen Oxidsubstraten (TCO) herzustellen. Die eingesetzten TCO-Substrate besitzen eine hohe Transparenz im sichtbaren Bereich und einen geringen Fl{\"a}chenwiderstand, so dass in elektrochromen Elementen (ECDs) hohe Transmissionswerte im Hellzustand und kurze Schaltzeiten erzielt werden k{\"o}nnen. Als Referenzmaterial wurde Fe(ph-tpy)2 untersucht, um die Vorteile von polymeren Strukturen gegen{\"u}ber mononuklearen Metall-Komplexen aufzuzeigen. Die rosa-violetten Fe(ph-tpy)2-Komplexe eignen sich nicht f{\"u}r die Herstellung elektrochromer D{\"u}nnschichten, aufgrund der schlechten Benetzbarkeit und Haftung auf TCO-Substraten. Dagegen besitzen Fe-MEPE hervorragende elektrochrome Eigenschaften. Fe-MEPE ist gut l{\"o}slich in Alkoholen und Etheralkoholen, wobei in MeOH der gr{\"o}ßte Extinktionskoeffizient εmax (46.890 M-1•cm-1) erreicht wird. Ein Vergleich zwischen LbL-assemblierten und tauchbeschichteten Fe-MEPE-Schichten zeigt, dass die elektrochromen Filme mittels Tauchbeschichtung schneller hergestellt werden k{\"o}nnen und geringere Schaltzeiten haben. Die h{\"o}chste optische Qualit{\"a}t wird mit einem L{\"o}sungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol erreicht. Die Schichten weisen eine homogene, defektfreie Oberfl{\"a}che mit hoher Transparenz auf. Fe-MEPE-Schichten sind bis etwa 100 °C stabil. Bei weiterer Erh{\"o}hung der Temperatur f{\"a}rben sie sich irreversibel gr{\"u}n f{\"a}rben und lassen sich nicht mehr schalten. Die Gr{\"u}nf{\"a}rbung ist durch eine {\"A}nderung der Molekularstruktur der Fe-MEPE-Polymere bedingt. Ab einer Temperatur von etwa 100 °C findet ein {\"U}bergang von der Niedrigtemperatur- zu einer Hochtemperaturphase statt. Der axiale Fe-N-Abstand verringert sich dabei von 1,95 auf 1,88 {\AA}, der {\"a}quatoriale Fe-N-Abstand vergr{\"o}ßert sich von 1,98 auf 2,01 {\AA}. Elektrochemische Untersuchungen zeigen, dass Fe-MEPE-Schichten bei Spannungen im Bereich von 3,85 bis 4,10 V vs. Li/Li+ in fl{\"u}ssigen organischen Elektrolyten von blau nach farblos schalten durch Oxidation von Fe(II) nach Fe(III) und bei etwa 4,00 bis 3,75 V vs. Li/Li+ f{\"a}rben sich die Fe-MEPE-Schichten reduktiv wieder blau. Es k{\"o}nnen hohe Coulomb-Effizienzen von etwa 94 \%, F{\"a}rbeeffizienzen η > 500 cm2•C-1 bei 592 nm und visuelle Transmissionsunterschiede Δτv von bis zu 58 \% erreicht werden. Jedoch l{\"o}sen sich die Fe-MEPE-Schichten ohne Hybridpolymer (ORMOCER®) als Bindemittel in einigen fl{\"u}ssigen und gelf{\"o}rmigen Elektrolyten nach einigen tausend Schaltzyklen teilweise ab. Um die Haftung und die thermische Stabilit{\"a}t der elektrochromen Schichten zu verbessern, werden Fe(ph-tpy)2 und Fe-MEPE in ein ORMOCER® eingebettet. Hierf{\"u}r ist ein hydroxy-funktionalisiertes ORMOCER® mit einem hohen OH/Si-Verh{\"a}ltnis (1,75 : 1) am besten geeignet. Im Gegensatz zu den rosa-violetten ORMOCER®/Fe(ph-tpy)2-Schichten weisen die blau gef{\"a}rbten ORMOCER®/Fe-MEPE-Schichten eine bessere Filmbildung sowie eine h{\"o}here Homogenit{\"a}t und Transparenz auf. Mit einem L{\"o}sungsmittelgemisch aus EtOH, MeOH und 2-Butoxyethanol k{\"o}nnen mittels Tauchbeschichtung homogene ORMOCER®/Fe-MEPE-Filme mit geringem Haze (< 0,5 \%) bis zu einer Probengr{\"o}ße von 20 x 30 cm2 hergestellt werden. Die elektrochromen Eigenschaften bleiben bis zu einem ORMOCER®/Fe-MEPE-Verh{\"a}ltnis von 40:1 und Schichtdicken von etwa 10 µm erhalten, wobei die Schaltgeschwindigkeit mit zunehmendem ORMOCER®-Anteil abnimmt. Als optimal erweist sich ein ORMOCER®/Fe-MEPE-Verh{\"a}ltnis von 3:1, bei dem die Schichten hervorragende optische und elektrochrome Eigenschaften sowie eine gute thermische und mechanische Best{\"a}ndigkeit besitzen. Die thermische Stabilit{\"a}t der ORMOCER®/Fe-MEPE-Filme kann so auf {\"u}ber 100 °C erh{\"o}ht werden; die blaue Farbe und die elektrochromen Eigenschaften der Schichten bleibt auch nach kurzzeitigem Tempern bei 200 °C erhalten. Im Vergleich zu Fe-MEPE-Schichten ohne ORMOCER® ist die Intensit{\"a}t der Metal-to-Ligand Charge Transfer (MLCT)-Bande bei etwa 593 nm und die Ladungsdichte der ORMOCER®/Fe-MEPE-Schichten bei gleicher Schichtdicke geringer, was zur Folge hat, dass auch die F{\"a}rbeeffizienz η der Kompositmaterialien geringer ist. Allerdings konnte der visuelle Transmissionsunterschied Δτv auf 62 \% gesteigert werden und die ORMOCER®/Fe-MEPE-Schichten besitzen dar{\"u}berhinaus eine hohe Zyklenstabilit{\"a}t {\"u}ber mehrere tausend Schaltzyklen ohne signifikanten Ladungsverlust. Weiterhin weist in ORMOCER® eingebettetes Fe-MEPE polyelektrochrome Eigenschaften auf; bei negativen Spannungen (< -1,9 V vs. Fc/Fc+) f{\"a}rben sich die ORMOCER®/Fe-MEPE-Schichten gr{\"u}n und weisen eine starke Absorption im NIR-Bereich auf. Im Hinblick auf eine Verwendung von Fe-MEPE bzw. ORMOCER®/Fe-MEPE als Arbeitselektrode (WE) in ECDs sind verschiedene Materialien, wie z. B. ITO, V2O5, TiVOx und Preußisch Blau (PB), f{\"u}r den Einsatz als Gegenelektrode (CE) denkbar. Vor allem PB ist als Material f{\"u}r die CE interessant, da es komplement{\"a}r zu Fe-MEPE von blau nach farblos schaltet. Dadurch kann in einem ECD mit einer Fe-MEPE-basierten WE der visuelle Transmissionsunterschied ∆τv im Vergleich zu ECDs mit einer V2O5- oder TiVOx-Gegenelektrode, die keinen farblosen Redoxzustand besitzen, erh{\"o}ht werden. Demnach stellen Fe-MEPE bzw. ORMOCER®/Fe-MEPE vielversprechende elektrochrome Materialien f{\"u}r den Einsatz in schaltbaren Fenstern (Smart Windows) dar, vor allem wegen hervorragender Beschichtungseigenschaften, hoher F{\"a}rbeeffizienz und kurzen Schaltzeiten.}, subject = {Supramolekulare Chemie}, language = {de} } @phdthesis{BruecknergebChristel2019, author = {Br{\"u}ckner [geb. Christel], Theresa}, title = {Novel application forms and setting mechanisms of mineral bone cements}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 \% was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.\% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes.}, subject = {Knochenzement}, language = {en} } @phdthesis{Stier2022, author = {Stier, Simon}, title = {Konzepte, Materialien und Verfahren f{\"u}r multimodale und hochintegrierte Elastomersensorik}, doi = {10.25972/OPUS-26087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260875}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Dielektrische Elastomersensoren sind aus Elastomermaterialien aufgebaute Sensoren mit einem kapazitiven Messprinzip. In ihrer einfachsten Form bestehen sie aus einer dehnbaren Elastomerfolie als Dielektrikum, die beidseitig mit leitf{\"a}higen und ebenfalls dehnbaren Schichten als Elektroden bedeckt ist. Damit entsteht ein mechanisch verformbarer elektrischer Kondensator, dessen Kapazit{\"a}t mit der Dehnung der Elastomerfolie stetig ansteigt. Neben solchen Dehnungssensoren lassen sich mit einem geeigneten geometrischen Aufbau auch dielektrische Elastomersensoren realisieren, bei denen eine elektrische Kapazit{\"a}t mit einem angelegten Druck bzw. einer Kraft auf die Oberfl{\"a}che, mit einer Scherkraft oder mit der Ann{\"a}herung eines elektrisch leitf{\"a}higen oder polarisierbaren K{\"o}rpers wie z. B. der menschlichen Hand messbar ansteigt. Durch ihre vielf{\"a}ltige Funktion, intrinsische Verformbarkeit und fl{\"a}chige Ausgestaltung weisen Dielektrische Elastomersensoren erhebliches Potential in der Schaffung smarter, sensitiver Oberfl{\"a}chen auf. Dabei sind weitgehende und individuelle Adaptionen auf den jeweiligen Anwendungszweck durch Abstimmung geometrischer, mechanischer und elektrischer Eigenschaften m{\"o}glich. Die bisherige Forschung beschr{\"a}nkt sich jedoch auf die Analyse und Optimierung einzelner Aspekte ohne das Potential einer {\"u}bergreifenden systemischen Perspektive zu nutzen. Diese Arbeit widmet sich daher der Betrachtung der Sensorik als Gesamtsystem, sowohl horizontal - von abstrakten Modellen bis zur Fertigung und prototypischen Anwendung - als auch vertikal {\"u}ber die Komponenten Material, Struktur und Elektronik. Hierbei wurden in mehreren Teilgebieten eigenst{\"a}ndige neue Erkenntnisse und Verbesserungen erzielt, die anschließend in die {\"u}bergreifende Betrachtung des Gesamtsystems integriert wurden. So wurden in den theoretischen Vorarbeiten neue Konzepte zur ortsaufgel{\"o}sten Erfassung mehrerer physikalischer Gr{\"o}ßen und zur elektrischen und mechanischen Modellierung entwickelt. Die abgeleiteten Materialanforderungen wurden in eine tiefgehende Charakterisierung der verwendeten Elastomer-Kompositwerkstoffe {\"u}berf{\"u}hrt, in der neuartige analytische Methoden in Form von dynamischer elektromechanischer Testung und nanoskaliger Computertomographie zur Aufkl{\"a}rung der inneren Wechselwirkungen zum Einsatz kamen. Im Bereich der automatisierten Prozessierung wurde ein f{\"u}r die komplexen mehrschichtigen Elektrodenstrukturen geeigneter neuer lasergest{\"u}tzer substraktiver Fertigungprozess etabliert, der zudem die Br{\"u}cke zu elastischer Elektronik schl{\"a}gt. In der abschließenden Anwendungsevaluierung wurden mehrere ortsaufgel{\"o}ste und multimodale Gesamtsysteme aufgebaut und geeignete Messelektronik und Software entwickelt. Abschließend wurden die Systeme mit einem eigens entwickelten robotischen Testsystem charakterisiert und zudem das Potential der Auswertung mittels maschinellem Lernen aufgezeigt.}, subject = {Taktiler Sensor}, language = {de} } @phdthesis{Schaefer2021, author = {Sch{\"a}fer, Markus Manfred}, title = {Lokale elektrophoretische Abscheidung keramischer Partikel in station{\"a}ren inhomogenen elektrischen Feldern in polaren und unpolaren L{\"o}semitteln und deren Mischungen}, doi = {10.25972/OPUS-22080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220803}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die Elektrophoretische Abscheidung (EPD) ist ein zweistufiger Prozess, bei dem geladene Partikel zun{\"a}chst aufgrund eines elektrischen Feldes in einer Suspension bewegt und anschließend auf einer Oberfl{\"a}che abgeschieden werden. Aufgrund der M{\"o}glichkeit zur kosteng{\"u}nstigen Massenproduktion von Filmen auf Oberfl{\"a}chen sowie darauf basierenden dreidimensionalen Mehrschichtsystemen, ist die EPD f{\"u}r die Industrie und die Medizin von großem Interesse. Der 3D-Druck ist dagegen weniger zur Massenproduktion, sondern vielmehr zur Herstellung von Prototypen in niedriger St{\"u}ckzahl geeignet, was ihn jedoch nicht weniger interessant f{\"u}r Industrie und Medizin macht. Beim 3D-Druck wird das Material zum Aufbau einer dreidimensionalen Struktur lokal zur Verf{\"u}gung gestellt, weshalb er den additiven Herstellungsverfahren zugeordnet werden kann. Eine Kombination beider Verfahren er{\"o}ffnet neue M{\"o}glichkeiten zum Aufbau dreidimensionaler Strukturen. Da EPD theoretisch mit jedem geladenen Objekt, Material oder Molek{\"u}l m{\"o}glich ist, ließe sich das Potenzial des 3D-Drucks durch eine Kombination mit EPD signifikant steigern. Prototypen k{\"o}nnten aus einer Vielzahl an Materialien in einem schnellen und kosteng{\"u}nstigen additiven Herstellungsverfahren entstehen, wodurch die M{\"o}glichkeit zum Einsatz als Massenproduktionsverfahren gegeben ist. Eine Nutzung der EPD als 3D-Druck-Verfahren ist jedoch nur m{\"o}glich, wenn es gelingt, die Abscheidung der Partikel lokal zu fokussieren und somit den Aufbau der dreidimensionalen Struktur zu steuern und zu kontrollieren. In der vorliegenden Arbeit wird untersucht, ob lokale Abscheidung von keramischen Partikeln durch EPD realisierbar ist und welche Bedingungen dazu vorliegen m{\"u}ssen. Insbesondere werden die Bewegungen der geladenen Partikel im inhomogenen elektrischen Feld analysiert und der Einfluss der Polarit{\"a}t des Suspensionsmediums auf die Partikelbewegung und die Partikelablagerung in einer selbstentwickelten Mikro-Flusskammer untersucht. Im unpolaren Medium Cyclohexan steigt die Bewegungsgeschwindigkeit der Partikel linear mit der angelegten Spannung, respektive der elektrischen Feldst{\"a}rke. Die Bewegungsrichtung der Partikel erfolgt entsprechend ihrer positiven Ladung in Richtung der Kathode. Die Partikel scheiden sich als st{\"a}bchenf{\"o}rmige Deposition verteilt auf der Kathodenoberfl{\"a}che ab. Die H{\"a}ufigkeit der Ablagerung ist dabei an der Elektrodenspitze, also im Bereich der h{\"o}chsten Feldst{\"a}rke am gr{\"o}ßten. Die Stabilisierung der Partikel in einem unpolaren L{\"o}semittel wird durch eine Oberfl{\"a}chenbeschichtung mit verschiedenen, struktur{\"a}hnlichen Dispergatoren realisiert. Alle verwendeten Dispergator-Partikel-Systeme zeigen n{\"a}herungsweise gleiches elektrophoretisches Verhalten. In Wasser bewegen sich die positiv geladenen Partikel bei einer angelegten Spannung von unter 3 V entgegen der elektrostatischen Kr{\"a}fte in Richtung Anode, deren Oberfl{\"a}che sie jedoch nicht erreichen, da sie vorher abgelenkt werden. Somit erfolgt keine Abscheidung der Partikel auf keiner der beiden Elektroden. Ab einer Spannung von 3 V beginnen sich Partikel im polaren Medium in Form einer dendritischen Struktur an der Kathodenspitze abzuscheiden. Bei Spannungen von mehr als 17 V beginnt in Wasser eine sichtbare Bildung von Gasblasen an der Anodenoberfl{\"a}che. Beim Abriss der Blasen von der Oberfl{\"a}che wird die vorhandene dendritische Struktur zerst{\"o}rt. In Mischungen aus Ethanol und Cyclohexan wird die Spannung von 5 V konstant gehalten und das Mischungsverh{\"a}ltnis der beiden L{\"o}semittel, und somit die Polarit{\"a}t der Suspension, variiert. Bereits bei 0,1 Vol.-\% Ethanol-Anteil, sowie ab 30 Vol.-\% Ethanol findet eine Partikelbewegung in Richtung der Anode, also entgegen der elektrostatischen Kr{\"a}fte, statt. Da die Partikel die Anodenoberfl{\"a}che aufgrund der repulsiven Wechselwirkungen nicht erreichen, findet keine Abscheidung statt. Nur bei einem Ethanol-Anteil von 7,5 Vol.-\% bis etwa 30 Vol.-\% bewegen sich die Partikel in Richtung Kathode, wo sie sich auch abscheiden. Die merkw{\"u}rdigen Bewegungsph{\"a}nomene der Partikel in der Mikro-Flusskammer konnten nicht mit Sicherheit aufgekl{\"a}rt werden. Induced-charge electroosmotic flow oder andere elektrokinetische Effekte k{\"o}nnten wirken und so die elektrophoretische Partikelbewegung {\"u}berlagern oder beeinflussen. Gezeigt werden konnte jedoch, dass eine lokale Abscheidung von Partikeln mittels EPD m{\"o}glich ist. Dazu ist unter den beschriebenen experimentellen Bedingungen in Wasser eine Spannung im Bereich zwischen 3 V und 17 V n{\"o}tig, um lokal eine dendritische Struktur abzuscheiden. In reinem Cyclohexan und f{\"u}r bestimmte Mischungsverh{\"a}ltnisse von Ethanol und Cyclohexan erfolgt die Abscheidung bei jedem untersuchten Spannungswert. Anders als in Wasser ist die st{\"a}bchenf{\"o}rmige Abscheidung jedoch an mehreren Stellen auf der Elektrodenoberfl{\"a}che zu beobachten. Dennoch kann auch hier von einer lokalen Abscheidung gesprochen werden, da die Wahrscheinlichkeit f{\"u}r die Abscheidung an der Elektrodenspitze am gr{\"o}ßten ist, was nach einiger Zeit zu einer lokal erh{\"o}hten Schichtdicke f{\"u}hrt.}, subject = {Elektrophorese}, language = {de} } @article{LuebtowLorsonFingeretal.2020, author = {L{\"u}btow, Michael M. and Lorson, Thomas and Finger, Tamara and Gr{\"o}ber-Becker, Florian-Kai and Luxenhofer, Robert}, title = {Combining Ultra-High Drug-Loaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {1}, doi = {10.1002/macp.201900341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208115}, pages = {1900341}, year = {2020}, abstract = {Hydrogel-based drug depot formulations are of great interest for therapeutic applications. While the biological activity of such drug depots is often characterized well, the influence of incorporated drug or drug-loaded micelles on the gelation properties of the hydrogel matrix is less investigated. However, the latter is of great importance from fundamental and application points of view as it informs on the physicochemical interactions of drugs and water-swollen polymer networks and it determines injectability, depot stability, as well as drug-release kinetics. Here, the impact of incorporated drug, neat polymer micelles, and drug-loaded micelles on the viscoelastic properties of a cytocompatible hydrogel is investigated systematically. To challenge the hydrogel with regard to the desired application as injectable drug depot, curcumin (CUR) is chosen as a model compound due to its very low-water solubility and limited stability. CUR is either directly solubilized by the hydrogel or pre-incorporated into polymer micelles. Interference of CUR with the temperature-induced gelation process can be suppressed by pre-incorporation into polymer micelles forming a binary drug delivery system. Drug release from a collagen matrix is studied in a trans-well setup. Compared to direct injection of drug formulations, the hydrogel-based systems show improved and extended drug release over 10 weeks.}, language = {en} } @article{HuHahnYangetal.2021, author = {Hu, Chen and Hahn, Lukas and Yang, Mengshi and Altmann, Alexander and Stahlhut, Philipp and Groll, J{\"u}rgen and Luxenhofer, Robert}, title = {Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition}, series = {Journal of Materials Science}, volume = {56}, journal = {Journal of Materials Science}, issn = {0022-2461}, doi = {10.1007/s10853-020-05190-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234894}, pages = {691-705}, year = {2021}, abstract = {As a promising biofabrication technology, extrusion-based bioprinting has gained significant attention in the last decade and major advances have been made in the development of bioinks. However, suitable synthetic and stimuli-responsive bioinks are underrepresented in this context. In this work, we described a hybrid system of nanoclay Laponite XLG and thermoresponsive block copolymer poly(2-methyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazine) (PMeOx-b-PnPrOzi) as a novel biomaterial ink and discussed its critical properties relevant for extrusion-based bioprinting, including viscoelastic properties and printability. The hybrid hydrogel retains the thermogelling properties but is strengthened by the added clay (over 5 kPa of storage modulus and 240 Pa of yield stress). Importantly, the shear-thinning character is further enhanced, which, in combination with very rapid viscosity recovery (~ 1 s) and structure recovery (~ 10 s), is highly beneficial for extrusion-based 3D printing. Accordingly, various 3D patterns could be printed with markedly enhanced resolution and shape fidelity compared to the biomaterial ink without added clay.}, language = {en} } @phdthesis{Nadernezhad2024, author = {Nadernezhad, Ali}, title = {Engineering approaches in biofabrication of vascularized structures}, doi = {10.25972/OPUS-34589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Biofabrication technologies must address numerous parameters and conditions to reconstruct tissue complexity in vitro. A critical challenge is vascularization, especially for large constructs exceeding diffusion limits. This requires the creation of artificial vascular structures, a task demanding the convergence and integration of multiple engineering approaches. This doctoral dissertation aims to achieve two primary objectives: firstly, to implement and refine engineering methods for creating artificial microvascular structures using Melt Electrowriting (MEW)-assisted sacrificial templating, and secondly, to deepen the understanding of the critical factors influencing the printability of bioink formulations in 3D extrusion bioprinting. In the first part of this dissertation, two innovative sacrificial templating techniques using MEW are explored. Utilizing a carbohydrate glass as a fugitive material, a pioneering advancement in the processing of sugars with MEW with a resolution under 100 microns was made. Furthermore, by introducing the "print-and-fuse" strategy as a groundbreaking method, biomimetic branching microchannels embedded in hydrogel matrices were fabricated, which can then be endothelialized to mirror in vivo vascular conditions. The second part of the dissertation explores extrusion bioprinting. By introducing a simple binary bioink formulation, the correlation between physical properties and printability was showcased. In the next step, employing state-of-the-art machine-learning approaches revealed a deeper understanding of the correlations between bioink properties and printability in an extended library of hydrogel formulations. This dissertation offers in-depth insights into two key biofabrication technologies. Future work could merge these into hybrid methods for the fabrication of vascularized constructs, combining MEW's precision with fine-tuned bioink properties in automated extrusion bioprinting.}, subject = {3D-Druck}, language = {en} }