@phdthesis{Kerner2021, author = {Kerner, Florian Tobias}, title = {Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products}, doi = {10.25972/OPUS-20910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 - 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @phdthesis{Ribbeck2022, author = {Ribbeck, Tatjana}, title = {Seltenerdmetallkomplexe mit Cyanoborat-Anionen - sowie - Synthese und Charakterisierung des Hydroxytricyanoborat-Anions}, doi = {10.25972/OPUS-18346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen dieser Arbeit konnten Seltenerdmetallcyanoborate mit unterschiedlich funktionalisierten Anionen, beispielsweise Hydrido-, Fluoro- oder Perfluoralkylcyanoborat-Anionen, synthetisiert und vollst{\"a}ndig charakterisiert werden. L{\"o}sungen der wasserfreien Komplexe Ln[BH2(CN)2]3 (Ln = La, Eu, Ho) in der korrespondierenden ionischen Fl{\"u}ssigkeit [EMIm][BH2(CN)2] konnten hinsichtlich Dichte Viskosit{\"a}t und Leitf{\"a}higkeit in Abh{\"a}ngigkeit der Konzentration des gel{\"o}sten Komplexes untersucht werden. Alle Europiumkomplexe wurden hinsichtlich ihrer photochemischen Eigenschaften untersucht. Weiterhin konnte im Rahmen dieser Arbeit die erste selektive Synthese des Hydroxytricyanoborat-Anions [B(OH)(CN)3]- vorgestellt werden. Ausgehend von der Br{\o}nsteds{\"a}ure dieses Anions konnte die Synthese einer ganzen Reihe von Salzen und Komplexverbindungen, sowie von ionischen Fl{\"u}ssigkeiten mit diesem Anion realisiert werden.}, subject = {Cyanoborate}, language = {de} } @article{AuerhammerArrowsmithBraunschweigetal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian D. and Jim{\´e}nez-Halla, J. Oscar C. and Kupfer, Thomas}, title = {Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {10}, doi = {10.1039/c7sc03193a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170255}, pages = {7066-7071}, year = {2017}, abstract = {The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.}, language = {en} } @article{LandmannHennigIgnat'evetal.2017, author = {Landmann, Johannes and Hennig, Philipp T. and Ignat'ev, Nikolai V. and Finze, Maik}, title = {Borylation of fluorinated arenes using the boron centred nucleophile B(CN)\(_{3}\)\(^{2-}\) - a unique entry to aryltricyanoborates}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {9}, doi = {10.1039/c7sc02249b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170417}, pages = {5962-5968}, year = {2017}, abstract = {The potassium salt of the boron-centred nucleophile B(CN)\(_{3}\)\(^{2-}\)(1) readily reacts with perfluorinated arenes, such as hexafluorobenzene, decafluorobiphenyl, octafluoronaphthalene and pentafluoropyridine, which results in KF and the K\(^{+}\) salts of the respective borate anions with one {B(CN)\(_{3}\)} unit bonded to the (hetero)arene. An excess of K\(_{2}\)1 leads to the successive reaction of two or, in the case of perfluoropyridine, even three C-F moieties and the formation of di- and trianions, respectively. Moreover, all of the 11 partially fluorinated benzene derivatives, C\(_{6}\)F\(_{6-n}\)H\(_{n}\) (n = 1-5), generally react with K\(_{2}\)1 to give new tricyano(phenyl)borate anions with high chemo- and regioselectivity. A decreasing number of fluorine substituents on benzene results in a decrease in the reaction rate. In the cases of partially fluorinated benzenes, the addition of LiCl is advantageous or even necessary to facilitate the reaction. Also, pentafluorobenzenes R-C\(_{6}\)F\(_{5}\) (R = -CN, -OMe, -Me, or -CF\(_{3}\)) react via C-F/C-B exchange that mostly occurs in the para position and to a lesser extent in the meta or ortho positions. Most of the reactions proceed via an S\(_{N}\)Ar mechanism. The reaction of 1,4-F\(_{2}\)C\(_{6}\)H\(_{4}\) with K\(_{2}\)1 shows that an aryne mechanism has to be considered in some cases as well. In summary, a wealth of new stable tricyano(aryl)borates have been synthesised and fully characterized using multi-NMR spectroscopy and most of them were characterised using single-crystal X-ray diffraction.}, language = {en} } @unpublished{AuerhammerArrowsmithBissingeretal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Bissinger, Philipp and Braunschweig, Holger and Dellermann, Theresa and Kupfer, Thomas and Lenczyk, Carsten and Roy, Dipak and Sch{\"a}fer, Marius and Schneider, Christoph}, title = {Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201704669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155419}, year = {2017}, abstract = {A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes.}, language = {en} } @unpublished{AuerhammerArrowsmithBoehnkeetal.2018, author = {Auerhammer, Dominic and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dewhurst, Rian D. and Kupfer, Thomas}, title = {Brothers from Another Mother: a Borylene and its Dimer are Non-Interconvertible but Connected through Reactivity}, series = {Chemical Science}, journal = {Chemical Science}, doi = {10.1039/C7SC04789D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157125}, year = {2018}, abstract = {The self-stabilizing, tetrameric cyanoborylene [(cAAC)B(CN)]4 (I, cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and its diborene relative, [(cAAC)(CN)B=B(CN)(cAAC)] (II), both react with disulfides and diselenides to yield the corresponding cAAC-supported cyanoboron bis(chalcogenides). Furthermore, reactions of I or II with elemental sulfur and selenium in various stoichiometries provided access to a variety of cAAC- stabilized cyanoboron-chalcogen heterocycles, including a unique dithiaborirane, a diboraselenirane, 1,3-dichalcogena-2,4-diboretanes, 1,3,4-trichalcogena- 2,5-diborolanes and a rare six-membered 1,2,4,5-tetrathia-3,6-diborinane. Stepwise addition reactions and solution stability studies provided insights into the mechanism of these reactions and the subtle differences in reactivity observed between I and II.}, language = {en} } @unpublished{BoehnkeBraunschweigJimenezHallaetal.2018, author = {B{\"o}hnke, Julian and Braunschweig, Holger and Jim{\´e}nez-Halla, Oscar and Krummenacher, Ivo and Stennett, Tom E.}, title = {Half-Sandwich Complexes of an Extremely Electron-Donating, Re-dox-Active η\(^6\)-Diborabenzene Ligand}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b12394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156766}, year = {2018}, abstract = {The heteroarene 1,4-bis(CAAC)-1,4-diborabenzene (1; CAAC = cyclic (alkyl)(amino)carbene) reacts with [(MeCN)\(_3\)M(CO)\(_3\)] (M = Cr, Mo, W) to yield half-sandwich complexes of the form [(η\(^6\)-diborabenzene)M(CO)\(_3\)] (M = Cr (2), Mo (3), W (4)). Investigation of the new complexes with a combination of X-ray diffraction, spectroscopic methods and DFT calculations shows that ligand 1 is a remarkably strong electron donor. In particular, [(η\(^6\)-arene)M(CO)\(_3\)] complexes of this ligand display the lowest CO stretching frequencies yet observed for this class of complex. Cyclic voltammetry on complexes 2-4 revealed one reversi- ble oxidation and two reversible reduction events in each case, with no evidence of ring-slippage of the arene to the η\(^4\) binding mode. Treatment of 4 with lithium metal in THF led to identification of the paramagnetic complex [(1)W(CO)\(_3\)]Li·2THF (5). Compound 1 can also be reduced in the absence of a transition metal to its dianion 1\(^{2-}\), which possesses a quinoid-type structure.}, language = {en} } @phdthesis{Boehnke2019, author = {B{\"o}hnke, Julian}, title = {Reaktivit{\"a}t niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme}, doi = {10.25972/OPUS-16333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, vielf{\"a}ltige Reaktivit{\"a}ten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. H{\"a}ufig begr{\"u}ndet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungew{\"o}hnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-F{\"a}higkeiten und der hohen π-Acidit{\"a}t der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivit{\"a}tsstudien mit den entsprechenden NHC-stabilisierten Bor-Bor-Mehrfachbindungssystemen wider. Zun{\"a}chst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgef{\"u}hrt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungsl{\"a}ngen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zug{\"a}nglichkeit f{\"u}r die Reaktivit{\"a}tsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollst{\"a}ndige, oxidative Spaltung der Bor-Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten gr{\"o}ßeren Teilbereich dieser Arbeit dar. Durch die enorme π-R{\"u}ckbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Im weiteren Verlauf konnte ein Mechanismus f{\"u}r die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) - einer Spezies, die f{\"u}r die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde - unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei {\"A}quivalenten tert-Butylisocyanid f{\"u}hrte zur Bildung eines Bis(boraketenimins). {\"A}hnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-R{\"u}ckbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B-B-Bindung und orthogonal zueinander stehenden Molek{\"u}lh{\"a}lften. Die Thermolyse der Verbindung f{\"u}hrte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: W{\"a}hrend ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung f{\"u}hrt und potentiell hochinteressante Reaktivit{\"a}ten erm{\"o}glicht. So f{\"u}hrte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B-B-Bindung und Insertion eines µ2-gebundenen CO-Molek{\"u}ls in die BB-Einheit. Die Tatsache, dass ein {\"a}hnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten F{\"a}higkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivit{\"a}t des Diborakumulens 7 gegen{\"u}ber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das R{\"u}hren von 7 unter einer H2-Atmosph{\"a}re f{\"u}hrte zur 1,2-Addition des H2-Molek{\"u}ls an die B2-Einheit unter Ausbildung eines trans-st{\"a}ndigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidit{\"a}t der CAAC-Liganden {\"u}ber das gesamte C-B-B-C-Grundger{\"u}st delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgef{\"u}hrt, um eine Hydridabstraktion aus dem L{\"o}sungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielf{\"a}ltige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu beg{\"u}nstigen, f{\"u}hrte zur Ausbildung verschiedener Tautomere. W{\"a}hrend das Produkt aus der formalen Addition und Insertion von zwei CO-Molek{\"u}len (24) lediglich unter CO-Atmosph{\"a}re stabil war, konnte unter Argonatmosph{\"a}re ein Tautomerengemisch von 25 mit intakter Bor-Bor-Bindung und einer Boraketeneinheit isoliert werden. W{\"a}hrend dieser Prozess vollst{\"a}ndig reversibel war, f{\"u}hrte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Dar{\"u}ber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollst{\"a}ndigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosph{\"a}ren, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen erm{\"o}glichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen f{\"u}hrte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchg{\"a}ngig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark {\"a}hnelte. Eine weitere Umsetzung von 22 mit zwei {\"A}quivalenten Diphenyldisulfid f{\"u}hrte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivit{\"a}tsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molek{\"u}len f{\"u}hrte zur Ausbildung einer Spezies mit einer Boraketenfunktionalit{\"a}t und einem Bors{\"a}ureesterderivat (30). F{\"u}r die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion {\"u}ber eine ungew{\"o}hnliche, sukzessive [2+1]-Cycloaddition an die koordinativ unges{\"a}ttigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton f{\"u}hrte zur Ausbildung eines f{\"u}nfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbr{\"u}ckter Bor-Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Br{\"u}ckner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsf{\"u}hrung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. W{\"a}hrend das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, f{\"u}hrten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. F{\"u}r 31 konnte dar{\"u}ber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander {\"u}berf{\"u}hrt werden konnte. Die Reaktion des Diborakumulens mit M{\"u}nzmetallhalogeniden ergab f{\"u}r die Umsetzung von 7 mit drei {\"A}quivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-f{\"o}rmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem {\"A}quivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilit{\"a}t, sodass sich nach einem Zeitraum von 24 Stunden bei erh{\"o}hter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-S{\"a}ure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren {\"A}quivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zun{\"a}chst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor-Bor-Bindung besitzt. Die Reaktion von 34 gegen{\"u}ber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments f{\"u}hrt hier zu einer erheblichen π-R{\"u}ckbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen f{\"u}r die CO-Schwingung in einer derartigen Funktionalit{\"a}t aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff f{\"u}hrte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor-Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verh{\"a}ltnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor-Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundger{\"u}st, C-C- und B-C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols {\"a}hneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der {\"U}bergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor-Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen erm{\"o}glichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an {\"U}bergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 m{\"o}glich war. Die Ausbildung eines quinoiden Systems f{\"u}hrte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 {\"A}quivalenten Zirkoniumtetrachlorid f{\"u}hrte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang dar{\"u}ber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen f{\"u}r [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche R{\"u}ckbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant h{\"o}here Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als {\"u}beraus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivit{\"a}tsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit besch{\"a}ftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid f{\"u}hrte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor-Bor-Mehrfachbindung. W{\"a}hrend die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor-Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben f{\"u}r 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten dar{\"u}ber hinaus zeigen, dass die Singulett-Zust{\"a}nde der synthetisierten Diborene stabiler als die Triplett-Zust{\"a}nde sind und dass die Triplett-Zust{\"a}nde der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zust{\"a}nde sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verst{\"a}ndnis dieser Verbindungsklasse.}, subject = {Bor}, language = {de} } @unpublished{StoyBoehnkeJiménezHallaetal.2018, author = {Stoy, Andreas and B{\"o}hnke, Julian and Jiménez-Halla, J. Oscar C. and Dewhurst, Rian D. and Thiess, Torsten and Braunschweig, Holger}, title = {CO\(_2\) Binding and Splitting by Boron-Boron Multiple Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201802117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164265}, year = {2018}, abstract = {CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction.}, language = {en} } @unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @unpublished{CidHermannRadcliffeetal.2018, author = {Cid, Jessica and Hermann, Alexander and Radcliffe, James E. and Curless, Liam D. and Braunschweig, Holger and Ingleson, Michael J.}, title = {Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations}, series = {Organometallics}, journal = {Organometallics}, doi = {10.1021/acs.organomet.8b00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164299}, year = {2018}, abstract = {Reaction of bis-catecholatodiboron-NHC adducts, B\(_2\)Cat\(_2\)(NHC), (NHC = IMe (tetramethylimidazol-2-ylidene), IMes (1,3-dimesitylimidazol-2-ylidene) or IDIPP (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)) with BCl3 results in the replacement of the catecholato group bound to the four coordinate boron with two chlorides to yield diboron(5) Lewis acid-base adducts of formula CatB-BCl\(_2\)(NHC). These compounds are precursors to diboron(5) monocations, accessed by adding AlCl\(_3\) or K[B(C\(_6\)F\(_5\))\(_4\)] as halide abstraction agents in the presence of a Lewis base. The substitution of the chlorides of CatB-BCl\(_2\)(NHC) for hydrides is achieved using Bu\(_3\)SnH and a halide abstracting agent to form 1,1-dihydrodiboron(5) compounds, CatB-BH\(_2\)(NHC). Attempts to generate diboron(4) monocations of formula [CatB-B(Y)(NHC)]\(^+\) (Y = Cl or H) led to the rapid formation of CatBY.}, language = {en} } @phdthesis{Mao2018, author = {Mao, Lujia}, title = {Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group ('OTi'). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol \% [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32\%-95\% yields. With 10 mol \% [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53\%-89\% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72\%-84\% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72\%-89\% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95\% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92\% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50\%-83\% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44\%-83\% yields. The (E)-2-boryl allylboronates were synthesized in 54\%-92\% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2'-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions}, subject = {{\"U}bergangsmetall}, language = {en} } @unpublished{WangArrowsmithBraunschweigetal.2017, author = {Wang, Sunewang Rixin and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian and Paprocki, Valerie and Winner, Lena}, title = {CuOTf-mediated intramolecular diborene hydroarylation}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C7CC07371B}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154055}, year = {2017}, abstract = {Upon complexation to CuOTf, a PMe\(_3\)-stabilized bis(9-anthryl) diborene slowly undergoes an intramolecular hydroarylation reaction at room temperature. Subsequent triflation of the B-H bond with CuOTf, followed by a PMe\(_3\) transfer, finally yields a cyclic sp\(^2\)-sp\(^3\) boryl-substituted boronium triflate salt.}, language = {en} } @unpublished{BraunschweigBruecknerDeissenbergeretal.2017, author = {Braunschweig, Holger and Br{\"u}ckner, Tobias and Deißenberger, Andrea and Dewhurst, Rian and Gackstatter, Annika and G{\"a}rtner, Annalena and Hofmann, Alexander and Kupfer, Thomas and Prieschl, Dominic and Thiess, Torsten and Wang, Sunewang Rixin}, title = {Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201702377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153068}, year = {2017}, abstract = {Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B-X (X = halogen) bonds and a C-H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B-X insertion, may be crucial for the C-H borylation that leads to the final products. Notably, our results demonstrate the first C-H borylation with a strong B-F bond activated by silylene insertion.}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2017, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet Ali}, title = {Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201707907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153318}, year = {2017}, abstract = {Under a CO atmosphere the dihydrodiborene [(cAAC)HB=BH(cAAC)] underwent coordination of CO concomitant with reversible hydrogen migration from boron to the carbene carbon atom, as well as reversible CO insertion into the B=B bond. Heating of the CO-adduct resulted in two unusual cAAC ring-expansion products, one presenting a B=C bond to a six-membered 1,2-azaborinane-3-ylidene, the other an unprecedented nine-membered cyclic alkyne resulting from reductive cleavage of CO and spontaneous C≡C triple bond formation.}, language = {en} } @phdthesis{Schuster2019, author = {Schuster, Julia Katharina}, title = {Lewis-Basen-Stabilisierte Mono- und Dinukleare Verbindungen des Galliums und Niedervalente Verbindungen des Berylliums - Darstellung und Reaktivit{\"a}tsstudien}, doi = {10.25972/OPUS-16638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present work is divided into two parts, the first of which is concerned with the synthesis and reactivity of carbene-stabilized gallium compounds. The second part of this thesis adresses the synthesis of novel, beryllium-containing compounds, whereby, in addition to investigations into new structural motifs of linear, sp-hybridized beryllium compounds, the stabilization of low valent beryllium complexes by the use of carbene ligands is a central part of this thesis. 1 Lewis-base-stabilized gallium compounds In this chapter, two different synthetic routes towards carbene stabilized, low-valent gallium compounds were investigated. By the use of CAAC ligands, four different [GaCl3(RCAAC)]-species (R = Me, Cy, Et, Menth) were realized, and investigated in terms of their reactivity towards reducing agents. However, all experimental approaches led to either decomposition products or renewed isolation of the starting materials and the synthesis of dinuclear gallium compounds via reductive coupling of two CAAC-Ga fragments was found not to be feasible. A different approach towards low-valent gallium compounds was the chemical reduction of Lewis-base-stabilized digallanes(4), in which the two gallium atoms are already connected via a σ bond. The synthesis of such compounds by reaction of either the subhalide ´GaI` or the mixed-valent salt [Ga]+[GaCl4]- with two equivalents of the free MeCAAC did not afford the double Lewis-base-stabilized [Ga2X4(MeCAAC)2] species (X = I, Cl). However, [Ga2Cl4(MeCAAC)2] was accessible through ligand exchange reaction of [Ga2Cl4(1,4-dioxane)2] with two equivalents of MeCAAC, due to the relatively weakly-coordinating nature of 1,4-dioxane. In an analogous fashion, three additional Lewis-base-stabilized digallanes(4) could be realized when the carbenes CyCAAC, SIDep und IDipp were used. The reactivity of the Lewis-base-stabilized digalliumtetrachlorides was tested towards different reducing agents. However, none of the reactions led to a distinct product formation and the synthesis of neutral, Ga-Ga multiple bond systems could not be realized in this manner. However, treatment of [Ga2Cl4(MeCAAC)2] with two equivalents of 1,3,2 diazaborolyllithium induced Ga-Ga bond cleavage and [GaCl2{B(NDippCH)2}(MeCAAC)] was isolated as the only boron-containing compound. The halide exchange reactions of the double Lewis-base adducts of digalliumtetrachloride were also investigated. Treatment of [Ga2Cl4(MeCAAC)2] and [Ga2Cl4(CyCAAC)2] with 1.3 molar equivalents of either BBr3 or BI3, well established reagents for halide exchange at other Group 13 elements, yielded the corresponding [Ga2X4(MeCAAC)2] (X = Br, I ) and [Ga2X4(CyCAAC)2] (X = Br, I), with retention of the carbene ligands. Also, the reaction of [Ga2Br4(CyCAAC)2] with BI3 afforded the fully iodinated species. In contrast to the MeCAAC-stabilized compounds, which feature extreme insolubility in common organic solvents, the CyCAAC-stabilized compounds could be characterized by NMR spectroscopy and X-ray diffraction. 2 Lewis-base-stabilized beryllium compounds The reaction of BeCl2 with two equivalents 1,3,2-diazaborolyllithium provided the homoleptic, linear Be{B(NDippCH)2}2. In its 9Be NMR spectrum, the compound shows a chemical shift of δ = 45 ppm, significantly outside the normal range of two-coordinate beryllium compounds. The electrophilic nature of the beryllium center in Be{B(NDippCH)2}2 was calculated by quantum chemical calculations and demonstrated by its reactivity towards different substrates: methanolysis of Be{B(NDippCH)2}2 induced a Be-B bond cleavage, and, along with insoluble materials presumed to be the polymeric beryllium methanolate, cleanly afforded the protonated 1,3,2 diazaborole. The use of deuterated MeOD in the reaction confirmed methanol as the proton source. Treatment of Be{B(NDippCH)2}2 with one equivalent of the small carbene IMe effected addition at the beryllium center to yield the trigonal mixed Lewis-base adduct. The heteroleptic BeCl{B(NDippCH)2} could not be synthesized by the reaction of BeCl2 with equimolar amounts of 1,3,2-diazaborolyllithium. Therefore, [BeClCp*] was used as starting material for the synthesis of novel, heteroleptic sp-hybridized beryllium species. Treatment of [BeClCp*] with various NHCs did not lead to the expected adduct formation, but yielded, only in the case of IiPr, the metallocene [BeCp*2] and the double Lewis-base adduct [BeCl2(IiPr)2] in a ligand exchange reaction. The reaction of [BeClCp*] with equimolar amounts of 1,3,2 diazaborolyllithium formed the linear coordinated [BeCp*{B(NDippCH)2}] in a salt elimination reaction. A central part of this work was the monomerization of BeCl2 by the use of CAAC ligands. Four differerent [BeCl2(RCAAC)] species (R = Me, Cy, Et, Menth) were synthesized via reaction of the corresponding free carbenes and BeCl2. Furthermore, the reactivity of these kinds of compounds towards different substrates was investigated. Treatment of [BeCl2(MeCAAC)] with equimolar amounts of 1,3,2-diazaborolyllithium afforded the trigonal mixed Lewis-base adduct [BeCl{B(NDippCH)2}(MeCAAC)] in a salt elimination reaction. This compound showed limited stability under reduced pressure, in solution as well as in the solid state, and subsequently formed the protonated 1,3,2 diazaborole and a beryllium containing compound that could not be further identified. The reaction of [BeCl2(MeCAAC)] with Bogdanović-Magnesium ([Mg(C14H10)(thf)3]) provided the CAAC-stabilized berylliumanthracendiyl [Be(C14H10)(MeCAAC)], which was isolated as a red solid. The mechanism of this reaction might be described as a nucleophilic addition of the dianionic anthracene unit to the beryllium center with concomitant loss of MgCl2. [Be(C14H10)(MeCAAC)] shows structural similarities to the magnesium containing species [Mg(C14H10)(thf)3], as both compounds show a non-planar anthracene moiety in their solid-state structures, due to the loss of aromaticity of the substituent. None of the attempts to chemically reduce the various [BeCl2(RCAAC)] compounds with a range of one-electron reducing agents afforded a selective reaction product, and either decomposition products or starting materials were isolated. However, treatment of the Lewis-base adducts [BeCl2(MeCAAC)] and [BeCl2(CyCAAC)] with potassium graphite in the presence of an additional equivalent of RCAAC (R = Me, Cy) yielded the homoleptic and heteroleptic compounds [Be(CyCAAC)2], [Be(MeCAAC)2] and [Be(MeCAAC)(CyCAAC)]. The solid-state structures of the double Lewis-base stabilized beryllium compounds show linear geometries around the beryllium center and significant differences to their beryllium-containing starting materials. A contraction of the Be1-C1 bonds as well as an elongation of the ligand-centered C1-N1 bonds was observed, indicative of strong Be-C bonding. Whereas the beryllium atom is usually found in its +II oxidation state, the central atom in the linear [Be(CAAC)] compounds is formally in its elemental form. Therefore, these compounds represent the first neutral complexes with a formally zerovalent CAAC-stabilized s-block element. The unusual electronic structure of these compounds is emphasized by their deep violet color (λmax (THF) = 575/579 nm). Quantum chemical calculations describe the bonding situation in [Be(CAAC)2] with a combination of donor-acceptor interactions between two ground-state singlet CAAC ligands and Be(0) in a 1s22s02p2 electronic configuration, resulting in a 3c 2e- π bond stretching over the C Be C core. Furthermore, the stabilization arising from π backdonation from Be to the CAAC ligands was found to significantly predominate over that from σ-donation from CAAC to the beryllium center. The NHC-stabilized compounds [Be(IDipp)2] and [Be(IDipp)(IMes)] and the mixed NHC/CAAC-stabilized species [Be(MeCAAC)(NHC)] (NHC = IDipp, IMes, SIDep) could not be synthesized. This might be explained by the different electronic properties of the carbenes. On the one hand, the π-accepting abilities of the NHCs are likely insufficient to form a 3c 2e- π bond. On the other hand, the stability of the mixed CAAC/NHC stabilized Be(0) compounds might not be sufficient due to differences in the σ-donating and π accepting properties of the ligands, which limits the formation of a symmetrical 3c 2e- π bond across the C-Be-C unit.}, subject = {Beryllium}, language = {de} } @unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @unpublished{StennettMattockVollertetal.2018, author = {Stennett, Tom and Mattock, James and Vollert, Ivonne and Vargas, Alfredo and Braunschweig, Holger}, title = {Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene}, series = {Angewandte Chemie, International Edition}, volume = {57}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201800671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160258}, pages = {4098-4102}, year = {2018}, abstract = {Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.}, language = {en} } @phdthesis{Drisch2019, author = {Drisch, Michael}, title = {Beitr{\"a}ge zur Chemie schwach koordinierender Cyanoborat- und Fluorophosphat-Anionen}, doi = {10.25972/OPUS-14680}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Zusammenfassung Synthetisch einfach zug{\"a}ngliche, thermisch und chemisch robuste schwach oder mittelstark wechselwirkende Anionen sind wichtige Bausteine f{\"u}r neue Materialien wie zum Beispiel ionische Fl{\"u}ssigkeiten und Li-Leitsalze. Im Rahmen der vorliegenden Arbeit wurden zum einen neue schwach koordinierende Borat- und Pentafluorophosphat-Anionen entwickelt und zum anderen effiziente Synthesen zu bereits bekannten Cyanoborat-Anionen ausgearbeitet. Aufgrund ihrer interessanten Eigenschaften wie niedriger Viskosit{\"a}t und elektrochemischer Stabilit{\"a}t wird der Einsatz von ionischen Fl{\"u}ssigkeiten mit dem [BH(CN)3]--Anion seit l{\"a}ngerer Zeit intensiv untersucht. Ausgehend von Na[BH4] wurde eine {\"a}ußerst effiziente Synthese zu K[BH(CN)3], die auch f{\"u}r den molaren Maßstab geeignet ist, entwickelt. Die Synthese verl{\"a}uft {\"u}ber Tricarboxylatohydridoborate als Zwischenstufen, welche sich bei vergleichsweise niedrigen Temperaturen von 60 °C weiter mit TMSCN und TMSCl (Kat.) zum [BH(CN)3]--Anion cyanieren lassen. Durch schrittweise Cyanierung mit TMSCN, ohne den Einsatz eines Lewis-S{\"a}ure-Katalysators wie TMSCl, wurden die Carboxylatocyanoborate M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) und M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) synthetisiert und zum Teil strukturell charakterisiert. [EMIm][BH(CN)2(OC(O)Et)] ist eine bei Raumtemperatur fl{\"u}ssige ionische Fl{\"u}ssigkeit mit einem Schmelzpunkt von -78 °C. Die dynamische Viskosit{\"a}t ist mit 44.81 mPa∙s bei 20 °C etwa vier Mal so hoch wie die von [EMIm][BH(CN)3] mit 12.36 mPa∙s. Ausgehend von den nun in sehr guten Ausbeuten und in hohen Reinheiten zug{\"a}nglichen Cyanohydridoboraten wurden verschiedene Fluorierungsmethoden untersucht, um daraus Cyanofluoroborate zu synthetisieren. So wurde K[BF(CN)3] ausgehend von K[BH(CN)3] {\"u}ber direkte Fluorierung mit F2 in aHF oder F-TEDA, XeF2 sowie (Et2N)SF3 in Acetonitril synthetisiert. K[BH(CN)3] reagiert in aHF in Gegenwart von Fluor jedoch nicht selektiv zu K[BF(CN)3]. Es kommt zur teilweisen Addition eines HF-Molek{\"u}ls an eine Cyanogruppe, welche nach w{\"a}ssriger Aufarbeitung K[BF(CN)2(C(O)NH2)] liefert. Die S{\"a}ureamid-Gruppe l{\"a}sst sich aber anschließend mit COCl2 leicht entw{\"a}ssern, sodass K[BF(CN)3] selektiv erhalten wird. Ebenfalls ist eine indirekte Fluorierung durch vorheriges Umsetzen eines entsprechenden [BH(CN)3]- Borats mit Cl2 oder Br2 und nachfolgender Fluorierung mit Et3N∙3HF m{\"o}glich. Die gezeigten Fluorierungen wurden ebenfalls auf weitere Hydridoborate {\"u}bertragen. Na[BH(CN)2(OC(O)Et)] wurde unter Erhalt der Propoxylato-Gruppe in einer Eintopfsynthese mit Br2 und Et3N∙3HF zu Na[BF(CN)2(OC(O)Et)] fluoriert. K[BF(CN)3] konnte ausgehend von K[BH(CN)3] ebenfalls mit Hilfe der elektrochemischen Fluorierung (ECF, Simons-Prozess) im Gramm-Maßstab hergestellt werden. Dabei gelang die erste Fluorierung einer B-H-Spezies mit dem Simons-Prozess {\"u}berhaupt. Bei der ECF von K[BF(CN)3] wurden bei fortschreitender Reaktionsdauer NMR-spektroskopisch verschiedene CF3-Borate beobachtet. W{\"a}hrend der ECF kommt es also teilweise zu einer C≡N-Bindungsspaltung. Die Fluorierung von CN-Gruppen mit ClF zu CF3-Gruppen wurde ebenfalls auf eine Reihe weiterer Borate angewendet. So wurden K[(C2F5)B(CF3)3] und K[(C2F5)BF(CF3)2] ausgehend von K[(C2F5)B(CN)3] und K[(C2F5)BF(CN)2] synthetisiert und mit einigen Zwischenstufen NMR-spektroskopisch charakterisiert. Neben Boraten sind besonders Salze von schwach koordinierende Phosphat-Anionen wie Li[PF6] f{\"u}r elektrochemische Anwendungen von Interesse. Auf Basis von verschiedenen aminverbr{\"u}ckten Phosphons{\"a}uren wurden neuartige Salze mit mehrfach negativ geladenen Oligo-Phosphat-Anionen synthetisiert. {((HO)2(O)PCH2)2NCH2}2 und ((HO)2(O)PCH2)3N reagieren mit wasserfreiem Fluorwasserstoff zu den entsprechenden Oligo-Pentafluorophosphat-Anionen [{(F5PCH2)2NHCH2}2]2- und [(F5PCH2)2NH]2-. Die verbr{\"u}ckenden Stickstoffatome werden dabei protoniert, was zu zweifach negativ geladenen Phosphat-Anionen f{\"u}hrt. Unterschiedliche Salze mit organischen und anorganischen Kationen wurde so isoliert. Weitere Salze, wie das [Ph3C]-, [EMIm]- oder das Li-Salz, wurden durch Metathesereaktionen erhalten. Das Stickstoffatom in -Position zum Phosphoratom scheint essenziel f{\"u}r die Fluorierung der Phosphons{\"a}ure-Gruppe mit aHF zu einer PF5-Gruppe zu sein. Dies wurde durch die Umsetzung anderer funktionalisierter Phosphons{\"a}uren wie z.B. (HO)2(O)PMe best{\"a}tigt, da es dabei nur zu einer Teilfluorierung zum F2(O)PMe kam. Die Kalium-Salze K2[{(F5PCH2)2NHCH2}2] und K2[(F5PCH2)3NH] lassen sich mit KH in DMF deprotonieren und so Salze mit den dreifach bzw. vierfach negativ geladenen Anionen [{(F5PCH2)2NCH2}2]4- und [(F5PCH2)3N]3- erhalten. K4[{(F5PCH2)2NCH2}2] und K3[(F5PCH2)2N] sind hydrolyseempfindlich und werden leicht protoniert. Die deprotonierten Anionen k{\"o}nnen jedoch mit Methyliodid oder Allyliodid weiter umgesetzt und so funktionalisiert werden. Das methylierte bzw. allylierte Stickstoffatom sorgt f{\"u}r eine deutliche Stabilisierung der Anionen. So steigt zum Beispiel die Zersetzungstemperatur von K2[{(F5PCH2)2N(CH3)CH2}2] im Vergleich zu K2[{(F5PCH2)2NHCH2}2] um {\"u}ber 100 °C auf 300 °C. Des Weiteren steigt auch die Stabilit{\"a}t gegen{\"u}ber Hydrolyse bei Salzen mit den methylierten Phosphat-Anionen deutlich an. K2[{(F5PCH2)2NHCH2}2] wird nach einigen Minuten in H2O langsam hydrolisiert. Dagegen ist K2[{(F5PCH2)2N(CH3)CH2}2] mehrere Tage sowohl wasser- als auch basenstabil. Das durch eine Metathesereaktion von Li[BF4] mit K2[{(F5PCH2)2N(CH3)CH2}2] erhaltene Li2[{(F5PCH2)2N(CH3)CH2}2] hat in -Butyrolacton eine Leitf{\"a}higkeit von 2.67 mS∙cm-1 (c = 0.1 mol∙L-1). Einige Oligo-Pentafluorophosphate wurden ebenfalls strukturanalytisch charakterisiert.}, subject = {Anion}, language = {de} } @phdthesis{WaagHiersch2017, author = {Waag-Hiersch, Luisa}, title = {„iClick"-Reaktionen von Ru- und Rh-Azid-Komplexen mit elektronenarmen Alkinen: Regioselektivit{\"a}t, Stabilit{\"a}t und Kinetik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146286}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die regioselektive Funktionalisierung von Bio(makro)molek{\"u}len erfordert Reaktionen, die mit einem biologischen System weder interagieren noch interferieren. Bestimmte funktionelle Gruppen, wie Azide oder Alkine, sind unter physiologischen Bedingungen inert, kommen nicht in der Natur vor, lassen sich selektiv miteinander verkn{\"u}pfen und sind nicht-toxisch gegen{\"u}ber Zellen und Organismen. F{\"u}r die Einf{\"u}hrung metallbasierter Funktionalit{\"a}ten in solche Zielstrukturen stellen Click-Reaktionen daher einen schnellen Zugang dar, wobei Reaktionen, die ohne Zusatz von Katalysator und bei Raumtemperatur ablaufen von besonderem Interesse sind. Das Ziel der vorliegenden Arbeit war es daher die „iClick"-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen Formel [Ru(N3)(aren)(N-N)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2'-Bipyridin-Coliganden (R = OCH3, H, COOCH3) gegen{\"u}ber elektronenarmen Alkinen zu untersuchen. R{\"o}ntgenstrukturanalysen der resultierenden Triazolat-Komplexe sollten den Koordinationsmodus best{\"a}tigten, da die Produkte der Click-Reaktionen prinzipiell als zwei verschiedene Regioisomere auftreten k{\"o}nnen. Die [Rh(Cp*)(N3)(bpyR,R)]CF3SO3-Komplexe mit 2,2'-Bipyridin (bpy), dem elektronenziehenden Ligand 4,4'-Bis(methoxycarbonyl)-2,2′-bipyridin (bpyCOOCH3,COOCH3) sowie dem elektronenschiebenden Ligand 4,4'-Dimethoxy-2,2'-bipyridin (bpyOCH3,OCH3) wurden aus den entsprechenden Rhodium-Chlorido-Komplexen durch F{\"a}llung des Halogenids mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid hergestellt. In L{\"o}sung waren diese Verbindungen jedoch nur begrenzt stabil, wobei der Komplex mit bpyOCH3,OCH3 am wenigsten empfindlich war, w{\"a}hrend [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 aufgrund der sehr schnellen Zersetzung nicht isoliert werden konnte. Die „iClick"-Reaktion der Rhodium-Azid-Komplexe mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester ergab dann aber die stabilen Triazolat-Komplexe [Rh(Cp*)(triazolatCF3,COOEt)(bpyR,R)]CF3SO3 in sehr guter Ausbeute. Die Ruthenium-Azid-Komplexe [Ru(N3)(N-N)(p­cym)]PF6 mit N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, Bipyrimidin (bpym) sowie Dipyrido[3,2­a:2',3'­c]phenazin (dppz) wurden ausgehend von den jeweiligen Ruthenium-Chlorido-Komplexen durch F{\"a}llung des Halogenid-Liganden mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid in guter bis moderater Ausbeute hergestellt. Um den Einfluss des Aren-Liganden zu untersuchen wurde außerdem der entsprechende Hexamethylbenzol-Komplex [Ru(N3)(bpy)(hmb)]CF3SO3 in moderater Ausbeute hergestellt. Alle [Ru(N3)(aren)(N-N)]X-Komplexe mit X = PF6- oder CF3SO3- wurden mittels 1H, 13C NMR- und IR-Spektroskopie, CHN-Analyse sowie ESI-Massenspektrometrie charakterisiert. Die „iClick"-Reaktion dieser Komplexe erfolgte mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und teilweise auch mit Dimethylacetylendicaboxylat (DMAD) in sehr guter bis guter Ausbeute. Außerdem konnten f{\"u}r die R{\"o}ntgenstrukturanalyse taugliche Einkristalle von [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 und [Ru(triazolatCF3,COOEt)(bpyCOOCH3,COOCH3)(p­cym)]PF6 erhalten werden, die die N2-Koordination des Triazolat-Liganden an das Zentralatom best{\"a}tigten. Um diese als metallbasierte Marker einsetzen zu k{\"o}nnen, m{\"u}ssen die resultierenden Triazolat-Komplexe bei biologisch relevanten pH-Werten und gegen{\"u}ber Ligandenaustausch, zum Beispiel mit den Aminos{\"a}ureseitenketten von Proteinen, stabil sein. Durch HPLC-Untersuchungen an [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 wurde gezeigt, dass dieser Komplex in w{\"a}ssriger L{\"o}sung {\"u}ber einen pH-Bereich von 1 bis 8 bei Raumtemperatur mindestens 24 h stabil ist. Außerdem konnte eine weitgehende Stabilit{\"a}t gegen{\"u}ber Ligandenaustausch mit den Seitenketten der Aminos{\"a}uren L­Cystein, L-Histidin, L­Methionin und L-Glutamins{\"a}ure bei 37 °C {\"u}ber mindestens 72 h festgestellt werden. Insbesondere die Geschwindigkeit der „iClick"-Reaktion ist in einem biologischen Kontext von Bedeutung, da die Konjugationsreaktionen schneller ablaufen m{\"u}ssen als interessierende biologische Prozesse. Mittels HPLC und IR-Spektroskopie wurde f{\"u}r die „iClick"-Reaktion der Rutheniumazid-Komplexe [Ru(N3)(bpyR,R)(p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 mit einem {\"U}berschuss an 4,4,4-Trifluorobut-2-ins{\"a}ureethylester Geschwindigkeitskonstanten pseudoerster Ordnung im Bereich von 1 ­ 3*10-3 s-1 bestimmt. Außerdem war es mittels IR-Spektroskopie in L{\"o}sung m{\"o}glich die Geschwindigkeits-konstante pseudoerster Ordnung f{\"u}r die „iClick"-Reaktion der Rhodiumazid-Verbindungen [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 mit R = OCH3, H oder COOCH3 und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester zu 2 ­ 4*10-3 s-1 zu ermitteln. Insgesamt zeigte sich, dass Komplexe mit elektronenreichen Coliganden schneller mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester reagieren als solche mit elektronen{\"a}rmeren Liganden. Auch war die Geschwindigkeitskonstante f{\"u}r die Reaktion der Rhodium-Komplexe h{\"o}her als f{\"u}r die Rutheniumverbindungen. Die Geschwindigkeitskonstanten zweiter Ordnung wurden aus der 19F NMR-spektroskopischen Untersuchung der Reaktion von 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und [Ru(N3)(bpyR,R) (p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 bei 20 °C bestimmt. Bei ann{\"a}hernd gleichem Verh{\"a}ltnis von Alkin und Rutheniumazid-Komplexen wurden Geschwindigkeitskonstanten im Bereich von 1 - 2*10-2 L mol-1 s-1 erhalten. Diese sind gr{\"o}ßer als die der Staudinger-Ligation, aber kleiner als die der spannungsinduzierten Azid-Alkin Cycloaddition. Prinzipiell sollte damit also eine biologische Anwendung m{\"o}glich sein. Außerdem wurde die Aktivierungsenergie der Reaktion von [Ru(N3)(bpy)(p­cym)]PF6 mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester aus der Untersuchung der Temperaturabh{\"a}ngigkeit im Bereich von -20 °C bis +20 °C mit VT-NMR zu 46.1 kJ mol-1 bestimmt. In den 19F NMR-Spektren des Reaktionsgemisches zeigte sich bei -20 °C neben dem Signal des N2-koordinierten Triazolats außerdem ein weiteres, das dem N1-Isomer zuzuordnen ist, welches bei Erw{\"a}rmen jedoch wieder verschwand. In einer DFT-Rechnung wurde die Geometrie von [Ru(N3)(bpy)(hmb)]CF3SO3 optimiert. Dabei zeigte sich, dass nur etwa 25 - 30\% aller Trajektorien angreifender Alkinmolek{\"u}len einen Zugang zum Azid erm{\"o}glichen, sodass die Reaktionsgeschwindigkeit um etwa einen Faktor vier niedriger liegen sollte als f{\"u}r nicht oder nur wenig abgeschirmte Organoazid-Verbindungen. Die „iClick"-Reaktion der hier untersuchten Metall-Azid-Komplexe mit elektronenarmen Alkinen zeigt also bereits jetzt Reaktionsgeschwindigkeiten vergleichbar etablierter Biokonjugationsreaktionen. In Zukunft sollte daher das Potential anderer Metall-Azid-Bausteine untersucht und auch das Alkin variiert werden.}, subject = {Ruthenium}, language = {de} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142500}, pages = {4}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+.}, subject = {Diborane}, language = {en} } @phdthesis{Eck2018, author = {Eck, Martin}, title = {Iron- and Copper-catalyzed Borylation of Alkyl and Aryl Halides and B-B Bond Activation and NHC Ring-expansion Reactions of the Diboron(4) Compound Bis(ethylene glycolato)diboron (B\(_2\)eg\(_2\))}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149791}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The purpose of the present work was, in the first part, to investigate the potential of iron-based metal complexes in catalytic borylation reactions with alkyl halides as substrates and B2pin2 as the borylation reagent. Moreover, extended studies of the recently reported, copper mediated borylation reactions of aryl halides were performed, including the screening of substrates and alkoxy bases as well as ligand-screening. Investigations were undertaken on the role of Cu-nanoparticles, which might be involved in this catalytic reaction. Furthermore, Cu-phosphine complexes were synthesized as precursors, but attempts to isolate Cu-boryl species which are intermediates in the proposed catalytic cycle were unsuccessful, although 11B NMR evidence for a Cu-boryl complex was obtained. In the second part of this work, the alternative, Lewis-acidic diboron(4) compound bis(ethylene glycolato)diboron (B2eg2) was synthesized to compare its reactivity with the reactivity of other diboron(4) compounds (e.g. B2neop2, B2cat2, B2pin2 and B2(NMe2)4). Therefore, reactions of B2eg2 with different Lewis-bases, such as NHCs and phosphines, were performed to investigate the possible formation of sp2-sp3 or sp3-sp3 adducts and ring-expansion reactions (RERs). The aim was to obtain a better general insight into the reactivity of diboron(4) compounds with Lewis-bases because they are both used as reactants in transition metal-catalyzed and metal-free borylation reactions. Understanding the B-B bond activation process promoted by Lewis-bases provides a new perspective on the reaction pathways available for various borylation reactions.}, language = {en} } @unpublished{WangArrowsmithBoehnkeetal.2017, author = {Wang, Sunewang R. and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dellermann, Theresa and Dewhurst, Rian D. and Kelch, Hauke and Krummenacher, Ivo and Mattock, James D. and M{\"u}ssig, Jonas H. and Thiess, Torsten and Vargas, Alfredo and Zhang, Jiji}, title = {Engineering a Small HOMO-LUMO Gap and Intramolecular B-B Hydroarylation by Diborene/Anthracene Orbital Intercalation}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {27}, doi = {10.1002/anie.201704063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148126}, pages = {8009-8013}, year = {2017}, abstract = {The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B-B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV-vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B-B and C\(^1\)-H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.}, language = {en} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @phdthesis{Hailmann2018, author = {Hailmann, Michael}, title = {Carba-closo-dodecaboranylethinyl-Liganden und deren Einsatz als Liganden f{\"u}r M{\"u}nzmetall(I)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Ein wesentliches Ziel dieser Arbeit war die Synthese von mehrfach funktionalisierten Carba-closo-dodecaborat-Anionen, um lineare Bausteine f{\"u}r h{\"o}hermolekulare Netzwerke zu generieren. Speziell funktionelle Gruppen, die entweder zwei Koordinationstellen aufweisen oder weitere Funktionalisierungen erm{\"o}glichen, stehen im Fokus. Des Weiteren soll die Koordinationschemie von Carba-closo-dodecaborat-Anionen mit Ethinylgruppen am antipodalen Boratom, besonders in Hinsicht auf die Bildung von M{\"u}nzmetall(I)-Komplexen untersucht werden. Im Rahmen dieser Themengebiete wurden zahlreiche zweifach funktionalisierte Derivate des Carba-closo-dodecaboratanions synthetisiert. Drei ausgew{\"a}hlte Anionen sind in Abbildung 141 gezeigt. {\"U}berdies wurde mit der Synthese von [1-H2CHCC(O)NH-closo-1-CB11H11]- gezeigt, dass die Aminofunktion derivatisiert werden kann. Diese Resultate erm{\"o}glichen die Synthese einer breiten Palette an linearen Bausteinen, beispielsweise f{\"u}r die Verwendung als Linker in h{\"o}hermolekularen Netzwerken.Zudem wurden Bausteine synthetisiert, welche {\"u}ber Wasserstoffbr{\"u}cken-bindungen lineare Str{\"a}nge bilden . Aufgrund des, f{\"u}r Carboxylgruppen selten beobachteten Motivs von tetrameren Einheiten mit dem Graph-Set-Deskriptor [R44(16)] sticht die Struktur von [1-HO(O)C-12-HCC-closo-1-CB11H10]- besonders hervor, da normalerweise f{\"u}r Carbons{\"a}uren die Bildung von Dimeren bevorzugt ist.[129-131] Die maximale L{\"a}nge des tetrameren, cyclischen Bausteins betr{\"a}gt 2.24 nm. Das Anion [1-H2N(O)C-12-HCC-closo-1-CB11H10]- bildet einen linearen Strang mit einer L{\"a}nge von 2.10 nm, welcher an beiden Enden funktionelle Gruppen tr{\"a}gt. Ein interessantes Einsatzgebiet von derartigen Verbindungen ist wiederum die Verwendung als Liganden im Bereich von M{\"u}nzmetall(I)-Komplexen, wie sie beispielsweise von Himmelspach et al.[87] synthetisiert wurden, wobei in diesem Fall {\"u}ber das Wasserstoffbr{\"u}ckenbindungsmotiv ein Verkn{\"u}pfungspunkt vorhanden w{\"a}re, um h{\"o}hermolekulare Netzwerke zu bilden. Des Weiteren wurde der elektronische Einfluss verschiedener funktioneller Gruppen auf die Polarisierung der Alkinylfunktion {\"u}ber das {closo-CB11}-Ger{\"u}st untersucht. Die Differenzen der experimentellen und berechneten chemischen Verschiebungen der Alkinylresonanzen stehen in linearem Zusammenhang mit der berechneten Differenz der NBO-Ladung des entsprechenden Clusters, wie Abbildung 143 zu entnehmen ist. Im Vergleich mit in 1,4-Position substituierten Derivaten von Benzol und Bicyclo[2.2.2]oktan wird deutlich, dass bei dem Carba-closo-dodecaborat-Anion in gr{\"o}ßerem Maße induktive Effekte eine Rolle spielen, aber zu einem gewissen Teil auch mesomere Effekte {\"u}ber das {closo-1-CB11}-Ger{\"u}st vermittelt werden. Dementsprechend ist das Carba-closo-dodecaborat-Anion zwischen den beiden Extremf{\"a}llen Benzol - mit dominierenden mesomeren Effekten - und Bicyclo[2.2.2]oktan - mit reinen induktiven Effekten - einzuordnen.Durch die Verwendung ausgew{\"a}hlter funktionalisierter Pyridinderivate wurde ein breites Spektrum unterschiedlicher AgI-Cluster synthetisiert. Mit Pyridin und 4-Me-Pyridin ist die Struktur im Festk{\"o}rper ein Oktaeder. Bei Verwendung von 4 tBu-Pyridin wird neben eines, auf einer Seite ge{\"o}ffneten Oktaeders, auch ein stark verzerrtes geschlossenes Oktaeder beobachtet. Wird 4-F3C-Pyridin als Ligand verwendet, werden je nach Reaktionstemperatur zwei verschiedene geometrische Grundger{\"u}ste im Festk{\"o}rper erhalten. Bei Temperaturen {\"u}ber 20 °C wird ein Oktaeder und bei Temperaturen unter 15 °C ein Dekaeder aus AgI-Ionen im Festk{\"o}rper gebildet. Bei Einsatz von 3,5-Me-Lutidin hingegen formt sich eine pentagonale Bipyramide.Diese Komplexe phosphoreszieren bei Raumtemperatur, was f{\"u}r diese Verbindungsklasse sehr selten beobachtet wird. Des Weiteren konnten Informationen hinsichtlich der Struktur-Eigenschafts-Beziehung solcher Komplexe erhalten werden, so wird die Quantenausbeute der einzelnen Komplexe maßgeblich von der Struktur beeinflusst wird. W{\"a}hrend das am h{\"a}ufigsten beobachtete geometrische Grundger{\"u}st das Oktaeder ist und die Quantenausbeuten f{\"u}r diese Serie von Clustern in einem Bereich zwischen 0.01 und 0.14 liegen, wird bei Verwendung von 3,5-Me2-Lutidin als Ligand eine pentagonale Bipyramide gebildet, die sich dar{\"u}ber hinaus mit einer Quantenausbeute von 0.76 deutlich von allen anderen bislang synthetisierten Komplexen hervorhebt. Mit den eben erw{\"a}hnten Silber(I)-Komplexen wurden Ergebnisse bei Umsetzungen mit halogenidhaltigen Salzen erhalten. Auch hier wurden Unterschiede bei den verschiedenen Liganden beobachtet und bei Verwendung von 3,5-Me2-Lutidin wurden, in Abh{\"a}ngigkeit der verwendeten Kationen der eingesetzten Halogenid-Salze, unterschiedliche Komplexe erhalten. Im Falle des [Et4N]+-Kations bleibt die pentagonale Bipyramide erhalten und [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)9] bildet sich, w{\"a}hrend bei Verwendung des [Ph4P]+-Kations [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] erhalten wird und die Struktur im Kristall ist mit der von [Ag(C5H5N)4][(Ag7(12-CC-closo-1-CB11H11)4(C5H5N)11] verwandt. Die Struktur-Eigenschaft-Beziehung der Komplexe wird hierbei best{\"a}tigt, da f{\"u}r beide Komplexe sehr unterschiedliche Quantenausbeuten gemessen werden. Der Cluster mit dem pentagonal bipyramidalen Aufbau [Et4N][Ag7(12-CC-closo-1-CB11H11)4(3,5-Me2-C5H3N)8] hat eine Quantenausbeute von 0.23 gemessen, w{\"a}hrend die Quantenausbeute im Fall von [Ph4P][Ag7(12-CC-closo-1-CB11H11)4(3,5-(Me)2C5H3N)13] nur 0.04 betr{\"a}gt. Dies belegt, dass die Struktur des AgI-Clusters im Festk{\"o}rper die Lumineszenzeigenschaften maßgeblich bestimmt. Des Weiteren wurden verschiedene M{\"u}nzmetallkomplexe mit Carboranyl-ethinyl- und Triphenylphosphan-Liganden synthetisiert . Auch diese Komplexe lumineszieren bei Bestrahlung mit UV-Licht. Im Falle des gemischten Komplexes {12-(Ph3PAu)((Ph3P)2Ag)]-CC-closo-1-CB11H11} konnte die Quantenausbeute auf 0.39 im Vergleich zu den reinen AgI- und AuI-Verbindungen erh{\"o}ht werden. In diesen F{\"a}llen liegt die Quantenausbeute bei lediglich 0.01 beziehungsweise 0.02.}, subject = {Carborane}, language = {de} } @phdthesis{Schwenk2018, author = {Schwenk, Nicola}, title = {Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Luminescent organotransition metal complexes are of much current interest. As the large spin-orbit coupling of 2nd and 3rd row transition metals usually leads to rapid intersystem crossing from S1 to T1, which enables phosphorescence, there is a special interest in using triplet-emitting materials in organic or organometallic light emitting diodes (OLEDs). Marder et al. have found that, reductive coupling of both para-R-substituted diarylbutadiynes and diaryldodecatetraynes on Rh(PMe3)4X leads to quantitative yields of bis(arylethynyl)-rhodacyclopentadienes with complete regiospecificity (R = BMes2, H, Me, OMe, SMe, CF3, CN, CO2Me, NMe2, NO2, C≡C-TMS and X = -C≡C-TMS, -C≡C-C6H4-4-NMe2, -C≡C-C≡C-C6H4-4-NPh2, Me, Cl).47,49 Unexpectedly, these compounds show intense fluorescence rather than phosphorescence (ɸf = 0.33-0.69, t = 1.2 3.0 ns). The substituent R has a significant influence on the photophysical properties, as absorption and emission are both bathochromically shifted compared to R = H, especially for R = π-acceptor. To clarify the mechanism of the formation of the rhodacyclopentadienes, and to investigate further their unique photophysical properties, a series of novel, luminescent rhodacyclopentadienes with dithiocarbamate as a bidentate ligand at the rhodium centre has been synthesised and characterised (R = NO2, CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe). The rhodacyclopentadienes have been formed via reductive coupling of diaryl undecatetraynes with [Rh(k2-S,S`-S2CNEt2)(PMe3)2]. The structures of a series of such compounds were solved by single crystal X-ray diffraction and are discussed in this work. The compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis, high-resolution mass spectrometry (HRMS) and X-ray diffraction. When heating the reactions, another isomer is formed to a certain extent. The so-called dibenzorhodacyclopentadienes already appeared during earlier studies of Marder et al., when acetylacetonate (acac) was employed as the bidentate ligand at the Rh-centre. They are probably formed via a [4+2] cycloaddition reaction and C-H activation, followed by a β-H shift. Use of the perfluorinated phenyl moiety Ar = C6F4-4-OMe provided a total new insight into the mechanism of formation of the rhodacyclopentadiene isomers and other reactions. Besides the formation of the expected rhodacyclopentadiene, a bimetallic compound was generated, isolated and characterised via X-ray crystallography and NMR spectroscopy, elemental analysis and high resolution mass spectrometry. For further comparison, analogous reactions with [Rh(k2 S,S` S2CNEt2)(PPh3)2] and a variety of diaryl undecatetraynes (R = NO2 CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe) were carried out. They also yield the expected rhodacyclopentadienes, but quickly react with a second or even third equivalent of the tetraynes to form, catalytically, alkyne cyclotrimerisation products, namely substituted benzene derivatives (dimers and trimers), which are highly luminescent. The rhodacyclopentadienes (R = NO2, CO2Me, Me, SMe, Ar = C6F4-4-OMe) are stable and were isolated. The structures of a series of these compounds were obtained via single crystal X-ray crystallography and the compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis and HRMS. Another attempt to clarify the mechanism of formation of the rhodacyclopentadienes involved reacting a variety of diaryl 1,3-butadiynes (R = CO2Me, Me, NMe2, naphthyl) with [Rh(k2 S,S` S2CNEt2)(PMe3)2]. The reactions stop at an intermediate step, yielding a 1:1 trans π-complex, confirmed by single crystal X-ray diffraction and NMR spectroscopy. Only after several weeks, or under forcing conditions (µw / 80 °C, 75 h), the formation of another major product occurs, having bound a second diaryl 1,3-butadiyne. Based on earlier results of Murata, the product is identified as an unusual [3+2] cycloaddition product, ϭ-bound to the rhodium centre.}, subject = {Rhodium}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2017, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Deißenberger, Andrea and Dewhurst, Rian and Ewing, William and H{\"o}rl, Christian and Mies, Jan and Muessig, Jonas}, title = {Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts}, series = {Chemical Communications}, volume = {53}, journal = {Chemical Communications}, doi = {10.1039/C7CC03148C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149438}, pages = {8265-8267}, year = {2017}, abstract = {Convenient, solution-phase syntheses of tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\) and B\(_2\)I\(_4\) are presented herein from common precursor B\(_2\)Br\(_4\). In addition, the dimethylsulfide adducts B\(_2\)Cl\(_4\)(SMe\(_2\))\(_2\) and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\) are conveniently prepared in one-step syntheses from the commercially-available starting material B\(_2\)(NMe\(_2\))\(_4\). The results provide simple access to the full range of tetrahalodiboranes(4) for the exploration of their untapped synthetic potential.}, language = {en} } @phdthesis{Baus2016, author = {Baus, Johannes Armin}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie h{\"o}herkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgef{\"u}hrten Untersuchungen betraf das Studium der Reaktivit{\"a}t der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5-9 wurden bereits fr{\"u}her synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bez{\"u}glich ihrer Molek{\"u}ldynamik in L{\"o}sung untersucht. Die Verbindungen 5-10 zeigten in L{\"o}sung bei Raumtemperatur unterschiedlich stark ausgepr{\"a}gte Dynamikph{\"a}nomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekund{\"a}ren Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Ger{\"u}st. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Ger{\"u}st wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Mol{\"a}quivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-{\"U}bergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden {\"U}bergangsmetalldibromiden bzw. Nickel(II)-bromid-1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte {\"U}bergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es f{\"u}r d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das {\"U}bergangsmetallatom miteinander verbr{\"u}ckt, was zur Ausbildung einer spirocyclischen Struktur f{\"u}hrt. Der neutrale, pentakoordinierte Zink-Silylen-Komplex 25 wurde in einer Lewis-S{\"a}ure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22-24 als ein Lewis-S{\"a}ure/Base-Addukt verstehen l{\"a}sst, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repr{\"a}sentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)-Silylen-Komplex {\"u}berhaupt. Verbindung 28 wurde durch Umsetzung von drei Mol{\"a}quivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Mol{\"a}quivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Mol{\"a}quivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 {\"u}bertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zun{\"a}chst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert.}, subject = {Siliciumverbindungen}, language = {de} } @phdthesis{Lubitz2020, author = {Lubitz, Katharina}, title = {Synthese und Untersuchungen zur Reaktivit{\"a}t NHC-stabilisierter Kobaltverbindungen}, doi = {10.25972/OPUS-20685}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese und den Eigenschaften verschiedener NHC-stabilisierter Kobaltkomplexe. Der Fokus liegt dabei einerseits auf der Entwicklung geeigneter Organokobaltverbindungen, welche sich in CVD bzw. ALD-Prozessen zur Abscheidung von elementarem Kobalt eignen. Hierf{\"u}r wurden verschiedene NHC-stabilisierte sowie gemischt substituierte Kobalt(carbonyl)(nitrosyl)komplexe dargestellt und die thermischen Eigenschaften dieser Verbindungen untersucht. Andererseits wurden Studien zur Synthese und Reaktivit{\"a}t NHC-stabilisierter Halbsandwichverbindungen des Kobalts durchgef{\"u}hrt. Dabei wurde unter anderem {\"u}berpr{\"u}ft, inwiefern sich der sterische Einfluss des NHC-Liganden auf die F{\"a}higkeiten auswirkt, Element-Element-Bindungen in Silanen und Diboranen zu aktivieren. Ferner wurden weitere Untersuchungen zur Reaktivit{\"a}t derartiger Komplexe, insbesondere gegen{\"u}ber Alkinen, vorgenommen. Ein weiterer Teil dieser Arbeit besch{\"a}ftigt sich mit der Darstellung und Reaktivit{\"a}t NHC-Phosphiniden-stabilisierter Kobaltverbindungen.}, subject = {Kobalt}, language = {de} } @unpublished{HermannCidMattocketal.2018, author = {Hermann, Alexander and Cid, Jessica and Mattock, James D. and Dewhurst, Rian D. and Krummenacher, Ivo and Vargas, Alfredo and Ingleson, Michael J. and Braunschweig, Holger}, title = {Diboryldiborenes: π-Conjugated B\(_4\) Chains Isoelectronic to the Butadiene Dication}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201805394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167977}, year = {2018}, abstract = {sp\(^2\)-sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain.}, language = {en} } @unpublished{BoehnkeArrowsmithBraunschweig2018, author = {B{\"o}hnke, Julian and Arrowsmith, Merle and Braunschweig, Holger}, title = {Activation of a Zerovalent Diboron Compound by Desymmetrization}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.8b06930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167983}, year = {2018}, abstract = {The desymmetrization of the cyclic (alkyl)(amino)carbene-supported diboracumulene, B\(_2\)(cAAC\(^{Me}\))\(_2\) (cAAC\(^{Me}\) = 1- (2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) by mono-adduct formation with IMe\(^{Me}\) (1,3-dimethylimidazol-2-ylidene) yields the zerovalent sp-sp\(^2\) diboron compound B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)), which provides a versatile platform for the synthesis of novel symmetrical and unsymmetrical zerovalent sp\(^2\)-sp\(^2\) diboron compounds by adduct formation with IMe\(^{Me}\) and CO, respectively. Furthermore, B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)) displays enhanced reactivity compared to its symmetrical precursor, undergoing spontaneous intramolecular C-H activation and facile twofold hydrogenation, the latter resulting in B-B bond cleavage and the formation of the mixed-base parent borylene, (cAAC\(^{Me}\))(IMe\(^{Me}\))BH.}, language = {en} } @phdthesis{Wehner2019, author = {Wehner, Tobias}, title = {Multifunktionale Kompositmaterialien auf Basis lanthanidhaltiger Verbindungen mit lumineszierenden Nanopartikeln und superparamagnetischen Mikropartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die vorliegende Arbeit umfasst die Synthese und Charakterisierung 23 neuartiger, multifunktionaler Kompositmaterialien basierend auf lanthanidhaltigen Verbindungen sowie verschiedenen Nano- und Mikropartikeln. Die dargestellten Materialien konnten als Core/Shell-Systeme mit einem nano- bzw. mikropartikelhaltigen Kern und einer lanthanidhaltigen H{\"u}lle charakterisiert werden und vereinen aufgrund ihres Kompositcharakters die spezifischen Eigenschaften der Einzelkomponenten wie Lumineszenz, Superparamagnetismus oder Reflexionseigen-schaften miteinander. Zur Synthese multifunktionaler, lumineszierender Materialien wurden zirconylbasierte, lumineszierende Nanopartikel mit Lanthanidchloriden und lanthanidhaltigen MOFs funktionalisiert. Die Kompositsysteme LnCl3@ZrO(FMN) (FMN = Flavinmononukleotid, Ln = Y, Sc, La, Eu, Tb, Ho) erm{\"o}glichen eine Modifizierung der Lumineszenzeigenschaf-ten der Materialien abh{\"a}ngig von der Reaktionstemperatur sowie dem verwendeten Selten-Erd-Ion. Durch Variation der Nanopartikelkomponente konnte mittels der Kom-posite LnCl3@ZrO(MFP) (MFP = Methylfluoresceinphosphat) ein zus{\"a}tzlicher sol-vatochromer Effekt der Systeme eingef{\"u}hrt werden, w{\"a}hrend das Kompositmaterial YCl3@ZrO(RP) (RP = Resorufinphosphat) eine andere Chromatizit{\"a}t zug{\"a}nglich macht. Durch Modifizierung von ZrO(FMN)- und ZrO(MFP)-Nanopartikeln mit 3∞[Eu2(BDC)3]· 2DMF·2H2O (BDC2- = Benzol-1,4-dicarboxylat) wurden Kompositmaterialien dargestellt, die zwei Lumineszenzprozesse mit unterschiedlicher Chromatizit{\"a}t und unterschiedli-cher Anregbarkeit miteinander kombinieren und somit eine reversible Schaltbarkeit zwischen beiden Prozessen durch Variation der Anregungswellenl{\"a}nge erm{\"o}glichen. Zur Synthese luminomagnetischer Materialien wurden superparamagnetische Fe3O4/SiO2-Mikropartikel mit einer Vielzahl lanthanidhaltiger MOFs, die sich hinsichtlich ihrer Lumineszenzeigenschaften und ihrer Stabilit{\"a}t gegen{\"u}ber Luft und Wasser unterscheiden, modifiziert. Als MOFs wurden hierbei 2∞[Ln2Cl6(Bipy)3]·2Bipy (Bipy = 4,4'-Bipyridin, Ln = Nd, Sm, Eu, Tb, Er), 3∞[Eu(Im)2], 3∞[Ba0.95Eu0.05(Im)2] (Im = Imidazolat) und 3∞[Eu2(BDC)3]·2DMF·2H2O eingesetzt. Die Variation der zur Funktionalisierung verwendeten Komponente oder eine Kombination mehrerer MOFs erm{\"o}glicht eine Anpassung der Lumineszenz der Kompositmaterialien innerhalb des kompletten sichtbaren Spektralbereichs sowie im NIR-Bereich. Die dargestellten luminomagnetische Kompositmaterialien mit wasserempfindlichen MOFs k{\"o}nnen zur Detektion von Wasser in verschiedenen organischen L{\"o}sungsmitteln verwendet werden und stellen somit eine mobile und einfach anwendbare Alternative zur Karl-Fischer-Titration mit einer vergleichbaren Sensitivit{\"a}t dar. So eignen sich die Kompositsysteme 2∞[Eu2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 und 2∞[Eu2Cl6(Bipy)3]·2Bipy, 2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als optische turn-off-Sensoren, w{\"a}hrend das Kom-posit 3∞[Eu2(BDC)3]·2DMF·2H2O,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als ratiometrischer Sensor verwendet werden kann. Als Alternative zu sph{\"a}rischen Partikeln wurden auch anisotrope, st{\"a}bchenf{\"o}rmige Fe3O4/SiO2-Mikropartikel mittels 3∞[Eu2(BDC)3]·2DMF·2H2O modifiziert. Das resul-tierende Kompositmaterial vereint die isotropen Lumineszenzeigenschaften der MOF-H{\"u}lle mit der anisotropen Reflexion von sichtbarem Licht der. Durch die Wahl der Anregungswellenl{\"a}nge und Richtung eines externen Magnetfelds wird eine stufenlose und reversible Schaltbarkeit zwischen isotropen und anisotropen Eigenschaften erm{\"o}glicht. Durch mechanochemische Umsetzung der MOF-Edukte [LnCl3(Py)4]·0.5Py (Ln = Eu, Ho) und 4,4'-Bipyridin konnte eine Vielzahl von literaturbekannten lanthanidhaltigen Komplexen und Koordinationspolymeren mittels einer neuen und zeiteffizienten Syntheseroute dargestellt werden. Hierbei kann die Verkn{\"u}pfungsdimension der resultierenden Produkte abh{\"a}ngig von verschiedenen Reaktionsparametern, die den Energieeintrags der Kugelm{\"u}hle beeinflussen, gesteuert werden.}, subject = {Photolumineszenz}, language = {de} } @phdthesis{Rieger2019, author = {Rieger, Max}, title = {Preconcentration with Metal-Organic Frameworks as adsorbents for airborne Explosives and Hazardous Materials - A study using inverse gas chromatography}, doi = {10.25972/OPUS-17775}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177750}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Sensitivity and selectivity remain the central technical requirement for analytical devices, detectors and sensors. Especially in the gas phase, concentrations of threat substances can be very low (e.g. explosives) or have severe effects on health even at low concentrations (e.g. benzene) while it contains many potential interferents. Preconcentration, facilitated by active or passive sampling of air by an adsorbent, followed by thermal desorption, results in these substances being released in a smaller volume, effectively increasing their concentration. Traditionally, a wide range of adsorbents, such as active carbons or porous polymers, are used for preconcentration. However, many adsorbents either show chemical reactions due to active surfaces, serious water retention or high background emission due to thermal instability. Metal-organic frameworks (MOFs) are a hybrid substance class, composed inorganic and organic building blocks, being a special case of coordination polymers containing pores. They can be tailored for specific applications such as gas storage, separation, catalysis, sensors or drug delivery. This thesis is focused on investigating MOFs for their use in thermal preconcentration for airborne detection systems. A pre-screening method for MOF-adsorbate interactions was developed and applied, namely inverse gas chromatography (iGC). Using this pulse chromatographic method, the interaction of MOFs and molecules from the class of explosives and volatile organic compounds was studied at different temperatures and compared to thermal desorption results. In the first part, it is shown that archetype MOFs (HKUST-1, MIL-53 and Fe-BTC) outperformed the state-of-the-art polymeric adsorbent Tenax® TA in nitromethane preconcentration for a 1000 (later 1) ppm nitromethane source. For HKUST-1, a factor of more than 2000 per g of adsorbent was achieved, about 100 times higher than for Tenax. Thereby, a nitromethane concentration of 1 ppb could be increased to 2 ppm. High enrichment is addressed to the specific interaction of the nitro group as by iGC, which was determined by comparing nitromethane's free enthalpy of adsorption with the respective saturated alkane. Also, HKUST-1 shows a similar mode of sorption (enthalpy-entropy compensation) for nitro and saturated alkanes. In the second part, benzene of 1 ppm of concentration was enriched with a similar setup, using 2nd generation MOFs, primarily UiO-66 and UiO-67, under dry and humid (50 \%rH) conditions using constant sampling times. Not any MOF within the study did surpass the polymeric Tenax in benzene preconcentration. This is most certainly due to low sampling times - while Tenax may be highly saturated after 600 s, MOFs are not. For regular UiO-66, four differently synthesized samples showed a strongly varying behavior for dry and humid enrichment which cannot be completely explained. iGC investigations with regular alkanes and BTEX compounds revealed that confinement factors and dispersive surface energy were different for all UiO-66 samples. Using physicochemical parameters from iGC, no unified hypothesis explaining all variances could be developed. Altogether, it was shown that MOFs can replace or add to state-of-the-art adsorbents for the enrichment of specific analytes with preconcentration being a universal sensitivity-boosting concept for detectors and sensors. Especially with iGC as a powerful screening tool, most suitable MOFs for the respective target analyte can be evaluated. iGC can be used for determining "single point" retention volumes, which translate into partition coefficients for a specific MOF × analyte × temperature combination.}, subject = {Metallorganisches Netzwerk}, language = {en} } @phdthesis{Griesbeck2020, author = {Griesbeck, Stefanie Ingrid}, title = {A Very Positive Image of Boron: Triarylborane Chromophores for Live Cell Imaging}, doi = {10.25972/OPUS-17992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179921}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Efficient quadrupolar chromophores (A-pi-A) with triarylborane moieties as acceptors have been studied by the Marder group regarding their non-linear optical properties and two-photon absorption ability for many years. Within the present work, this class of dyes found applications in live-cell imaging. Therefore, the dyes need to be water-soluble and water-stable in diluted aqueous solutions, which was examined in Chapter 2. Furthermore, the influence of the pi-bridge on absorption and emission maxima, fluorescence quantum yields and especially the two-photon absorption properties of the chromophores was investigated in Chapter 3. In Chapter 4, a different strategy for the design of efficient two-photon excited fluorescence imaging dyes was explored using dipoles (D-A) and octupoles (DA3). Finding the optimum balance between water-stability and pi-conjugation and, therefore, red-shifted absorption and emission and high fluorescence quantum yields, was investigated in Chapter 5}, subject = {Borane}, language = {en} } @article{BettsNagelSchatzschneideretal.2017, author = {Betts, Jonathan and Nagel, Christopher and Schatzschneider, Ulrich and Poole, Robert and La Ragione, Robert M.}, title = {Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br versus multidrug-resistant isolates of Avian Pathogenic \(Escherichia\) \(coli\) and its synergy with colistin}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0186359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173687}, year = {2017}, abstract = {Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic \(Escherichia\) \(coli\) (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic \(E.\) \(coli\). The \(in\) \(vitro\) activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. \(In\) \(vivo\) antibacterial activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br alone and in combination with colistin was determined using the \(Galleria\) \(mellonella\) wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. \(In\) \(vitro\) testing produced relatively high [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to \(\geq\)32 mg/L. This synergy was confirmed in time-kill assays. \(In\) \(vivo\) assays showed that the combination of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both \(in\) \(vitro\) and \(in\) \(vivo\) assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.}, language = {en} } @article{JiGriesbeckMarder2017, author = {Ji, Lei and Griesbeck, Stefanie and Marder, Todd B.}, title = {Recent developments in and perspectives on three-coordinate boron materials: a bright future}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {2}, doi = {10.1039/c6sc04245g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171912}, pages = {846-863}, year = {2017}, abstract = {The empty p\(_z\)-orbital of a three-coordinate organoboron compound leads to its electron-deficient properties, which make it an excellent π-acceptor in conjugated organic chromophores. The empty p-orbital in such Lewis acids can be attacked by nucleophiles, so bulky groups are often employed to provide air-stable materials. However, many of these can still bind fluoride and cyanide anions leading to applications as anion-selective sensors. One electron reduction generates radical anions. The π-acceptor strength can be easily tuned by varying the organic substituents. Many of these compounds show strong two-photon absorption (TPA) and two-photon excited fluorescence (TPEF) behaviour, which can be applied for e.g. biological imaging. Furthermore, these chromophores can be used as emitters and electron transporters in OLEDs, and examples have recently been found to exhibit efficient thermally activated delayed fluorescence (TADF). The three-coordinate organoboron unit can also be incorporated into polycyclic aromatic hydrocarbons. Such boron-doped compounds exhibit very interesting properties, distinct from their all-carbon analogues. Significant developments have been made in all of these areas in recent years and new applications are rapidly emerging for this class of boron compounds.}, language = {en} } @unpublished{ArrowsmithBraunschweigStennett2017, author = {Arrowsmith, Merle and Braunschweig, Holger and Stennett, Tom}, title = {Formation and Reactivity of Electron-Precise B-B Single and Multiple Bonds}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {1}, doi = {10.1002/anie.201610072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145631}, pages = {96-115}, year = {2017}, abstract = {Recent years have seen rapid advances in the chemistry of small molecules containing electron-precise boron-boron bonds. This review provides an overview of the latest methods for the controlled synthesis of B-B single and multiple bonds as well as the ever-expanding range of reactivity displayed by the latter.}, language = {en} } @phdthesis{Hupp2020, author = {Hupp, Benjamin}, title = {Untersuchung von Struktur-Eigenschafts-Beziehungen Kupfer(I)-basierter NIR-Emitter und MRP-Materialien}, doi = {10.25972/OPUS-18769}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden lumineszente Kupfer(I)-verbindungen untersucht, um durch die Herstellung von Struktur-Eigenschafts-Beziehungen einen Beitrag zur Erforschung niederenergetischer Emitter und mechanoresponsiver Phosphoreszenzmaterialien zu leisten. Dar{\"u}ber hinaus wurden Vorarbeiten zur Ergr{\"u}ndung kooperativer Effekte in dinuklearen Kupfer(I)-komplexen durchgef{\"u}hrt. Im Bereich niederenergetischer Emitter wurden tetraedrische Kupferverbindungen mit Chromophorliganden auf Basis des Grundmotivs 2-(Pyridin-2-yl)-imdazol untersucht. Komplexe mit diesem Liganden emittieren meistens Gr{\"u}n bis Orange, daher wurde ein Stickstoffatom im R{\"u}ckgrat des Liganden durch Schwefel substituiert, um eine bathochrome Verschiebung zu bewirken. Zur Untersuchung des Einflusses der Donorst{\"a}rke, Sterik und Komplexgeometrie auf das Emissionsverhalten wurden diverse Phosphane und ein NHC als Donorliganden verwendet. Die Emissionsmaxima der untersuchten Verbindungen liegen erwartungsgem{\"a}ß im Orangen bis Tiefroten und es konnten f{\"u}r diesen Emissionsbereich gute Quantenausbeuten von bis zu 11 \% erreicht werden. Die Anf{\"a}lligkeit tetraedrischer Kupfer(I)-komplexe f{\"u}r Verzerrungen im angeregten Zustand und die damit einhergehende Erh{\"o}hung strahlungsloser Prozesse ließ sich durch den Einsatz sterisch anspruchsvoller Liganden unterdr{\"u}cken. Um das Potenzial f{\"u}r die Verwendung in optoelektronischen Bauteilen zu ergr{\"u}nden, wurden umfangreiche Stabilit{\"a}tstests durchgef{\"u}hrt, die die enorme thermische Belastbarkeit im Festk{\"o}rper sowie langfristige Stabilit{\"a}t in verd{\"u}nnter L{\"o}sung einiger Verbindungen best{\"a}tigten. Ferner wurden in Kooperation mit der Gruppe um Prof. Holger Braunschweig photophysikalische Studien an zwei dinuklearen und einem trinuklearen Kupfer(I)-diborinkomplex durchgef{\"u}hrt, die im Rahmen der Promotionen von Dr. Jan Mies und Dr. Theresa Dellermann synthetisiert wurden. Die Verbindungen weisen in Festk{\"o}rper und L{\"o}sung tiefrote Phosphoreszenz auf. Die Effizienz des trinuklearen Komplexes (φ = 0.58 im Festk{\"o}rper) ist deutlich h{\"o}her als die der beiden dinuklearen Verbindungen (φ < 0.03). Die Kupfer-Diborin-Bindung besitzt einen signifikanten kovalenten Anteil. Die {\"U}bergangsmetallatome haben somit einen starken Einfluss auf die strahlenden {\"U}berg{\"a}nge, was zum Auftreten von Phosphoreszenz f{\"u}hrt. F{\"u}r effiziente Emission ist eine lineare Anordnung zweier Kupferfragmente um das Diborin notwendig, was im Fall des trinuklearen Komplexes stets gew{\"a}hrleistet ist, f{\"u}r die dinuklearen Komplexe jedoch nur in L{\"o}sung zu beobachten ist. Durch die Studien wurde einerseits das komplexe Emissionsverhalten dieser Komplexe aufgekl{\"a}rt und andererseits die Relevanz dieser neuen Verbindungsklasse f{\"u}r niederenergetische Emittermaterialien gezeigt. Zus{\"a}tzlich wurden Vorarbeiten zur Untersuchung kooperativer Effekte in dinuklearen Kupfer(I)-verbindungen unter Ausschluss schwer zu erhaltender cuprophiler Wechselwirkungen durchgef{\"u}hrt. Es sollten mono- und dinukleare Kupfer(I)-komplexe mit Bisbenzimidazol und Benzimidazolpyrimidin als verbr{\"u}ckenden Chromophorliganden synthetisiert und photophysikalisch untersucht werden, um eine eventuelle Erh{\"o}hung der Effizienz der dinuklearen Komplexe gegen{\"u}ber ihren mononuklearen Analoga zu quantifizieren. Im Rahmen dieser Arbeit gelang es, einen zuverl{\"a}ssigen Syntheseweg f{\"u}r die im R{\"u}ckgrat alkylierten verbr{\"u}ckenden Liganden zu etablieren. Ferner wurden erste Versuche zur Herstellung kationischer und neutraler mononuklearer Komplexe durchgef{\"u}hrt. Außerdem wurde die mechanochrome Lumineszenz eines aus Vorarbeiten bekannten dinuklearen Kupferkomplexes untersucht und Struktur-Eigenschafts-Beziehungen hergestellt. Hierzu wurden Komplexsalze mit den Anionen PF6- und BF4- hergestellt und mittels zahlreicher Spektroskopiemethoden analysiert, um umfangreiche Informationen zu den Eigenschaften im Grund- und angeregten Zustand zu sammeln. Durch Schwingungsspektroskopie wurde nachgewiesen, dass die Phasen{\"a}nderung zu keiner ver{\"a}nderten Konstitution der Verbindung im Grundzustand f{\"u}hrt. Durch 1H-19F-HOESY- sowie 19F-Festk{\"o}rper-NMR-Experimente wurde festgestellt, dass sowohl in L{\"o}sung wie auch im Festk{\"o}rper Kation und Anion gepaart vorliegen und miteinander wechselwirken. Da die BF4- und PF6-Komplexe in L{\"o}sung ein sehr {\"a}hnliches Emissionsverhalten zum amorphen Feststoff aufweisen, wurde davon ausgegangen, dass die f{\"u}r die Emission verantwortlichen Strukturen in beiden Medien vergleichbar sind. Zus{\"a}tzlich gelang es, mittels ESR-Spektroskopie nachzuweisen, dass im Grundzustand keine ausreichende Ann{\"a}herung der beiden Kupferatome stattfindet, um dipolare Wechselwirkungen zu erzeugen. Mithilfe quantenchemischer Rechnungen wurde die mechanochrome Lumineszenz nicht auf das Auftreten von Cuprophilie zur{\"u}ckgef{\"u}hrt, sondern auf die Ausbildung einer Cu-F-Bindung im angeregten Zustand, was ein v{\"o}llig neuer Mechanismus f{\"u}r mechanochrome Lumineszenz bei Kupfer(I)-komplexen ist. In weiterf{\"u}hrenden photophysikalischen Studien wurde zudem gezeigt, dass die Emission auch Empfindlichkeit gegen{\"u}ber Temperatur sowie L{\"o}sungsmitteld{\"a}mpfen aufweist und es sich somit um eine multiresponsive Verbindungsklasse handelt.}, subject = {Kupferkomplexe}, language = {de} } @article{BruecknerDewhurstDellermannetal.2019, author = {Br{\"u}ckner, Tobias and Dewhurst, Rian D. and Dellermann, Theresa and M{\"u}ller, Marcel and Braunschweig, Holger}, title = {Mild synthesis of diboryldiborenes by diboration of B-B triple bonds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC02544H}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186306}, pages = {7375-7378}, year = {2019}, abstract = {A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B-B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents.}, language = {en} } @unpublished{LegarePranckeviciusBraunschweig2019, author = {L{\´e}gar{\´e}, Marc-Andr{\´e} and Pranckevicius, Conor and Braunschweig, Holger}, title = {Metallomimetic Chemistry of Boron}, series = {Chemical Reviews}, journal = {Chemical Reviews}, doi = {10.1021/acs.chemrev.8b00561}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186317}, year = {2019}, abstract = {The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2.}, language = {en} } @unpublished{BruecknerStennettHessetal.2019, author = {Br{\"u}ckner, Tobias and Stennett, Tom E. and Heß, Merlin and Braunschweig, Holger}, title = {Single and Double Hydroboration of B-B Triple Bonds and Conver- gent Routes to a Cationic Tetraborane}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.9b07991}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188632}, year = {2019}, abstract = {A compound with a boron-boron triple bond is shown to undergo stepwise hydroboration reactions with catecholborane to yield an unsymmetrical hydro(boryl)diborene and a 2,3-dihydrotetraborane. Abstraction of H- from the latter compound produces an unusual cationic, planar tetraborane with a hydrogen atom bridging the central B2 moiety. Spectroscopic and crystallographic data and DFT calculations support a 'protonated diborene' structure for this compound, which can also be accessed via direct protonation of the corresponding diborene.}, language = {en} } @unpublished{MuessigThalerDewhurstetal.2019, author = {Muessig, Jonas H. and Thaler, Melanie and Dewhurst, Rian D. and Paprocki, Valerie and Seufert, Jens and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201814230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178608}, year = {2019}, abstract = {The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.}, language = {en} } @unpublished{StennettMattockPentecostetal.2018, author = {Stennett, Tom and Mattock, James and Pentecost, Leanne and Vargas, Alfredo and Braunschweig, Holger}, title = {Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201809217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178268}, year = {2018}, abstract = {A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product.}, language = {en} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} } @unpublished{StennettBertermannBraunschweig2018, author = {Stennett, Tom and Bertermann, R{\"u}diger and Braunschweig, Holger}, title = {Construction of Linear and Branched Tetraboranes via 1,1- and 1,2-Diboration of Diborenes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201809976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178276}, year = {2018}, abstract = {Sterically unencumbered diborenes based on a benzylphosphine chelate undergo diboration reactions with bis(catecholato)diboron in the absence of a catalyst to yield tetraboranes. The symmetrical diborenes studied undergo 1,2- diborations, whereas an unsymmetrical derivative was found to yield a triborylborane-phosphine adduct as the result of a formal 1,1-diboration. A related borylborylene compound also underwent a 1,2-diboration to produce a borylene-borane adduct.}, language = {en} } @unpublished{BruecknerArrowsmithHessetal.2019, author = {Br{\"u}ckner, Tobias and Arrowsmith, Merle and Heß, Merlin and Hammond, Kai and M{\"u}ller, Marcel and Braunschweig, Holger}, title = {Synthesis of fused B,N-heterocycles by alkyne cleavage, NHC ring-expansion and C-H activation at a diboryne}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C9CC02657F}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184899}, year = {2019}, abstract = {The addition of alkynes to a staturated N-heterocyclic carbene (NHC)-supported diboryne results in spontaneous cycloaddition, with complete B≡B and C≡C triple bond cleavage, NHC ring- expansion and activation of a variety of C-H bonds, leading to the formation of complex mixtures of fused B,N-heterocycles.}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @unpublished{ArrowsmithDoemlingSchmidtetal.2019, author = {Arrowsmith, Merle and D{\"o}mling, Michael and Schmidt, Uwe and Werner, Luis and Castro, Abril C. and Jim{\´e}nez-Halla, J. Oscar C. and M{\"u}ssig, Jonas and Prieschl, Dominic and Braunschweig, Holger}, title = {Spontaneous trans-Selective Transfer Hydrogenation of Apolar B=B Double Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201902656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184874}, year = {2019}, abstract = {The transfer hydrogenation of NHC-supported diborenes with dimethylamine borane proceeds with high selectivity for the trans-1,2-dihydrodiboranes(6). DFT calculations suggest a stepwise proton-first-hydride-second reaction mechanism via an intermediate μ-hydrodiboronium dimethylaminoborate ion pair.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @unpublished{HermannArrowsmithTrujilloGonzalezetal.2020, author = {Hermann, Alexander and Arrowsmith, Merle and Trujillo-Gonzalez, Daniel and Jim{\´e}nez-Halla, J. Oscar C. and Vargas, Alfredo and Braunschweig, Holger}, title = {Trapping of a Borirane Intermediate in the Reductive Coupling of an Arylborane to a Diborene}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.0c02306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203140}, year = {2020}, abstract = {The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation.}, language = {en} } @phdthesis{Lenczyk2020, author = {Lenczyk, Carsten}, title = {Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen - Darstellung neuer Carbodiphosphorane und deren Koordination an ausgew{\"a}hlte Substrate}, doi = {10.25972/OPUS-18058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Teil 1: Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen durchgef{\"u}hrt. Aufgrund der m{\"o}glichen Anwendung in Dehydrokupplungsreaktionen wurde die Umwandlung von Dihydroboranen in Borylenkomplexe genauer untersucht. Teil 2: Darstellung neuer Carbodiphosphorane und deren Koordination an ausgew{\"a}hlte Substrate Durch Anwendung einfacher Synthesemethoden konnten in der vorliegenden Arbeit neuartige Carbodiphosphorane dargestellt werden. Diese wurden im weiteren Verlauf der Untersuchungen auf ihre Reaktivit{\"a}t gegen{\"u}ber ausgew{\"a}hlten Substraten untersucht.}, subject = {Borylene}, language = {de} } @phdthesis{Berthel2019, author = {Berthel, Johannes H. J.}, title = {Synthese und Charakterisierung neuer NHC-stabilisierter Nickelkomplexe f{\"u}r die Gasphasenabscheidung}, doi = {10.25972/OPUS-14757}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147571}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung NHC-stabilisierter Nickelkomplexe, die durch weitere Co-Liganden wie Carbonyle, Olefine, Alkine, Alkyle, Cyanide oder Allylliganden koordiniert sind. Ferner gibt diese Arbeit einen {\"U}berblick {\"u}ber die thermischen Eigenschaften dieser Verbindungen, um deren Potenzial f{\"u}r den Einsatz zur Abscheidung elementaren Nickels in CVD- bzw. ALD-Prozessen absch{\"a}tzen zu k{\"o}nnen. Dabei konnten vor allem die Substanzklassen der Carbonyl- und Alkylkomplexe als geeignete Pr{\"a}kursoren f{\"u}r die Gasphasenabscheidung elementaren Nickels identifiziert werden, von denen einige ausgew{\"a}hlte Vertreter bereits erfolgreich in CVD-Prozessen getestet wurden.}, subject = {Nickelkomplexe}, language = {de} } @phdthesis{Prieschl2021, author = {Prieschl, Dominic}, title = {Reaktivit{\"a}tsstudien zu Diboranen(4) und NHC-stabilisierten µ-Hydridodiboranen(5)}, doi = {10.25972/OPUS-21074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210749}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die vorliegende Arbeit behandelt im ersten Abschnitt die Synthese und Reaktivit{\"a}t neuartiger Diborane(4). Ebenfalls wurde die Reaktivit{\"a}t von Dihalogendiboranen(4) gegen{\"u}ber Phenylazid untersucht, wobei symmetrische Vertreter unter Beibehalt der B-B-Bindung die f{\"u}nfgliedrigen B2N3 Heterocyclen 14 und 15 lieferten. Der zweite Abschnitt dieser Arbeit besch{\"a}ftigt sich mit der unerwarteten Reaktivit{\"a}t der NHC-stabilisierten μ-Hydridodiborane(5) XXIII und XXIV. Der abschließende Teil dieser Arbeit befasst sich mit den ersten Versuchen zur Darstellung eines CAAC-stabilisierten, Diboranyl-substituierten Borylens.}, subject = {Diborane}, language = {de} } @phdthesis{Hock2021, author = {Hock, Andreas}, title = {NHC-stabilized Alanes and Gallanes}, doi = {10.25972/OPUS-21252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis describes the synthesis and reactivity of NHC-stabilized Lewis-acid/Lewis-base adducts of alanes and gallanes (NHC = Me2ImMe, iPr2Im, iPr2ImMe, Dipp2Im, Dipp2ImH). As this field of research has developed tremendously, especially in the last five years, the first chapter provides an overview of the current state of knowledge. The influence of electronegative π-donor-substituents on the stability of the NHC alane adducts is examined in chapter 2. For this purpose, the carbene stabilized alanes (NHC)∙AlH3 (NHC = iPr2Im, Dipp2Im) were reacted with secondary amines of different steric demand and with phenols. The π-donor substituents saturate the Lewis acidic aluminium center and coordination of a second NHC-ligand was not observed. The strongly electronegative N and O substituents increase the Lewis acidity of the aluminium atom, which leads to stronger Al-CNHC as well as Al-H bonds, which inhibits the insertion of the carbene into the Al-H bond. In Chapter 3 the development of the synthesis and reactivity of carbene-stabilized gallanes is presented. The synthesis of NHC gallane adducts (NHC)∙GaH3, (NHC)∙GaH2Cl and (NHC)∙GaHCl2 and their reactivity towards NHCs and cAACMe were investigated in detail. The reaction of the mono- and dichlorogallanes (NHC)∙GaH2Cl and (NHC)∙GaHCl2 (NHC = iPr2ImMe, Dipp2Im) with cAACMe led to insertion of the cAACMe with formation of chiral and achiral compounds depending on the sterically demand of the used NHC. Furthermore, the formation of bis-alkylgallanes was observed for the insertion of two equivalents of cAACMe with release of the NHC ligand. Chapter 4 describes investigations concerning the synthesis and reactivity of NHC-stabilized iodoalanes and iodogallanes, which are suitable for the formation of cationic aluminium and gallium dihydrides. The reaction of (NHC)∙EH2I (E = Al, Ga) stabilized by the sterically less demanding NHCs (NHC = Me2ImMe, iPr2Im, iPr2ImMe) with an additional equivalent of the NHC led to the formation of the cationic bis-NHC aluminium and gallium dihydrides [(NHC)2∙AlH2]+I- and [(NHC)2∙GaH2]+I-. Furthermore, the influence of the steric demand of the used NHC was investigated. The adduct (Dipp2Im)∙GaH2I was reacted with an additional equivalent of Dipp2Im. Due to the bulk of the NHC used, rearrangement of one of the NHC ligands from normal to abnormal coordination occurred and the cationic gallium dihydride [(Dipp2Im)∙GaH2(aDipp2Im)] was isolated. Chapter 5 of this thesis reports investigations concerning the reduction of cyclopentadienyl-substituted alanes and gallanes with singlet carbenes. NHC stabilized pentamethylcyclopentadienyl aluminium and gallium dihydrides (NHC)∙Cp*MH2 (E = Al, Ga) were prepared by the reaction of (AlH2Cp*)3 with the corresponding NHCs or by the salt elimination of (NHC)∙GaH2I with KCp*. The gallane adducts decompose at higher temperatures with reductive elimination of Cp*H and formation of Cp*GaI. . The reductive elimination is preferred for sterically demanding NHCs (Dipp2Im > iPr2ImMe > Me2ImMe). In addition, NHC ring expansion of the backbone saturated carbene Dipp2ImH was observed for the reaction of the NHC with (AlH2Cp*)3, which led to (RER-Dipp2ImHH2)AlCp*. Furthermore, the reactivity of the adducts (NHC)∙Cp*EH2 (E = Al, Ga) towards cAACMe was investigated. The reaction of the alane adducts stabilized by the sterically more demanding NHCs iPr2ImMe and Dipp2Im afforded the exceptionally stable insertion product (cAACMeH)Cp*AlH V-10 with liberation of the NHC. The reaction of the gallium hydrides (NHC)∙Cp*GaH2 with cAACMe led to the reductive elimination of cAACMeH2 and formation of Cp*GaI. A variety of neutral and cationic carbene-stabilized alanes and gallanes are presented in this work. The introduction of electronegative π-donor substituents (Cl-, I-, OR-, NR2-) and the investigations on the thermal stability of these compounds led to the conclusion that the stability of alanes and gallanes increased significantly by such a substitution. Investigations on the reactivity of the NHC adducts towards cAACMe resulted in various insertion products of the carbene into the Al-H or Ga-H bonds and the first cAACMe stabilized dichlorogallane was isolated. Furthermore, a first proof was provided that carbenes can be used specifically for the (formal) reduction of group 13 hydrides of the higher homologues. Thus, the synthesis of Cp*GaI from the reaction of (NHC)∙Cp*GaH2 with cAACMe was developed. In the future, this reaction pathway could be of interest for the preparation of other low-valent compounds of aluminium and gallium.}, subject = {Aluminiumhydridderivate}, language = {en} } @unpublished{WangArrowsmithBraunschweigetal.2017, author = {Wang, Sunewang Rixin and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian and D{\"o}mling, Michael and Mattock, James and Pranckevicius, Conor and Vargas, Alfredo}, title = {Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II)}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b06644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153058}, year = {2017}, abstract = {Despite the prevalence of stable π-complexes of most d\(^{10}\) metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d\(^{10}\) Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π- ligands, namely neutral diborenes with a high-lying π(B=B) or- bital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π- complexes were synthesized in good yields. Metal-B2 π- interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX\(_2\) planes about the M-centroid(B-B) vector, with angles rang- ing from 47.0° to 85.5°, depending on the steric interactions be- tween the diborene ligand and the MX\(_2\) fragment.}, language = {en} } @phdthesis{Muessig2020, author = {M{\"u}ssig, Jonas Heinrich}, title = {Synthese und Reaktvit{\"a}t von Gruppe 13 Elementhalogeniden gegen{\"u}ber metallischen und nicht-metallischen Lewis-Basen}, doi = {10.25972/OPUS-17983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Dibortetrahalogenide dargestellt, deren Eigenschaften strukturell sowie spektroskopisch analysiert und deren Reaktivit{\"a}t gegen{\"u}ber Lewis-basischen Hauptgruppenelementverbindungen untersucht. Durch anschließende Reaktivit{\"a}tsstudien konnten unter anderem neuartige Diborene dargestellt und analysiert werden. Weiterhin wurde die Verbindungsklasse der Elementhalogenide der Gruppe 13 in der Oxidationsstufe +2 (B, Ga, In) und +3 (In) bez{\"u}glich ihrer Reaktivit{\"a}t gegen{\"u}ber {\"U}bergangsmetall Lewis-Basen untersucht. Die gebildeten, neuartigen Bindungsmodi der Gruppe 13 Elemente am {\"U}bergangsmetall wurden strukturell, spektroskopisch sowie quantenchemisch analysiert.}, subject = {{\"U}bergangsmetallkomplex}, language = {de} } @phdthesis{Sieck2018, author = {Sieck, Carolin}, title = {Synthesis and Photophysical Properties of Luminescent Rhodacyclopentadienes and Rhodium 2,2'-Biphenyl Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment. Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon-carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes. In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S' diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2'-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies. In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2'-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors. Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before. As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2'-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane. Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2'-bph transition metal complexes. On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature). With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54\% and very short lifetimes (τ = 0.2 - 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure  and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster. In stark contrast, the 2,2'-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 - 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2'-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields. Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands. Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work. Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed. Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes. Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided. The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct). CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Hofmann2020, author = {Hofmann, Alexander}, title = {Neue niedervalente Organoaluminiumverbindungen: Darstellung und Eigenschaften}, doi = {10.25972/OPUS-17852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die vorliegende Arbeit befasst sich mit der Darstellung und der Reaktivit{\"a}t von cyclopentadienylsubstituierten, niedervalenten Aluminiumverbindungen. Mit der Einf{\"u}hrung einer Cp*-Gruppe konnte ein neues, bromsubstituiertes Dialan dargestellt, charakterisiert und auf seine Reaktivit{\"a}ten untersucht werden. Neben 1,2-Dialuminierungen von Alkinen sowie einer Nitreninsertion, war eine Lewis-Basen-induzierten Disproportionierung des Dialans zu beobachten. Die Lewis-Basen-induzierten Disproportionierung konnte angewendet werden, um eine monomere 1,3,5-Tri-tert-butylcyclopentadienyl-Al(I)-Spezies zu isolieren. Um das Reaktionsverhalten mit anderen Al(I)-Verbindungen zu vergleichen, wurden Umsetzungen mit Distickstoffmonoxid und Phenylazid untersucht. Dabei wurden {\"a}hnliche Strukturmuster wie bei den anderen Al(I)-Systemen beobachtet. Weiterhin konnten verschieden Al-B-Verbindungen mit unterschiedlichen B-Al-Bindungen dargestellt werden, unter anderem die erste B-Al-Mehrfachbindung.}, subject = {Aluminiumverbindungen}, language = {de} } @phdthesis{Seufert2019, author = {Seufert, Jens}, title = {Synthese und Reduktionsverhalten neuer Lewis-Basen-Addukte des Bors sowie Redox-aktiver Ligandentransfer durch Silylene}, doi = {10.25972/OPUS-17398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, diverse Lewis-Basen f{\"u}r deren Einsatz zur Stabilisierung niedervalenter Borverbindungen zu testen. Dabei wurden neuartige Mono- und Diboran(4)-Addukte mit mesoionischen Carbenen, Phosphanen und Alkyl-verbr{\"u}ckten Carbenen synthetisiert, charakterisiert und deren Reduktionsverhalten getestet. Des Weiteren konnte gezeigt werden, dass elektronenreiche Bis(amidinato)- und Bis(guanidinato)silylene eine diverse Vielfalt an Reaktionstypen induzieren und dabei zu Redox-Reaktionen und Liganden{\"u}bertrag neigen.}, subject = {Bor}, language = {de} } @phdthesis{Meier2020, author = {Meier, Michael}, title = {Synthese und Eigenschaften von funktionalisierten Borolen und 1,2-Azaborininen}, doi = {10.25972/OPUS-17840}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit konnte das Portfolio an literaturbekannten, freien Bisborolen betr{\"a}chtlich erweitert werden. Die Reihe der Oligothiophen-verbr{\"u}ckten Borole konnte um die Vertreter der Ter- bzw. Quaterthiophene erweitert werden. Weiterhin wurden Lewisbasenaddukte mit IMes, CAAC und DMAP dargestellt und zur r{\"o}ntgenspektrographischen Charakterisierung herangezogen. Durch den Vergleich der spektroskopischen Daten mit den bereits literaturbekannten Vertretern wurde eine schrittweise Entwicklung der Absorptionsmaxima in Abh{\"a}ngigkeit der Anzahl der Thienyleinheiten detektiert. Daraus konnte sowohl auf eine Verkleinerung der HOMO-LUMO-Abst{\"a}nde mit zunehmender Kettenl{\"a}nge, als auch die Entwicklung zu einem Grenzwert bei einer hypothetisch unendlichen Kettenl{\"a}nge geschlossen werden, welcher sich bei ca. ca. 2,40 eV befindet. Weiterhin wurden 9,9-Dimethylfluoren und Biphenyl erfolgreich zu Bisborolen umgesetzt. Beide Systeme sind aufgrund ihrer strukturellen Gemeinsamkeiten sowie ihrer Vergleichbarkeit mit literaturbekannten Bis(borolyl)benzol - Verbindungen von besonderem Interesse. Zudem konnte ein Vergleich der spektroskopischen Daten aller literaturbekannten und im Rahmen dieser Arbeit dargestellten Bisborole bewerkstelligt werden. Es wurde somit gezeigt, dass heteroaromatisch-verbr{\"u}ckte Bisborole eine gr{\"o}ßere energetische HOMO-LUMO-L{\"u}cke aufzeigen, als aromatisch-verbr{\"u}ckte Systeme. Zudem spielt die Position der Borolylgruppen und der damit verbundene Grad an pi-Interaktionen eine wichtige Rolle. Die beiden im Rahmen dieser Arbeit dargestellten Systeme 1,1'-(9,9-Dimethylfluoren-2,7-diyl)bis-(2,3,4,5-tetraphenylborol) und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl reihen sich energetisch zwischen dem 1,3- bzw. 1,4-Bis(2,3,4,5-tetraphenylborol-1-yl)benzol ein. Insbesondere der Vergleich zwischen 1,4-Bis(2,3,4,5-tetraphenylborol-1-yl)benzol und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl offenbart keine signifikante Energiedifferenz zwischen einer Phenyl- und einer Biphenylbr{\"u}cke, was ein Indiz daf{\"u}r darstellt, dass die Erweiterung des Spacers um eine zweite Phenyleinheit bei analoger 1,4-Verkn{\"u}pfung nahezu keinen Einfluss auf die elektronischen Eigenschaften des Systems hat. Auch die {\"U}berf{\"u}hrung von 1,1'-(9,9-Dimethylfluoren-2,7-diyl)bis-(2,3,4,5-tetraphenylborol) und 4,4'-Bis(2,3,4,5-tetraphenylborol-1-yl)-1,1'-biphenyl in die entsprechenden 1,2-Azaborinine wurde unter Verwendung von Trimethylsilylazid bewerkstelligt. Neben der Darstellung und Untersuchung neuer Bisborole wurde 9-(Thiophen-2-yl)carbazol erfolgreich f{\"u}r den Aufbau borhaltiger Donor-Akzeptor-Systeme eingesetzt. Es konnten im Zuge dessen ein Borol und dessen IMes-Addukt, ein 1,2-Azaborinin sowie ein Dimesitylboryl-substituiertes Derivat dargestellt und auf ihre optischen und elektronischen Eigenschaften hin untersucht werden. Dabei stand insbesondere die elektrochemische Quantifizierung der Elektronenakzeptorst{\"a}rke des Borols im Vergleich zum Dimesitylboran im Fokus. Es wurde ein signifikanter Unterschied des Borols (Epc = -1.60 V, CH2Cl2) im Vergleich zum Dimesitylboran (E1/2 = -2.39 V, THF) detektiert, woraus eine deutlich h{\"o}here Akzeptorst{\"a}rke des Borols abgeleitet werden kann. Zus{\"a}tzlich wurden spektroskopische und photophysikalische Untersuchungen in Abh{\"a}ngigkeit der jeweiligen Verbindung durchgef{\"u}hrt. Durch den Vergleich des energetisch niedrigsten Absorptionsmaximas des Borols mit bereits literaturbekannten, thienylsubstituierten Borolen konnte ein signifikanter Donoreinfluss der Carbazoleinheit best{\"a}tigt werden.}, subject = {Borheterocyclen}, language = {de} } @phdthesis{Hermann2021, author = {Hermann, Alexander}, title = {Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme}, doi = {10.25972/OPUS-20459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204592}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Der erste Teil dieser Arbeit besch{\"a}ftigt sich mit der "Synthese und Reaktivit{\"a}t sterisch anspruchsvoller Iminoborane". Dabei war es m{\"o}glich, ausgehend von einem Terphenylamin geeignete Aminoborane zu synthetisieren, welche anschließend mit starken, nicht-nukleophilen Basen umgesetzt wurden. Mittels formaler HCl-Eliminierung mit LiTmp gelang auf diese Weise die Darstellung sterisch anspruchsvoller Iminoborane. Der zweite Teil dieser Arbeit befasst sich mit der "Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme". Durch die Verwendung von sterisch wenig anspruchsvollen Liganden oder Boryl-Substituenten war es m{\"o}glich planare Diboren-Systeme zu generieren und dar{\"u}berhinaus Divinyldiborene darzustellen.}, subject = {Konjugation}, language = {de} } @phdthesis{Deissenberger2020, author = {Deißenberger, Andrea}, title = {Dibortetrahalogenide f{\"u}r die Darstellung neuer borhaltiger Verbindungen in niedrigen Oxidationsstufen}, doi = {10.25972/OPUS-18775}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit konnten nasschemische Synthesen f{\"u}r Dibortetrafluorid und chlorid ausgehend von Dibortetrabromid entwickelt werden, die durch einfachen Halogenaustausch mit SbF3 bzw. GaCl3 realisiert wurden. In Verbindung mit Arbeiten von Dr. Jonas M{\"u}ssig zur Synthese von B2I4 gelang die Darstellung aller vier Dibortetrahalogenide mittels einfacher Schlenktechnik basierend auf der Synthese von B2Br4 durch N{\"o}th und Pommerening im Jahr 1981. Dibortetrachlorid konnte mit Phosphanen (PMe3, PCy3 und PPh3) und Singulett-Carbenen (IDipp und MeCAAC) zu den klassischen Bisaddukten 44-46 bzw. 54 und 55 umgesetzt werden. Die Addition eines Isonitrils (CNtBu) an B2Cl4 f{\"u}hrte zun{\"a}chst zur Ausbildung des Bisadduktes 53, allerdings konnte in L{\"o}sung eine Umlagerung beobachtet werden, deren Verlauf 11B-NMR-spektroskopisch verfolgt wurde, jedoch nicht final aufgekl{\"a}rt werden konnte. Durch die Zugabe eines Unterschusses der Lewis-Basen IDipp bzw. PCy3 sollten zun{\"a}chst Monoaddukte von B2Cl4 dargestellt werden, deren Umsetzung mit einer weiteren Lewis-Base die Synthese asymmetrischer Lewis-Basen-Addukte von B2Cl4 erm{\"o}glichen sollte. Die sp2-sp3-Diborane 56 und 57 konnten bei tiefen Temperaturen 11B-NMR-spektroskopisch nachgewiesen werden, allerdings f{\"u}hrte eine Abfangreaktion mit diversen Lewis-Basen nicht zu den gew{\"u}nschten asymmetrischen Addukten. Bei Raumtemperatur konnte eine Folgereaktion von 56 zur Chlorid-verbr{\"u}ckten kationischen Spezies 58 mit einem Tetrachloroborat-Anion beobachtet werden. Im Fall von Dibortetrafluorid konnten keine Lewis-Basen-Addukte (LB = PMe3 und MeCAAC) isoliert werden. Die Reaktivit{\"a}t von B2Cl4 gegen{\"u}ber unges{\"a}ttigten Substraten wurde anhand mehrerer literaturbekannter Beispiele (Acetylen, 2-Butin, 3-Hexin, Diphenylacetylen und Bis(trimethylsilyl)acetylen) nachvollzogen und um die terminalen Alkine Propin und 1 Hexin erweitert. Eine selektive Addition von B2Br4 an Dreifachbindungen gelang nicht. Die so erhaltenen Diborylalkene sollten zur Darstellung von 1,2-Diboreten genutzt werden, wobei zun{\"a}chst {\"u}ber eine von Siebert et al. entwickelte Route die Bis(N,N-dialkylaminochlorboryl)alkene 67g, h, j und k dargestellt wurden. Ein nachfolgender Ringschluss unter reduktiven Bedingungen verlief nur f{\"u}r die Diisopropyl¬amino-substituierten Diborylalkene 67g und j selektiv und lieferte das 1,2-Dihydro-1,2-diboret 71g und das umgelagerte 1,3-Dihydro-1,3-diboret 68j. Der Austausch der Aminosubstituenten gegen Halogenide, der f{\"u}r eine weitere Reduktion zur B-B-Doppelbindung n{\"o}tig w{\"a}re, gelang nicht. Die Umsetzung der Diborylalkene 61 (R = Me), 62 (R = Et) und 65 (R = Ph) mit Singulett-Carbenen (LB = IMe, IiPr, IDipp und MeCAAC) f{\"u}hrte zu den chloridverbr{\"u}ckten Monoaddukten 74-76 und 79-81. Alle Verbindungen dieses Typs zeigten in NMR-spektroskopischen Untersuchungen ein sp2- und ein sp3-koordiniertes Borzentrum, welche f{\"u}r die CAAC-stabilisierten Verbindungen auch r{\"o}ntgenkristallografisch nachgewiesen werden konnten. Theoretische Untersuchungen best{\"a}tigten die Relevanz des verbr{\"u}ckenden Chloratoms zur Stabilisierung dieser Verbindungen. F{\"u}r die Stammverbindung der Diborylalkene (59 (R = H)) konnte bei der Umsetzung mit MeCAAC eine unl{\"o}sliche Verbindung erhalten werden, deren Struktur als Bisaddukt 82 mittels NMR-spektroskopischen Untersuchungen im Festk{\"o}rper und durch Verbrennungsanalyse best{\"a}tigt werden konnte. Die Reduktion der CAAC-stabilisierten Diborylalkene 79 und 80 in Gegenwart von MeCAAC f{\"u}hrte zu den captodativ-stabilisierten Diborylradikalen 83 und 84, deren Strukturanalyse eine orthogonale Anordnung der C2-Br{\"u}cke zur B(CAAC)-Einheit offenlegt. Ausf{\"u}hrliche EPR-spektroskopische Untersuchungen bei variabler Temperatur und theoretische Berechnungen best{\"a}tigen eine schwache Wechselwirkung der beiden Radikalzentren und einen offenschaligen Singulett-Grundzustand mit einem energetisch tiefliegenden Triplett-Zustand (ΔES T = 0.017 kcal mol-1). Der experimentell bestimmte Spin-Spin-Abstand und die Analyse der einfach besetzten Molek{\"u}lorbitale (SOMO) best{\"a}tigen eine Delokalisierung der Spindichte {\"u}ber die NCAAC-CCAAC-B-Einheit. Der Austausch der verbr{\"u}ckenden Einheit und die somit einhergehende Verringerung der Sterik f{\"u}hrt zu einer Planarisierung des Molek{\"u}ls im Festk{\"o}rper (87). Theoretische Untersuchungen und die Auswertung der strukturellen Parameter ergeben eine Delokalisierung der Elektronendichte {\"u}ber das gesamte planare System. EPR- und NMR-spektroskopische Untersuchungen ergaben dennoch Hinweise auf das Vorliegen einer paramagnetischen Verbindung. Untersuchungen zum Reduktionsverhalten von zweifach CAAC-stabilisiertem 1,4-Bis-(dibromboryl)benzol (97) ergaben die vollst{\"a}ndige Enthalogenierung der Borzentren. Im Zuge dessen entstand ein hochreaktives, lineares Borylen, welches eine CH-Aktivierung mit dem Isopropylsubstituenten des CAAC-Liganden eingeht (98). Zur Stabilisierung des Borylens wurde die Reduktion in Gegenwart weiterer Lewis-Basen (Pyridin (Pyr), IiPr, IMeMe, PMe3, CNtBu und CO) durchgef{\"u}hrt, die in der Ausbildung der Diborylene 99-104 resultierten. Die Darstellung einer para-Phenylen-verbr{\"u}ckten Donor-Akzeptor-Verbindung (D: Borylen, A: BMes2) gelang nicht.}, subject = {Dibortetrahalogenide}, language = {de} } @phdthesis{Paprocki2020, author = {Paprocki, Valerie Indra Katharina}, title = {Synthese und Reaktivit{\"a}t neuartiger Komplexe mit carbo- und heterocyclischen pi-Liganden}, doi = {10.25972/OPUS-19370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193707}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivit{\"a}t von Nebengruppen-Metallkomplexen, die mindestens einen pi-koordinierenden Liganden tragen. Im ersten Abschnitt liegt der Fokus auf heteroleptischen Systemen mit carbocyclischen Liganden, zu deren Synthese die g{\"a}ngige Methodik der Salzeliminierung herangezogen wird. Das Metallierungsverhalten dieser Komplexe, sowie die Reaktivit{\"a}t von Komplexen mit reduktionsstabilen funktionellen Gruppen an den Ligandensystemen wird untersucht. Der zweite Abschnitt behandelt die Redox- und Koordinationseigenschaften des CAAC-stabilisierten 1,4 Diborabenzols, wobei Alkali-Metalle, Gruppe 10 Metalle, Lanthanoide, sowie die Actinoide Thorium und Uran untersucht werden.}, subject = {Sandwich-Verbindungen}, language = {de} } @phdthesis{Liu2020, author = {Liu, Siyuan}, title = {New Avenues in the Reactivity of Borylene Complexes}, doi = {10.25972/OPUS-18430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184302}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The thesis is mainly about the reactivities of borylene complexes. Including the investigation of the reaction of base stabilized terminal borylene with elemental chalcogens. On the other hand the are also the reactivity of borylene with bipyridine species is also studies. A C-H activation of the Cp2WH2 using borylene is also discovered. Finally the reaction of a borylene with Lewis acids such as GaCl3 and InBr3 is also studied.}, subject = {Borylene}, language = {en} } @phdthesis{Auerhammer2018, author = {Auerhammer, Dominic}, title = {Synthese und Reaktivit{\"a}t von niedervalenten Bor(I)-Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Kapitel 1 Darstellung und Reaktivit{\"a}t des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische" Metallborylen- Vorstufe ben{\"o}tigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erf{\"a}hrt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = -0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen f{\"u}hren k{\"o}nnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollst{\"a}ndig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivit{\"a}t von [(cAAC)B(CN)]4 (3) gegen{\"u}ber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abh{\"a}ngigkeit von der Basenst{\"a}rke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu f{\"u}hrten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zur{\"u}ckzuf{\"u}hren ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. W{\"a}hrend [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zug{\"a}nglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivit{\"a}t von 3 gegen{\"u}ber Chalcogenen und Chalcogeniden In weiterf{\"u}hrenden Studien wurde zudem die Reaktivit{\"a}t von 3 gegen{\"u}ber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden St{\"o}chiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivit{\"a}t des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch st{\"o}chiometrische Reaktionsf{\"u}hrung dargestellt werden (Schema 68), welche nachfolgend in die bereits erw{\"a}hnten Verbindungen 9 und 10 {\"u}berf{\"u}hrt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zug{\"a}nglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen {\"a}hnliche Reaktivit{\"a}ten gegen{\"u}ber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivit{\"a}t des Borylanions (19) Ein weiterer Aspekt dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht m{\"o}glich ist und nur f{\"u}r zwei weitere Systeme beschrieben ist. Hierzu z{\"a}hlen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst erm{\"o}glicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgef{\"u}hrt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: -0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivit{\"a}tsstudien untersucht. So f{\"u}hrte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). W{\"a}hrend die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den h{\"o}heren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am h{\"a}rteren Cyanostickstoffatom. Demzufolge wurden hierbei zun{\"a}chst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb k{\"u}rzester Zeit in 27 {\"u}bergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverh{\"a}ltnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn-Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter {\"u}ber die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter {\"u}ber die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. W{\"a}hrend die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsverm{\"o}gen verdeutlichte, f{\"u}hrte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), w{\"a}hrend bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivit{\"a}t von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivit{\"a}t von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivit{\"a}t auf 29 zu {\"u}bertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivit{\"a}t gegen{\"u}ber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung f{\"u}hrt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabh{\"a}ngig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: -29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 {\"u}ber (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungew{\"o}hnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivit{\"a}t von [(cAAC)BH3] (29) gegen{\"u}ber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell best{\"a}tigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu {\"u}berf{\"u}hren (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollst{\"a}ndig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festk{\"o}rper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) {\AA} (51) und 1.603(4) {\AA} (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) {\AA}).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abh{\"a}ngigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich ver{\"a}ndert. So f{\"u}hrte die Einf{\"u}hrung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarit{\"a}t der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarit{\"a}t konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. W{\"a}hrend die Einf{\"u}hrung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, f{\"u}hrt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X).}, subject = {Borylene}, language = {de} } @phdthesis{Nutz2018, author = {Nutz, Marco}, title = {Synthese und Reaktivit{\"a}t terminaler Arylborylenkomplexe der Gruppe 6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154859}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Synthese unterschiedlicher terminaler Gruppe 6 Borylenkomplexe wurde durchgef{\"u}hrt. Dabei wurden neben NMR- und IR-spektroskopischen Untersuchungen, die Identit{\"a}ten der Verbindungen mittels R{\"o}ntgenkristallographie festgestellt. Ferner wurden Studien zur Reaktivit{\"a}t des nucleophilen Borzentrums in diesen Verbindungen durchgef{\"u}hrt und die erhaltenen Reaktionsprodukte ebenfalls durch die oben genannten Spektroskopiemethoden charakterisiert. Dabei lag das Augenmerkt besonders auf der Darstellung von monovalenten Borverbindungen, sowie Verbindungen mit Bor-Element-Mehrfachbindungen.}, subject = {Borylene}, language = {de} } @phdthesis{Gackstatter2018, author = {Gackstatter, Annika}, title = {Reaktivit{\"a}t von Boranen gegen{\"u}ber Hauptgruppenelement-Lewisbasen und Reaktivi{\"a}t von Lanthanoid- und Actinoidkomplexen gegen{\"u}ber Boranen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149452}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Reaktivit{\"a}t acyclischer Carbene, N-heterocyclischer Silylene und Germylene gegen{\"u}ber verschiedenen Boranen sowie die weitere Reaktivt{\"a}t der erhaltenen Verbindungen wird untersucht. Im zweiten Teil wird die Darstellung und Reaktiviert einiger Thorium- und Lanthanoidhydridoboratkomplexe genauer beleuchtet.}, subject = {Thorium}, language = {de} } @unpublished{EnglertStoyArrowsmithetal.2019, author = {Englert, Lukas and Stoy, Andreas and Arrowsmith, Merle and M{\"u}ssig, Jonas H. and Thaler, Melanie and Deißenberger, Andrea and H{\"a}fner, Alena and B{\"o}hnke, Julian and Hupp, Florian and Seufert, Jens and Mies, Jan and Damme, Alexander and Dellermann, Theresa and Hammond, Kai and Kupfer, Thomas and Radacki, Krzysztof and Thiess, Torsten and Braunschweig, Holger}, title = {Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201901437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184888}, year = {2019}, abstract = {A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.}, language = {en} } @phdthesis{Merz2020, author = {Merz, Julia}, title = {C-H Borylation: A Route to Novel Pyrenes and Perylenes and the Investigation of their Excited States and Redox Properties}, doi = {10.25972/OPUS-18522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Pyrene is a polycyclic aromatic hydrocarbon (PAH) that has very interesting photophysical properties which make it suitable for a broad range of applications. The 2,7-positions of pyrene are situated on nodal planes in both the HOMO and LUMO. Hence, electrophilic reactions take place at the 1-, 3-, 6-, and 8-positions. The goal of this project was to develop novel pyrene derivatives substituted at the 2- and 2,7-positions, with very strong donors or/and acceptors, to achieve unprecedented properties and to provide a deeper understanding of how to control the excited states and redox properties. For that reason, a julolidine-type moiety was chosen as a very strong donor, giving D-π and D-π-D systems and, with Bmes2 as a very strong acceptor, D-π-A system. These compounds exhibit unusual photophysical properties such as emission in the green region of the electromagnetic spectrum in hexane, whereas all other previously reported pyrene derivatives substituted at the 2,7-positions show blue luminescence. Furthermore, spectroelectrochemical measurements suggest very strong coupling between the substituents at the 2,7-positions of pyrene in the D-π-D system. Theoretical studies show that these properties result from the very strong julolidine-type donor and Bmes2 acceptor coupling efficiently to the pyrene HOMO-1 and LUMO+1, respectively. Destabilization of the former and stabilization of the latter lead to an orbital shuffle between HOMO and HOMO 1, and LUMO and LUMO+1 of pyrene. Consequently, the S1 state changes its nature sufficiently enough to gain higher oscillator strength, and the photophysical and electrochemical properties are then greatly influenced by the substituents. In another project, further derivatives were synthesized with additional acceptor moieties at the K-region of pyrene. These target derivatives exhibit strong bathochromically shifted absorption maxima (519-658 nm), which is a result of the outstanding charge transfer character introduced into the D-π-D pyrene system through the additional acceptor moiety at the K-region. Moreover, emission in the red to NIR region with an emission maximum at 700 nm in CH2Cl2 is detected. The excited state lives unusual long for K-region substituted pyrenes; however, such a lifetime is rather typical for 2,7-substituted pyrene derivatives. The polycyclic aromatic hydrocarbon perylene, especially perylene diimide, has received considerable attention in recent years and has found use in numerous applications such as dyes, pigments and semiconductors. Nevertheless, it is of fundamental importance to understand how to modulate the electronic and photophysical properties of perylene depending on the specific desired application. Perylenes without carboxyimide groups at the peri positions are much less well studied due to the difficulties in functionalizing the perylene core directly. In particular, only ortho heteroatom substituted perylenes have not been reported thus far (exception: (Bpin)4-Per was already reported by Marder and co-workers). Thus, the effect of substituents on the ortho positions of the perylene core has not been investigated. Two perylene derivatives were synthesized that bear four strong diphenylamine donor or strong Bmes2 acceptor moieties at the ortho positions. These compounds represent the first examples of perylenes substituted only at the ortho positions with donors or acceptors. The investigations show that the photophysical and electronic properties of these derivatives are unique and different compared to the well-studied perylene diimides. Thus, up to four reversible reductions or oxidations are possible, which is unprecedented for monomeric perylenes. Furthermore, the photophysical properties of these two ortho-substituted derivatives are unusual compared to reported perylenes on many regards. Thus, large Stokes shifts are obtained, and the singlet excited state of these derivatives lives remarkably long with intrinsic lifetimes of up to 94 ns. In a cooperation with Dr. Gerard P. McGlacken at University College Cork in Ireland, different quinolones were borylated using an iridium catalyst system to study the electronic and steric effect of the substrates. It was possible to demonstrate that the Ir-catalyzed borylation with the dtbpy ligand allows the direct borylation of various 4-quinolones at the 6- and 7-positions. Thus, later stage functionalization is possible with this method and more highly functionalized quinolones are also compatible with this mild reaction conditions.}, subject = {Pyren}, language = {en} } @phdthesis{Haering2022, author = {H{\"a}ring, Mathias}, title = {Neuartige Tricyanoborate der Tetrelgruppe -und- Poly- und Ionomere mit Tricyanoboraten}, doi = {10.25972/OPUS-16948}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Diese Arbeit besch{\"a}fftig sich mit der Synthese und Charakterisierung neuartiger Tricyanoborate der Hauptgruppe 4, sowie der Synthese und Charakterisierung neuartiger Polymere mit Tricyanoboratgruppen.}, subject = {Tricyanoborate}, language = {de} } @phdthesis{Tian2021, author = {Tian, Yaming}, title = {Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex}, doi = {10.25972/OPUS-21300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes.}, subject = {Borylierung}, language = {en} } @phdthesis{Bertsch2014, author = {Bertsch, Stefanie}, title = {Photolytisch und thermisch induzierte Transmetallierung von Aminoborylenkomplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Aminoborylenkomplexe der Gruppe 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) reagieren mit {\"U}bergangsmetallkomplexen unter Transfer der Boryleneinheit bzw. in Transmetallierungsreaktionen und bilden dabei neuartige Borylenkomplexe. In dieser Dissertation wird die Synthese, Charakterisierung und Reaktivit{\"a}t der auf diesem Wege dargestellten Verbindungen - unter anderem Hydridoborylenkomplexe, Bis(borylen)komplexe und borylensubstituierte MOLPs - beschrieben.}, subject = {Borylene}, language = {de} } @phdthesis{Sowik2014, author = {Sowik, Thomas}, title = {Assessment of the surface functionalization of SPION and DND nanomaterials for cellular uptake and fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103709}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The aim of this work was to synthesize and functionalize different bio-relevant nanomaterials like silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for T2 magnetic resonance imaging (MRI) and detonation nanodiamond (DND) with the neurohormone peptide allatostatin 1 (ALST1) and a fluorescent dye. Analytical techniques for the determination and quantification of surface functional groups like amines, azides, and peptides were also developed and established. Thus, in the first part of the work, a TGF-1 binding peptide and allatostatin 1 (ALST1), both supposed to act as active tumour targeting vectors, were synthesized by solid-phase peptide synthesis (SPPS) and characterized by high pressure liquid chromatography (HPLC) and mass spectrometry. Then, azide-functionalized silica nanoparticles were synthesized by the St{\"o}ber process and characterized by transmission electron microscopy (TEM) and infrared spectroscopy (IR). The surface loading of amine and azide groups was determined by a new protocol. The azide groups were reduced with sodium boronhydride to amine and then functionalized with Fmoc-Rink Amide linker according to a standard SPPS protocol. Upon cleavage of Fmoc by piperidine, the resulting dibenzofulvene and its piperidine adduct were quantified by UV/Vis spectroscopy and used to determine the amount of amine groups on the nanoparticle surface. Then, ALST1 and related tyrosine- and phenylalanine substituted model peptides were conjugated to the azide-functionalized silica nanoparticles by copper(I)-catalyzed azide-alkyne dipolar cycloaddition (CuAAC). The successful peptide conjugation was demonstrated by the Pauly reaction, which however is only sensitive to histidine- and tyrosine-containing peptides. As a more general alternative, the acid hydrolysis of the peptides to their individual amino acid building blocks followed by derivatization with phenyl isothiocyanate (PITC) allowed the separation, determination, and quantification of the constituent amino acids by HPLC. In the second part of the work, amine- and azide-functionalized silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by co-precipitation and subsequent silica-coated based on the St{\"o}ber process and characterized by TEM and IR. The amine surface loading was determined by the method already established for the pure silica systems. The azide surface loading could also be quantified by reduction with sodium boronhydride to amine groups and then conjugation to Fmoc-Rink amide linker. Upon cleavage of Fmoc with piperidine, the total amine surface loading was obtained. The amount of azide surface groups was then determined from the difference of the total amine surface loading and the amine surface loading. Thus, it was possible to quantify both amine and azide surface groups on a single nanoparticle system. Superparamagnetic iron oxide nanoparticles (SPIONs) are potent T2 contrast agents for magnetic resonance imaging (MRI). Due to their natural metabolism after injection into the blood stream, SPIONs mostly end up inside macrophages, liver, spleen or kidneys. To generate a potential target-specific SPION-based T2 contrast agent for MRI, the neurohormone peptide ALST1 was conjugated by CuAAC to the azide- and amine functionalized superparamagnetic iron oxide nanoparticles, since ALST1 is supposed to target difficult-to-treat neuroendocrinic tumours due to its analogy to galanin and somastatin receptor ligands. The organic fluorescent dye cyanine 5 (Cy5) was also conjugated to the silica-coated superparamagnetic iron oxide nanoparticles (SPIONs) via a NHS-ester to the amines to enable cell uptake studies by fluorescence microscopy. These constructs were characterized by TEM, dynamic light scattering (DLS), and IR. The amino acids of the conjugated ALST1 were determined by the HPLC method as described before for peptide-modified silica nanoparticle surfaces. Then, the relaxivity r2 was measured at 7 T. However, a r2 value of 27 L/mmolFe·s for the dual ALST1-/Cy5-functionalized silica-coated SPIONs was not comparable to T2 contrast agents in clinical use, since their relaxivity is commonly determined at 1.5 T, and no such instrument was available. However, it can be assumed that the synthesized dual ALST1-/Cy5-functionalized silica-coated SPION would show a lower r2 at 1.5 T than at 7T. Commercial T2 MRI contrast agents like VSOP-C184 from Ferropharm show at r2 values of about 30 L/mmolFe·s at 1.5 T. Still, the relaxivity of the new material has some potential for application as a T2 contrast agent. Then, the material was used in cell uptake studies by fluorescence microscopy with the conjugated Cy5 dye as a probe. The dual ALST1-/Cy5-functionalized silica-coated SPION showed a high degree of agglomeration with no cellular uptake unlike described for ALST1-functionalized nanoparticles in literature. It is assumed that upon agglomeration of the particles, constructs form which are unable to be internalized by the cellular endocytotic pathways anymore. As a future perspective, the tendency of the particle to agglomerate should be reduced by changing the coating material to polyethylene glycol (PEG) or chitosan, which are known to be bio-compatible, bio-degradable and prevent agglomeration. In the third part of the work, the rhenium compound [ReBr(CO)3(L)] with L = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline and its manganese analogue were synthesized by heating the ligand and rhenium pentacarbonyl bromide or and manganese pentacarbonyl bromide respectively, in toluene. However, [MnBr(CO)3(L)] was unstable upon illumination by UV light at 365 nm. Thus, it was dismissed for further application. The photophysical properties of [ReBr(CO)3(L)] were explored, by determination of the excited-state life time by the time-correlated single-photon counting (TCSPC) method and the quantum yield by a fluorescence spectrometer equipped with an integration sphere. A value of  = 455 ns, a Stokes shift of 197 nm and a rather low quantum yield =were found. Metal complexes are supposed to have superior properties compared to organic dyes due to their large Stokes shifts, long excited-state life times, and high quantum yields. Thus, amine- and azide-functionalized detonation nanodiamond (DND) as an alternative biological inert carrier system was functionalized with ALST1 to enhance its cell uptake properties. A luminescent probe for cell uptake studies using fluorescence microscopy was also attached, either based on the new rhenium complex or the commercially available organic dye Cy5, respectively. The aldehyde-functionalized rhenium complex was conjugated to the DND via oxime ligation, which is known to be a mild and catalyst-free conjugation method. The amount of peptide ALST1 on the DND was analyzed and quantified after acid hydrolysis and PITC derivatization by HPLC as described before. Then, the ALST1-/luminescent probe-functionalized DND was investigated for its photophysical properties by fluorescence spectroscopy. The Cy5-functionalized material showed a slightly lower fluorescence performance in aqueous solution than reported in literature and commercial suppliers with a life time  < 0.4 ns and quantum yields not determinable by integration sphere due to the week signal intensity. The rhenium complex-functionalized material had a very low signal intensity in only aqueous medium, and thus determination of life times and quantum yield by fluorescence spectroscopy was not possible. After incubation with MDA-MB 231 cells, the Cy5-functionalized DND could easily be detected due to its red fluorescence. However, it was not possible to visualize the rhenium complex-functionalized DND with fluorescence microscopy due to the low fluorescence intensity of the complex in aqueous medium and the lack of proper filters for the fluorescence microscope. Cy5-functionalized DND did not show any cellular uptake in fluorescence microscopy after conjugation with ALST1. Since the nanodiamond surface is known to strongly adsorb peptides and proteins, it is assumed that the peptide chain is oriented perpendicular to the nanoparticle surface and thus not able to interact with cell membrane receptors to promote cell uptake of the particles. As a future perspective, the ALST1-promoted cellular uptake of the DND should be improved by using different linker systems for peptide conjugation to prevent adsorption of the peptide chain on the particle surface. The new analytical methods for amino-, azide-, and peptide-functionalized nanoparticles have great potential to assist in the quantification of nanoparticle surface modifications by UV/Vis spectroscopy and HPLC. The determination of surface amine and azide groups based on the cleavage of conjugated Fmoc-Rink amide linker and detected by UV/Vis spectroscopy is applicable to all amine-/azide-functionalized nanomaterials. However, particles which form very stable suspension with the cleavage mixture can cause quantification problems due to scattering, making an accurate quantification of dibenzofulvene and its piperidine adduct impossible. The detection of tyrosine- and histidine-containing peptides based on the Pauly reaction is well-suited as a fast and easy-to-perform qualitative demonstration of successful peptide surface conjugation. However, its major drawback as a colourimetric approach is that coloured particles cannot be evaluated by this method. The amino acid analysis based on HPLC after acid hydrolysis of peptides conjugated to nanoparticle surfaces to its individual building blocks and subsequent derivatization with PITC, can be used on all nanomaterials with peptide or protein surface modification. It allows detection of amino acids down to picomolar concentrations and even enables analysis of very small peptide surface loadings. However, the resulting HPLC traces are difficult to analyze. Three new analytical methods based on UV/Vis and HPLC techniques have been developed and established. They assisted in the characterization of the synthesized DND and SPIONs with dual functionalization by ALST1 and Cy5 or [ReBr(CO)3(L)], respectively. However, the nanomaterials showed no cellular uptake due to a high tendency to agglomerate. The cellular uptake should be improved and the tendency to agglomerate of the SPIONs should be reduced by changing the surface coating from silica to either PEG or chitosan. Furthermore, different linker systems for connecting peptides to DND surfaces should be synthesized and evaluated to reduce potential peptide chain adsorption.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Weismann2015, author = {Weismann, Julia}, title = {Methandiid-basierte Cabenkomplexe: Von ihrer Synthese und elektronischen Struktur zur Anwendung in Bindungsaktivierungsreaktionen und katalytischen Umsetzungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121549}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Anwendung des Sulfonyl-stabilisierten Methandiids 20-Li2 als Ligand in {\"U}bergangsmetallkomplexen. Dabei konnte 20-Li2 mit ver-schiedenen {\"U}bergangsmetallhalogeniden in Salzmetathesereaktionen umgesetzt werden. Insgesamt wiesen die synthetisierten Methandiid-basierten Komplexe flexible Bindungsverh{\"a}ltnisse bez{\"u}glich der MC-Bindung und unterschiedliche Koordinationsmodi der Sulfonyl-Gruppe auf, die die Stabilit{\"a}t und Reaktivit{\"a}t der Komplexe signifikant beeinflussten. In Abh{\"a}ngigkeit von der chemischen Natur des Metallfragmentes und der Co Liganden konnten Carbenkomplexe mit einer ylidischen M-C-Wechselwirkung (A) und solche mit einer echten M=C-Doppelbindung (B) zug{\"a}nglich gemacht werden. Dabei gelang die Etablierung einer Vielzahl an neuen Komplexen sowohl mit fr{\"u}hen (Zirkonium) als auch sp{\"a}ten (Palladium, Ruthenium, Iridium) {\"U}bergangsmetallen. Die synthetisierten Verbindungen zeigten dabei unterschiedliche strukturelle und elektronische Eigenschaften, was zu deren Unterteilung in die zwei Komplexklassen A und B f{\"u}hrte. So konnte bei der Umsetzung von Methandiid 20-Li2 mit Zirkonocendichlorid die selektive Bildung des Zirkonocenkomplexes 50 beobachtet werden, bei dem NMR spektroskopische (z.B. Hochfeldverschiebung des 13C NMR-Signals des Carben-Kohlenstoffatoms) und r{\"o}ntgenstrukturanalytische (z.B. Pyramidalisierung des „Carben"-Kohlenstoffatoms) Untersuchungen erste Hinweise darauf lieferten, dass sich 50 nicht als Carbenkomplex mit einer Zr=C-Doppelbindung beschreiben l{\"a}sst. Dies konnte durch quantenchemische Rechnungen best{\"a}tigt werden, wobei die „Natural Bond Orbital"-Analyse (NBO-Analyse) eine deutliche negative Ladung am zentralen Kohlenstoffatom (qc = 1.42) und somit dessen nukleophilen Charakter aufdeckte. Zus{\"a}tzlich lieferten die Rechnungen eine deutlich positive Ladung am Zirkoniumatom (qZr = 1.35), weshalb die Zr-C-Interaktion in 50 am besten mit einer ylidischen Wechselwirkung beschrieben wird. {\"A}hnliche Resultate konnten auch bei den aus den Umsetzungen von 20-Li2 mit [(PPh3)2PdCl2] bzw. [(PPh3)3RuCl2] erhaltenen Komplexen 51a bzw. 52-Int beobachtet werden. Wie f{\"u}r Verbindung 50 ergab die NBO-Analyse von 51a bzw. 52-Int zwar eine  Bindung zwischen Metall- und Kohlenstoffatom, interessanterweise aber keine  Wechselwirkung. Aufbauend auf der elektronischen Struktur von 51a bzw. 52-Int zeichnen sich die beiden Komplexe durch eine hohe Instabilit{\"a}t und Reaktivit{\"a}t aus. Dabei bildete 51a in L{\"o}sung diverse Zersetzungsprodukte, w{\"a}hrend der Ruthenium-Carbenkomplex 52-Int selektiv die Phenylgruppe des Sulfonyl-Substituentens in ortho Position unter Ausbildung der cyclometallierten Spezies 52 intramolekular deprotonierte. Das Cyclometallierungsprodukt 52 konnte in einer Ausbeute von 62\% isoliert und vollst{\"a}ndig charakterisiert werden. Die schwache -Interaktion zwischen Metall- und Kohlenstoffatom konnte im Falle der Palladium- und Rutheniumkomplexe auf den Elektronenreichtum der sp{\"a}ten {\"U}bergangsmetalle zur{\"u}ckgef{\"u}hrt werden, welcher durch die guten  Donor- und schlechten  Akzeptoreigenschaften der Phosphan-Liganden zus{\"a}tzlich verst{\"a}rkt wurde. Durch Austausch der Triphenylphosphan-Liganden in der Rutheniumdichlorid-Vorstufe gegen das Aren p-Cymol konnte die elektronische Natur am Metallfragment derartig beeinflusst werden, dass ein selektiver Zugang zu Ruthenium-Carbenkomplex 53 gelang. Verbindung 53 konnte in einer guten Ausbeute von 86\% in Form eines dunkelvioletten Feststoffes isoliert und vollst{\"a}ndig charakterisiert werden. Dass es sich bei 53 tats{\"a}chlich um einen Carbenkomplex mit einer M=C-Doppelbindung handelt, konnte mithilfe der Molek{\"u}lstruktur im Festk{\"o}rper, den NMR-spektroskopischen Daten und der berechneten elektronischen Struktur best{\"a}tigt werden. So wies 53 eine kurze Ru=C-Bindung und eine planare Koordinationsumgebung des zentralen Kohlenstoffatoms [Winkelsumme: 358.9(1) {\AA}] auf. Zus{\"a}tzlich sprachen die im Vergleich zu Methandiid 20-Li2 verl{\"a}ngerten P-C- und C-S-Abst{\"a}nde f{\"u}r geschw{\"a}chte elektrostatische Wechselwirkungen im Ligand-R{\"u}ckgrat und somit f{\"u}r einen effizienten Elektronentransfer vom Methandiid zum Metall. Die NBO-Analyse ergab sowohl eine - als auch -Wechselwirkung der M-C-Bindung mit einer nur leichten Polarisierung zum Kohlenstoffatom. {\"A}hnliche Beobachtungen (kurzer Ir-C-Abstand, Planarit{\"a}t am Kohlenstoffatom, reduzierte elektrostatische Wechselwirkungen im Ligand-R{\"u}ckgrat, NBO-Analyse) wurden ebenfalls f{\"u}r den Iridium-Carbenkomplex 53 gemacht.Die negativere Ladung am Carben-Kohlenstoffatom wies hierbei allerdings auf einen leicht ylidischeren Charakter der MC-Bindung als im Ruthenium-Analogon 53 hin. Aufbauend auf der elektronischen Natur der M=C-Bindung ergaben sich unterschiedliche Reaktivit{\"a}ten der Carbenkomplexe. W{\"a}hrend der Zirkonocenkomplex 50 gegen{\"u}ber Aldehyden, Ketonen und Disulfiden entweder keine Reaktivit{\"a}t oder Zersetzung zum zweifach protonierten Liganden zeigte, erfolgte ausgehend von Ruthenium-Carbenkomplex 52-Int die intramolekulare CH-Aktivierung zu 52. Im Gegensatz dazu konnte der Ruthenium-Carbenkomplex 53 in einer Vielzahl von EH-Bindungsaktivierungen eingesetzt werden. Dabei konnten zahlreiche E-H-Bindungen bei Raumtemperatur aktiviert und das nicht-unschuldige Verhalten des Methandiid-Liganden unter Beweis gestellt werden. So konnten die O-H- und N-H-Bindungen in einer Serie von Alkoholen und Aminen, die P-H-Bindung in sekund{\"a}ren Phosphanoxiden und die hydridischen SiH- und BH-Bindungen in Silanen und Boranen durch 53 gespalten werden. Durch r{\"o}ntgenstrukturanalytische Aufkl{\"a}rung der Molek{\"u}lstrukturen im Festk{\"o}rper konnte gezeigt werden, dass die Bindungsaktivierung im Allgemeinen unter 1,2-Addition der Substrate auf die Ru=C-Doppelbindung unter Bildung der entsprechenden cis-Additionsprodukte erfolgte. Die Aufhebung der Metall-Kohlenstoffdoppel- zu einer -einfachbindung machte sich in einer Verl{\"a}ngerung der Ru=C-Bindung von 1.965(2) {\AA} in 53 auf etwa 2.2 {\AA} bemerkbar. Zudem konnte in allen Molek{\"u}lstrukturen der Aktivierungsprodukte eine Pyramidalisierung des ehemals planaren Carben-Kohlenstoffatoms detektiert werden. Bez{\"u}glich der Regioselektivit{\"a}t verliefen die Umsetzungen mit Substraten, in denen das Wasserstoffatom einen protischen (O-H, N-H-Bindungen) bzw. m{\"a}ßig protischen/hydridischen (P-H-Bindungen) Charakter aufweist, erwartungsgem{\"a}ß unter Protonierung des nukleophilen Carben-Kohlenstoffatoms. Interessanterweise f{\"u}hrten die O-H- und N-H-Aktivierungsreaktionen z.T. zur Ausbildung eines Gleichgewichts zwischen Carbenkomplex und Additionsprodukt. Dabei konnte ein derartiger Gleichgewichtsprozess in der Chemie Methandiid-basierter Carbenkomplexe bisher nicht beobachtet werden, was die außerordentliche Stabilit{\"a}t des Rutheniumkomplexes 53 unterstreicht. Diese Reversibilit{\"a}t wurde bspw. anhand der Umsetzung von Komplex 53 mit p Methoxyphenol mittels VT-NMR-Studien untersucht. Dabei konnte gezeigt werden, dass sich das Gleichgewicht beim Abk{\"u}hlen auf 80 °C gem{\"a}ß entropischer Effekte fast vollst{\"a}ndig auf die Seite des Additionsproduktes verschieben l{\"a}sst, w{\"a}hrend beim Erw{\"a}rmen auf Raumtemperatur das Gleichgewicht auf der Seite des Carbenkomplexes liegt. {\"A}hnliche Gleichgewichtsprozesse konnten bei der N-H-Aktivierung beobachtet werden. Bei der Aktivierung von Ammoniak konnte das Additionsprodukt 60 nicht isoliert werden, da auch hier ein stark temperaturabh{\"a}ngiges Gleichgewicht vorlag, wobei erst ab 90 °C das Gleichgewicht vollst{\"a}ndig auf der Seite des Aktivierungskomplexes 60 lag. Daher konnte 60 nicht isoliert und eindeutig identifiziert werden. In folgenden Arbeiten sollte die Isolierung von 60 im Festk{\"o}rper angestrebt und somit dessen Existenz nachgewiesen werden. Zudem k{\"o}nnten auch hier {\"U}bertragungsreaktionen des aktivierten Ammoniaks auf unges{\"a}ttigte Substrate durchgef{\"u}hrt werden. {\"U}berraschenderweise zeigte die Si-H-Bindungsaktivierung von unterschiedlich substituierten aliphatischen und aromatischen Silanen ein analoges Reaktionsmuster und f{\"u}hrte zur selektiven Bildung der entsprechenden Silylkomplexe 66a-66f anstelle der aufgrund der Polarit{\"a}ten zu erwartenden Hydrido-Spezies. Mittels DFT-Rechnungen konnte gezeigt werden, dass der Reaktionsmechanismus der SiH-Aktivierung nicht {\"u}ber eine konzertierte 1,2-Addition, sondern {\"u}ber einen zweistufigen Prozess verl{\"a}uft. Dabei erm{\"o}glichen die flexiblen Koordinationseigenschaften des Liganden in 53 eine oxidative Addition der Si-H-Bindung an das Ruthenium-Zentrum, auf die ein Hydrid-Transfer zum Methandiid-Kohlenstoffatom folgt. Neben einfachen Bindungsaktivierungen wurde das Potential der synthetisierten Silylkomplexe 66a-66c in Hydrosilylierungsreaktionen untersucht. In diesem Zusammenhang wurde die Hydrosilylierung von Norbornen angestrebt. W{\"a}hrend bei Raumtemperatur keine Reaktion stattfand, konnte nach Erh{\"o}hung der Temperatur auf 80 °C das gew{\"u}nschte Hydrosilylierungsprodukt 68 zwar mittels GC-MS-Analytik nachgewiesen werden, jedoch entstand bei den gew{\"a}hlten Reaktionsbedingungen das ROMP-Produkt 69 als Hauptprodukt. In weiterf{\"u}hrenden Arbeiten m{\"u}ssen noch Optimierungsversuche der Reaktionsbedingungen zu einem selektiveren Umsatz zum Hydrosilylierungsprodukt durchgef{\"u}hrt werden. Interessante Ergebnisse lieferten zudem die Umsetzungen des Ruthenium-Carbenkomplexes 53 mit Boranen und verschiedenen Boran-Lewis-Basen-Addukten. Dabei f{\"u}hrte die Reaktion von 53 mit Catecholboran zur Bildung des Hydridokomplexes 73, dessen Molek{\"u}lstruktur im Festk{\"o}rper bestimmt werden konnte. Jedoch konnte der Komplex aufgrund seiner Instabilit{\"a}t in L{\"o}sung bisher nicht vollst{\"a}ndig NMR-spektroskopisch und mittels Elementaranalytik charakterisiert werden. Im Gegensatz zur Si-H-Aktivierung findet hier die Addition entsprechend der Polarit{\"a}t der B-H-Bindung statt. Erstaunlicherweise f{\"u}hrte die BH Bindungsaktivierung in Pinakolboran jedoch nicht zu einer zu 73 analogen Hydrid-Spezies. Der NMR-spektroskopische Verlauf der Umsetzung deutete zun{\"a}chst auf die Bildung des BH-Additionsproduktes unter Protonierung des PCS-R{\"u}ckgrats hin, welches sich in eine andere, bisher nicht identifizierbare Spezies umwandelte. Wiederum zu einem anderen Ergebnis f{\"u}hrte die Umsetzung von 53 mit BH3∙SMe2. Durch Insertion eines Borans in die Thiophosphoryl-Einheit unter Aktivierung der B-H-Bindung wurde hierbei Komplex 76 gebildet, der als zentrales Strukturmotiv einen P-B-S-Ru-C-F{\"u}nfring aufwies. Neben der Spaltung polarer E-H-Bindungen gelang außerdem die Aktivierung der unpolaren Bindung in Diwasserstoff unter Bildung des Hydridokomplexes 77. Mittels R{\"o}ntgenstrukturanalyse konnte auch hier eine cis-Addition von H2 auf die RuC-Doppel-bindung best{\"a}tigt und das Signal des hydridischen Wasserstoffatom eindeutig im 1H NMR-Spektrum der Verbindung bei H = 6.62 ppm detektiert werden. Interessanterweise konnte Verbindung 77 ebenfalls durch Dehydrierung von iso Propanol bzw. Ameisens{\"a}ure (HCOOH) unter Abspaltung von Aceton bzw. CO2 synthetisiert werden. Aufbauend auf der beobachteten Dehydrierung von iPrOH unter Bildung des Hydridokomplexes 77 wurde der Frage nach einer m{\"o}glichen Anwendung des Carbenkomplexes 53 in der katalytischen Transferhydrierung von Ketonen zu Alkoholen nachgegangen. Obgleich die Aktivierung von H2 bzw. die Dehydrierung von iPrOH keine Reversibilit{\"a}t aufwies, sollte ein Katalysezyklus basierend auf einem Wechselspiel zwischen Carben- 53 und Hydridokomplex 77 mit iPrOH als Wasserstoffquelle realisierbar sein. Diesbez{\"u}glich lieferten erste Reduktionsversuche von Acetophenon zu 1 Phenylethanol mit 53 und KOtBu als Hilfsbase allerdings schlechte Alkohol-Ausbeuten im Vergleich zu literaturbekannten, {\"u}bergangsmetallkatalysierten Transferhydrierungen. Ein Katalyseansatz mit 0.50 mol-\% 53 und 19 mol-\% KOtBu ergab nach 24 h bei 75 °C eine Alkohol-Ausbeute von gerade einmal 55\%. Zudem konnte eine starke Abh{\"a}ngigkeit der Ums{\"a}tze von der eingesetzten Basenmenge beobachtet werden, was auf eine konkurrierende, Basen-induzierte Reduktion hindeutete. Eine Optimierung der Katalysebedingungen gelang durch Zugabe von Triphenylphosphan. Mithilfe des Additivs konnte innerhalb von 12 h bei 75 °C mit 0.50 mol-\% 53, 6.20 mol-\% KOtBu und 6.20 mol-\% PPh3 ein nahezu quantitativer Umsatz (94\%) von Acetophenon zu 1-Phenylethanol beobachtet werden. Sogar eine Verringerung der Basen- und Phosphanmenge auf 1.60 und 1.10 mol-\% reichte aus, um Ausbeuten von 90\% zu erreichen (Abb. 4.5., rechts). Dabei konnte Rutheniumkomplex 53 als erster Methandiid-basierter Carbenkomplex mit katalytischem Potential in Transferhydrierungen etabliert werden. Außerdem beschr{\"a}nkte sich die katalytische Aktivit{\"a}t von 53/PPh3 nicht nur auf die Reduktion von Acetophenon, sondern konnte auch erfolgreich auf weitere aromatische und aliphatische Ketone {\"u}bertragen werden. Mittels NMR-spektroskopischer Untersuchungen des Katalyseverlaufs gelang ein Nachweis der katalytisch aktiven Spezies im Katalysezyklus. So konnte bei 75 °C zun{\"a}chst die erwartungsgem{\"a}ße Entstehung des Hydridokomplexes 77 beobachtet werden. Dieser setzte sich anschließend mit PPh3 zum cyclometallierten Phosphankomplex 52 um. Aufbauend auf diesen Beobachtungen wurde ebenfalls Komplex 52 hinsichtlich seines katalytischen Potentials in der Reduktion von Acetophenon untersucht, wobei noch bessere Ums{\"a}tze als mit dem Katalysator 53/PPh3 beobachtet wurden. Hierbei konnte bereits nach 3 h mit 0.50 mol-\% 52 und 1.60 mol-\% KOtBu eine Ausbeute von 95\% erzielt werden. Zudem f{\"u}hrten Ans{\"a}tze mit 52 auch ohne Zugabe einer Base zu Ums{\"a}tzen von ca. 40\%. Eine {\"U}bertragung der Katalysebedingungen auf die Reduktion weiterer Keton-Derivate lieferte ebenfalls gute Ergebnisse und ergab Alkohol-Ausbeuten zwischen 72\% und 96\%. Die f{\"u}r Ruthenium-Carbenkomplex 53 gefundene Reaktivit{\"a}t und das nicht-unschuldige Verhalten des Methandiid-Liganden konnten außerdem auch f{\"u}r Iridium-Carbenkomplex 55 beobachtet werden. So konnten analoge NH, PH- und SiH-Additionsprodukte selektiv synthetisiert und in guten Ausbeuten (etwa 60-90\%) analysenrein erhalten werden. In Analogie zu Rutheniumkomplex 53 f{\"u}hrte die Aktivierung von Substraten mit unterschiedlichen E-H-Bindungen entsprechend der Ladungsverteilung im Ir+C--Fragment zur Protonierung der PCS-Br{\"u}cke in 55. Dabei wiesen auch hier die Additionsprodukte im Allgemeinen eine cis-Anordnung der vorherigen E-H-Einheit auf. Einzige Ausnahme stellte das mit p-Nitroanilin gebildete NH-Aktivierungsprodukt 61b dar. Hierbei konnte mittels R{\"o}ntgenstrukturanalyse eine trans-Anordnung der Amido-Einheit und des PCHS-Br{\"u}ckenprotons detektiert werden, die durch Ausbildung einer Wasserstoffbr{\"u}ckenbindung zwischen der Amido-NH- Einheit und dem Sauerstoffatom des Sulfonyl-Substituentens beg{\"u}nstigt wird. Zudem konnte f{\"u}r die Bildung von 61b ein bei Raumtemperatur reversibler Reaktionsprozess unter R{\"u}ckbildung des Carbenkomplexes 55 und Abspaltung von p-Nitroanilin beobachtet werden. In k{\"u}nftigen Experimenten sollte untersucht werden, ob aufgrund der Reversibilit{\"a}t katalytische Hydroaminierungen mit 61b realisierbar sind. Trotz des hydridischen Charakters des Si-H-Wasserstoffatoms in Silanen wurden auch mit Carbenkomplex 55 ausschließlich die SiH-Bindungsaktivierungskomplexe 71a-71c gebildet. Zudem konnte bei der Aktivierung von Triphenylsilan zwar das Additionsprodukt 71a mittels NMR-spektroskopischer Untersuchungen in der Reaktionsl{\"o}sung nachgewiesen werden, jedoch setzte sich dieses bereits bei Raumtemperatur zum cyclometallierten Komplex 72 um. Interessanterweise resultierten die Aktivierung von H2 und die Dehydrierung von iPrOH ebenfalls in 72. Mittels NMR-spektroskopischer Untersuchungen des Reaktionsverlaufes konnte hierbei gezeigt werden, dass die Cyclometallierung ausgehend von dem in situ gebildeten Iridium-Hydridokomplex 79 stattfindet. Deuterierungsexperimente mit iPrOH-d8 belegten außerdem, dass die Protonierung der PCS Br{\"u}cke durch iPrOH und nicht durch direkte ortho-C-H-Aktivierung der Sulfonyl-Phenyl-Gruppe erfolgt. Die Isolierung des Iridium-Hydridokomplexes 79 war aufgrund seiner schnellen Umsetzung zu 72 daher nicht m{\"o}glich. Die Nukleophilie des Carben-Kohlenstoffatoms und die ausgezeichnete M=C-Wechselwirkung in Ruthenium-Carbenkomplex 53 erm{\"o}glichten neben EH-Bindungsaktivierungen außerdem [2+2]-Cycloadditionsreaktionen mit Iso- und Thioisocyanaten. In diesem Zusammenhang konnten mit tert-Butyl- und Phenylisocyanat die Cycloadditionsprodukte 80a und 80b synthetisiert, in guten Ausbeuten isoliert (79\% bzw. 80\%) und vollst{\"a}ndig charakterisiert werden. Die mittels R{\"o}ntgenstrukturanalyse durchgef{\"u}hrte Aufkl{\"a}rung der Molek{\"u}lstruktur von 80a im Festk{\"o}rper best{\"a}tigte die Ausbildung eines C-Ru-N-C-Vierringes als zentrales Strukturmotiv, was mit literaturbekannten Umsetzungen dieser Art {\"u}bereinstimmt. Mit tert-Butyl- und Phenylthioisocyanat hingegen wurden die Iminkomplexe 81a/b unter Addition der Ruthenium-Kohlenstoff-Doppelbindung an das CS-Fragment im Thioisocyanat erhalten. Dabei konnte die Ausbildung eines C-Ru-S-C-Vierringes als zentrales Strukturmotiv beobachtet werden. Insgesamt folgte die Selektivit{\"a}t der gebildeten [2+2]-Cycloadditionsprodukte 80a/b und 81a/b den Prinzipien des HSAB-Konzeptes, wonach jeweils das weichere Atom des Heteroallens an das Ruthenium-Zentrum bindet. Obgleich die Reaktivit{\"a}t Methandiid-basierter Carbenkomplexe mit verschiedenen Heteroallenen bereits in der Literatur beschrieben wurde, stellte die Umsetzung mit Thioisocyanaten zu 81a/b ein bisher unbekanntes Reaktionsverhalten dieser Verbindungsklasse dar. Neben der Anwendung des Methandiids 20-Li2 als Ligand f{\"u}r die Synthese neuer {\"U}bergangsmetallkomplexe erwies sich das Dianion außerdem als geeignet f{\"u}r die Darstellung des Li/Cl-Carbenoids 83. Dabei konnte 83 zum einen durch Oxidation von 20-Li2 mit Hexachlorethan (C2Cl6) und zum anderen durch Metallierung des chlorierten Liganden 82 synthetisiert und in guten Ausbeuten (67-82\%) als farbloser, kristalliner Feststoff isoliert werden. Verbindung 83 erwies sich dabei als ein seltenes, bei Raumtemperatur stabiles Li/Cl-Carbenoid. Aufgrund der Stabilit{\"a}t im Festk{\"o}rper als auch in L{\"o}sung bei Raumtemperatur konnte 83 zudem NMR-spektroskopisch und mittels Elementaranalytik vollst{\"a}ndig charakterisiert werden. Ebenfalls gelang die Aufkl{\"a}rung der Molek{\"u}lstruktur von 83 im Festk{\"o}rper. Diese zeigte keinen direkten Kontakt zwischen dem Carbenoid-Kohlenstoff- und Lithiumatom und lieferte damit neben der elektronischen Stabilisierung eine Erkl{\"a}rung f{\"u}r die beobachtete Stabilit{\"a}t von 83. Dabei beteiligt sich das Ligandsystem durch Koordination der Sulfonyl-Gruppen an das Lithiumatom erheblich an der Stabilisierung, sodass eine Lithiumchlorid-Eliminierung erschwert wird. Außerdem zeigte die Molek{\"u}lstruktur keine Verl{\"a}ngerung der C-Cl-Bindung, wie es f{\"u}r unstabilisierte Carbenoide in der Literatur beschrieben wird. Diese Tatsache und die im 13C-NMR-Spektrum beobachtete Abschirmung des Carbenoid-Kohlenstoffatoms im Vergleich zur chlorierten Vorstufe 82 lieferten erste Anzeichen f{\"u}r einen geringen carbenoiden Charakter von 83. Außerdem best{\"a}tigten quantenchemische Rechnungen keine signifikante Polarisierung der CCl-Bindung. Die durch die Stabilisierung resultierende Verringerung des carbenoiden Charakters und somit der Ambiphilie spiegelte sich auch in der Reaktivit{\"a}t von 83 wider. So konnte Verbindung 83 nicht als Cyclopropanierungsreagenz verwendet werden, wie es zumeist f{\"u}r klassische Carbenoide der Fall ist. Gegen{\"u}ber Elektrophilen wie Methyliodid oder Chlordiphenylphosphan reagierte 83 in Analogie zu Organolithiumbasen zu den Verbindungen 84a und 84b. Jedoch konnte 83 als Carbenvorstufe zur Synthese des Palladium-Carbenkomplexes 51a unter LiCl-Eliminierung eingesetzt werden, was den leicht vorhandenen carbenoiden Charakter von 83 wiedergibt. Zudem wurde 83 hinsichtlich seines Aktivierungspotentials von EE-Bindungen untersucht. W{\"a}hrend die Aktivierung der BH-Bindung in Boranen und die BB-Bindung in Diboranen nicht gelang, konnte die SS-Bindung in 2,2'-Dipyridyl- und 4,4'-Dipyridyldisulfid gespalten und Verbindung 90 analysenrein erhalten werden (Schema 4.8.). Studien zur Aufkl{\"a}rung dieses Reaktionsverhaltens stehen jedoch noch aus. Bez{\"u}glich der Aktivierung von P-H-Bindungen in unterschiedlich substituierten aromatischen Phosphanen konnte f{\"u}r 83 eine zu einem Silyl-stabilisierten Carbenoid analoge Reaktivit{\"a}t gefunden werden. Hierbei erfolgte keine Addition der P-H-Bindung an das carbenoide Kohlenstoffatom, sondern die selektive Dehydrokupplung der Phosphane zu Diphosphanen unter LiCl-Eliminierung. Diese {\"u}berraschende und bis dato f{\"u}r Carbenoide unbekannte Reaktivit{\"a}t erfolgte unter milden Reaktionsbedingungen (Raumtemperatur) und ohne Einsatz von {\"U}bergangsmetallkatalysatoren. Insgesamt konnte f{\"u}r Verbindung 83 ein vielf{\"a}ltiges Reaktionsverhalten gefunden werden. Neben dessen Eignung als Carbenvorstufe bei der Synthese von {\"U}bergangsmetall-Carbenkomplexen, konnte die Spezies in der Aktivierung von SS- und PH-Bindungen eingesetzt werden. In zuk{\"u}nftigen Reaktivit{\"a}tsstudien sollte das beobachtete Potential auf weitere Substrate {\"u}bertragen werden.}, subject = {Carbenkomplexe}, language = {de} } @phdthesis{Nagel2015, author = {Nagel, Christoph}, title = {Novel manganese- and molybdenum-based photoactivatable CO-releasing molecules: synthesis and biological activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120376}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Since its discovery as a small signaling molecule in the human body, researchers have tried to utilize the beneficial cytoprotective properties of carbon monoxide in therapeutic applications. Initial work focused on the controlled direct application of CO gas. However, to circumvent the disadvantages of this method such as requirement for special equipment, hospitalization of the patient and the risk of overdosing, metal-carbonyl complexes were developed as CO-releasing molecules (CORMs) which are able to deliver CO in a tissue-specific manner. However, upon the release of CO from the metal coordination sphere, complex fragments termed inactivated CORMs (iCORMs) with free coordination sites remain which can undergo nonspecific follow-up reactions under physiological conditions. Thus, the first aim of the present thesis was the coordination of tetradentate ligands such as tris(2-pyridylmethyl)amine (tpa), bis(2-pyridylmethyl)(2-quinolylmethyl)amine (bpqa), bis(2-quinolylmethyl)(2-pyridylmethyl)amine (bqpa) and tris(2-quinolylmethyl) amine (tmqa) in a tridentate facial manner to a fac-Mn(CO)3 moiety previously established as a photoactivatable CO-releasing molecule (PhotoCORM). The desired coordination of the pedant donor group upon photolytic CO release at 365 nm was demonstrated by UV/Vis-, IR- und 1H NMR experiments and verified by DFT calculations. All complexes of the series showed long-term dark stability in phosphate-buffered saline (PBS), but released between two and three equivalents of carbon monoxide with half-lives of around 5-10 minutes upon illumination at 365 nm. Although the photolytic properties of the complexes were quite similar besides the differences in type of hetereoaromatic ligands, the determination of the logP values showed an increase of lipophilicity with the number of quinoline groups, which might enable tissue-specific uptake. A significant cellular manganese uptake as well as the binding of CO released upon photolysis to the cytochrome c oxidases in E. coli cells was demonstrated for [Mn(CO)3(tpa)]+. Furthermore, this complex exhibited photoinduced bactericidal activity when the cells were grown in succinate-containing medium and thus unable to change their metabolism to mixed acid fermentation. In the second part of the project, the hexadentate ligand 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (py3tacn) was coordinated to a facial Mn(CO)3 moiety. The resulting [Mn(CO)3(py3tacn-3N)]+ complex has one pedant donor group per labile carbonyl ligand and thus is a significant improvement over the 1st generation tpa-complexes. The metal-coligand inactivated CORM (iCORM) fragment expected to be generated upon complete photolytic CO release, [Mn(py3tacn-6N)]2+, was synthesized independently and will serve as a well-defined negative control in upcoming biological tests. The corresponding CORM has long-term dark stability in pure dimethylsulfoxide or phosphate-buffered myoglobin solution, with three equivalents of CO released with a half-life of 22 minutes upon illumination at 412 nm. The photolysis was also followed by IR spectroscopy and the intermediates, in line with a stepwise release of carbon monoxide, and occupation of vacated sites by the pedant pyridine group were verified by DFT calculations. Due to possible tissue damage by energy-rich light and the inverse correlation of tissue penetration depth and illumination wavelength, the absorption maxima of PhotoCORMs should ideally be in the phototherapeutic window between 600 and 1200 nm. Thus, in the third part of this work, a series of heterobinuclear Mn(CO)3/Ru(bpy)2 PhotoCORMs was prepared to shift the absorption of these compounds into the red region of the UV/Vis spectrum. For the synthesis of such Mn(I)/Ru(II) complexes, the bridging ligands 2,3-di(2-pyridyl)quinoxaline (dpx) and 3-(pyridin-2-yl)-1,2,4-triazine[5,6-f]-1,10-phenanthroline (pytp) were prepared and the two binding pockets subsequently filled with a Ru(bpy)2 and a fac-Mn(CO)3 moiety. The resulting two heterobinuclear metal complexes [Ru(bpy)2(dpx)MnBr(CO)3]2+ and [Ru(bpy)2(pytp)MnBr(CO)3]2+ as well as [Ru(etx)(tbx)MnBr(CO)3]2+ with etx = ethyl(2,2':6',2''-terpyridine)-4'-carboxylate and tbx = N-((2,2':6',2''-terpyridin)-4'-yl)2,2'-bipyridine-5-carboxamide which was prepared by a metal precursor provided by the group of Prof. Dr. Katja Heinze showed a significant shift of the main absorption bands to higher wavelengths as well as two times higher extinction coefficients than the analogous mononuclear Mn(I) compounds. However, both the Mn(I)/Ru(II) and Mn(I) complexes had a reduced stability in phosphate-buffered myoglobin solution even in the absence of light. The efficiency of the CO-release from [Ru(etx)(tbx)MnBr(CO)3]2+ and [Ru(bpy)2(dpx)MnBr(CO)3]2+ could be controlled by proper choice of the excitation wavelength. A change from 468 to 525 nm or even 660 nm led to a decrease of the number of CO equivalents released from two to one and an elongation of the half-lives. Finally, since nitric oxide also serves as a small messenger molecule in the human body with its signaling pathways interacting with those of CO, a mixed-ligand CO/NO metal complex was sought. [Mo(CO)2(NO)(iPr3tacn)]+ with iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonane was selected from the literature and its molecular structure determined by single crystal diffraction, demonstrating the presence of an NO+ ligand in the coordination sphere as indicated by a MO-N-O angle close to 180°. Photolysis of [Mo(CO)2(NO)(iPr3tacn)]+ required high-energy UV light, which prevented a quantification of the CO release due to photolytic decomposition of the myoglobin. However, solution IR experiments showed that the complex lost the two carbon monoxide ligands upon illumination at 254 nm while the NO remained tightly bound to the metal. The structures observed of the intermediates were also verified by DFT calculations. In conclusion, in this project, four different classes of novel transition metal-based photoactivatable CO-releasing molecules (PhotoCORMs) were prepared and studied. The first group incorporated one additional free donor group per LMn(CO)3 moiety but varied in the number of coordinated pyridyl and quinolinyl groups which allows the control of the lipophilicity of these compounds. As an extension of this concept, the second series incorporated one free donor group per labile carbonyl ligand which gives rise to well-defined photolysis products that can be independently prepared and assayed. The third class was based on a Ru(II) photosensitizer unit connected to a MnBr(CO)3 PhotoCORM moiety. This shifts the absorption maximum from 500 nm to about 585 nm in [Ru(bpy)2(dpx)MnBr(CO)3]2+. Finally, a first mixed-ligand CO/NO carrier molecule was evaluated for its photolytic behavior. However, while the carbonyl ligands were photolabile at low excitation wavelengths, release of the NO ligand was not observed under the conditions studied. In a next step, detailed studies on the bioactivity of the different classes of PhotoCORMs need to be carried out with partner groups from biochemistry to fully explore their biomedical potential.}, subject = {Kohlenmonoxid}, language = {en} } @phdthesis{Kramer2015, author = {Kramer, Thomas}, title = {{\"U}bergangsmetall-Bor-Wechselwirkungen in Boryl- und Boridkomplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Durch Untersuchungen zur Reaktivit{\"a}t von Boryl- und Boridverbindungen konnten deren Bindungssituationen aufgekl{\"a}rt und neuartige Koordinationsmotive von {\"U}bergangsmetall-Bor-Verbindungen erhalten werden. Die erhaltenen Verbindungen wurden mittels NMR-Spektroskopie, IR-Spektroskopie, Elementaranalyse und R{\"o}ntgendiffraktometrie untersucht und zus{\"a}tzlich wurden DFT-Rechnungen angefertigt. An verschieden substituierten Eisenborylkomplexen wurden Reaktivit{\"a}tsuntersuchungen gegen{\"u}ber Halogenidabstraktionsmitteln und Reduktionsmitteln durchgef{\"u}hrt und im Falle der Boridkomplexe wurden Verbindungen mit bis dato unbekanntem Strukturmotiv erhalten.}, subject = {{\"U}bergangsmetall}, language = {de} } @phdthesis{Dueck2015, author = {D{\"u}ck, Klaus}, title = {Synthese, Untersuchung und Polymerisation neuartiger Sandwichkomplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In dieser Dissertation werden die Ergebnisse zur Synthese und Polymerisation gespannter Manganoarenophane vorgestellt. Weiterhin wird die Reaktivit{\"a}t von Bis(benzol)titan und die Synthese von ansa-Verbindungen dieses Komplexes, sowie Untersuchungen zu deren Eigenschaften beschrieben. Zum Vergeleich wird auch der Komplex Bis(mesityl)titan untersucht. Die Polymerisation von zinnverbr{\"u}ckten, gespannten Vanadium-Sandwichkomplexen und die Untersuchungen der paramagnetischen Eigenschaften ist ebenso in dieser Dissertationsschrift beschrieben. Zus{\"a}tzlich wird die Synthese heteroleptischer Sandwichkomplexe des Scandiums und Yttriums dargestellt, sowie deren Ringsubstitution. Die Vorarbeiten zur Synthese heteroleptischer Sandwichkomplexe der Lanthanoide bildet ebenso einen Bestandteil dieser Schrift, wie die Synthese von ansa-Komplexen des Thorocens und Uranocens via flytrap-Methode.}, subject = {Sandwich-Verbindungen}, language = {de} } @article{WaelbroeckCamusTastenoyetal.1994, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Feifel, R. and Mutschler, E. and Tacke, R. and Strohmann, C. and Rafeiner, K. and Rodrigues de Miranda, J. F. and Lambrecht, G.}, title = {Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor suhtypes}, series = {British Journal of Pharmacology}, volume = {112}, journal = {British Journal of Pharmacology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128265}, pages = {505-514}, year = {1994}, abstract = {1 We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic Ml receptors (in rat brain, human neuroblastoma (NB-OK I) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (Ml/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2 Si la-substitution (C/Si exchange) of hexocyclium (~ sila-hexocyclium) and demethyl-hexocyclium (~demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of demethoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3 The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4 In binding studies, o-methoxy-sila-hexocyclium (Ml = M4 ~ M3 ~ M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (Ml = M3> M4> M2)' This is in marked contrast with the very clear selectivity of demethoxy-sila-hexocyclium for the prejunctional MtlM4-like heteroreceptors in rabbit vas deferens. 5 The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-silahexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives.}, language = {en} } @article{TackeNiederer1978, author = {Tacke, Reinhold and Niederer, Reinhold}, title = {Sila-Pharmaka, 9. Mitt. [1] Darstellung und Eigenschaften potentiell curarewirksamer Silicium-Verbindungen, I}, series = {Zeitschrift f{\"u}r Naturforschung B}, volume = {33}, journal = {Zeitschrift f{\"u}r Naturforschung B}, number = {4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128277}, pages = {412-416}, year = {1978}, abstract = {Organosilicon compounds 8, 9 and 10 with potential curare-like action and their precursors 0, 6 and 7 were synthesized for the first time. 0-10 were characterized by their physical and chemical properties, and their structures were confirmed by analyses, IH NMR and mass spectroscopy (only for 0-7). The pharmacological and toxicological data of 8, 9 and 10 are reported.}, language = {de} } @article{PfeifferHanackKoppetal.1990, author = {Pfeiffer, A. and Hanack, C. and Kopp, R. and Tacke, R. and Moser, U. and Mutschler, E. and Lambrecht, G. and Herawi, M.}, title = {Human Gastric Mucosa Expresses Glandular M3 Subtype of Muscarinic Receptors}, series = {Digestive Diseases and Sciences}, volume = {35}, journal = {Digestive Diseases and Sciences}, number = {12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128286}, pages = {1468-1472}, year = {1990}, abstract = {Five subtypes of muscarinic receptors have been distinguished by pharmacological and molecular biological methods. This report characterizes the muscarinic subtype present in human gastric mucosa by radioligand binding studies. The receptor density was 27 ± 6 fmol/mg protein and the tritiated ligand N-methylscopolamine had an affinity of (Kn) 0.39 ± 0.08 nM (n = 11). The M1 receptor selective antagonist pirenzepine and the M2 receptor selective ligand AF-DX 116 had low affinities of 148 ± 32 nM (n = 13) and 4043 ± 1011 nM (n = 3) K n , respectively. The glandular M3 antagonists hexahydrosiladifenidol and silahexocyclium had high affinities ofKn 78 ± 23 nM (n = 5) and 5.6 ± 1.8 nM (n = 3). The agonist carbachol interacted with a single low-affinity site and binding was insensitive to modulation by guanine nucleotides. Antagonist and agonist binding studies thus showed an affinity profile typical of M3 receptors of the glandular type.}, language = {en} } @article{TackeLinkBentlageFeltenetal.1985, author = {Tacke, Reinhold and Link, Matthias and Bentlage-Felten, Anke and Zilch, Harald}, title = {Zum thermischen Verhalten einiger Kohlens{\"a}ure[(methylphenylsilyl)methyl]ester-Derivate}, series = {Zeitschrift f{\"u}r Naturforschung B}, volume = {40}, journal = {Zeitschrift f{\"u}r Naturforschung B}, number = {7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128293}, pages = {942-947}, year = {1985}, abstract = {The synthesis and the thermal behaviour of the (methylphenylsilyl)methyl carbonates \(CH_3(C_6H_5)Si(H)CH_2OC(O)X (6: X = OCH_3; 7: X = Cl; 8: X = N(CH_3)_2)\) is described. 8 rearranges in toluene solution at 100 °C quantitatively to give the carbam oyloxysilane \(C_6H_5(CH_3)_2SiOC(O)N(CH_3)_2\) (11), whereas neat 6 and 7 at 135 °C undergo quantitative formation of \(C_6H_5(CH_3)_2SiOCH_3\) (12) and \(C_6H_5(CH_3)_2SiCl\) (13), respectively. The formation of 12 and 13 is explained by a rearrangement reaction (by analogy to the rearrangement of 8), follow ed by a decarboxylation. The thermally induced transformations 6 →12, 7 →13, and 8 →11 were found to be first-order reactions with half-lifes of ~2.6 h (135 °C, neat), ~4.5 h (135 °C, neat), and ~3.7 h (100 °C, in toluene), respectively.}, language = {de} } @article{TackeLinohStumpfetal.1983, author = {Tacke, Reinhold and Linoh, Haryanto and Stumpf, Burghard and Abraham, Wolf-Rainer and Kieslich, Klaus and Ernst, Ludger}, title = {Mikrobiologische Umwandlung von Silicium-Verbindungen: Enantioselektive Reduktion von Acetessigs{\"a}ure-(trimethylsilylalkyl)estern und deren Carba-Analoga}, series = {Zeitschrift f{\"u}r Naturforschung B}, volume = {38}, journal = {Zeitschrift f{\"u}r Naturforschung B}, number = {5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128304}, pages = {616-620}, year = {1983}, abstract = {The trimethylsilylalkyl acetoacetates 1 b and 2 b as well as their carba analogues 1 a and 2 a have been reduced microbiologically by Kloeckera corticis (ATCC 20109), leading to the corresponding ( + )-3(S)-hydroxybutanoates 3b, 4b, 3a, and 4a. The enantiomeric purity was found to be 80\% (3a, 3b, 4b) and 65\% (4a), respectively. The reduction of lb and 2b is - to our knowledge - the first example for a controlled microbiological transformation of organosilicon substrates.}, language = {de} } @article{PfeifferRochlitzNoelkeetal.1990, author = {Pfeiffer, A. and Rochlitz, H. and Noelke, B. and Tacke, R. and Moser, U. and Mutschler, E. and Lambrecht, G.}, title = {Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type}, series = {Gastroenterology}, volume = {98}, journal = {Gastroenterology}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128337}, pages = {218-222}, year = {1990}, abstract = {Five subtypes of muscarinic receptors have been identified by pharmacological and molecular biological methods. The muscarinic receptor subtype mediating acid secretion at the level of the parietal cell was unknown. Therefore, this study was performed to characterize muscarinic receptors on rat gastric parietal cells using the 3 subtype-selective antagonists hexahydrosiladifenidol and silahexocyclium, which have high affinity for glandular M3 subtypes, and AF-DX 116, which has high affinity to cardiac M2 receptors. The affinity of these antagonists was determined by radioligand binding experiments. In addition, their inhibitory potency on carbachol-stimulated inositol phosphate production was investigated. Inhibition of carbachol-stimulated aminopyrine uptake was used as an indirect measure of proton production. Both M3 antagonists, hexahydrosiladifenidol and silahexocyclium, had nanomolar affinities for parietal cell muscarinic receptors and potently antagonized inositol phosphate production with nanomolar Ki values. Silahexocyclium similarly antagonized aminopyrine accumulation while hexahydrosiladifenidol behaved as a noncompetitive antagonist. AF-DX 116 was a low-affinity ligand and a weak competitive antagonist at parietal-cell muscarinic receptors. It was concluded that muscarinic M3 receptors mediate acid secretion probably by activation of the phosphoinositide second messenger system in rat gastric parietal cells.}, language = {en} } @article{JaiswalLambrechtMutschleretal.1991, author = {Jaiswal, Neelam and Lambrecht, G{\"u}nter and Mutschler, Ernst and Tacke, Reinhold and Malik, Kafait U.}, title = {Pharmacological characterization of the vascular muscarinic receptors mediating relaxation and contraction in rabbit aorta}, series = {Journal of Pharmacology and Experimental Therapeutics}, volume = {258}, journal = {Journal of Pharmacology and Experimental Therapeutics}, number = {3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128358}, pages = {842-850}, year = {1991}, abstract = {Studies were performed in the rabbit aortic rings, precontracted with norepinephrine, to determine the subtype(s) of muscarinic receptors involved in endothelium-dependent relaxation and contraction in the absence of endothelium elicited by cholinergic stimuli. Acetylcholine (ACh) and arecaidine propargyl ester (APE), a M2 and M3 agonist, produced a dose-dependent relaxation and contraction in endothelium-intact and endothelium-denuded rabbit aortic rings, respectively. Both of these responses were blocked by the muscarinic receptor antagonist atropine. M1 selective agonist McN-A-343 [4-[N-(3-chlorophenyl)carbamoyloxy]-2-butinyltrimethylammonium+ ++ chloride] did not produce any effect on the tone of precontracted aortic rings. ACh- and APE-induced relaxation in aortic rings with intact endothelium was selectively blocked by M3 receptor antagonists hexahydrosila-difenidol and p-fluoro-hexahydro-sila-difenidol (pA2 of 7.84 and 7.18) but not by M1 antagonist pirenzepine or M2 receptor antagonists AF-DX 116 [11-(2-[(diethylamino)methyl]- 1-piperidinyl]acetyl)-5, 11-dihydro-6H-pyrido-[2,3-b][1,4]-benzo-diazepin-6-one] and methoctramine. ACh- and APE-induced contraction was inhibited by M2 receptor antagonists AF-DX 116 and methoctramine (pA2 of 7.11 and 6.71) but not by pirenzepine, hexahydro-sila-difenidol or p-fluoro-hexahydro-sila-difenidol. ACh- and APE-induced relaxation or contraction were not altered by nicotinic receptor antagonist hexamethonium or cyclooxygenase inhibitor indomethacin. These data suggest that relaxation elicited by cholinergic stimulin in endothelium-intact aortic rings is mediated via release of endothelium-derived relaxing factor consequent to activation of M3 receptors located on endothelial cells, whereas the contraction in aortic rings denuded of their endothelium is mediated via stimulation of M2 receptors located on smooth muscle cells.}, language = {en} } @phdthesis{Geyer2015, author = {Geyer, Marcel}, title = {Synthese und biologische Charakterisierung neuartiger siliciumorganischer Wirkstoffe sowie Synthese neuartiger siliciumorgansicher Synthese-Bausteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Aufbauend auf dem Konzept der C/Si-Bioisosterie beschreibt die vorliegende Arbeit die Synthese und biologische Charakterisierung siliciumorganischer Wirkstoffe sowie Beitr{\"a}ge zur Synthese von siliciumorganischen Synthese-Bausteinen unter Verwendung der Silicium-Schutzgruppen MOP (4-Methoxyphenyl), DMOP (2,6-Dimethoxyphenyl) und TMOP (2,4,6-Trimethoxyphenyl). Die entsprechenden Zielverbindungen sowie alle isolierten Zwischenstufen wurden durch NMR-Spektroskopie in L{\"o}sung (1H, 13C, 29Si) und Elementaranalyse (C, H, N) bzw. HRMS-Analytik (ESI) charakterisiert. Zus{\"a}tzlich konnte in einigen F{\"a}llen eine strukturelle Charakterisierung durch Einkristall-R{\"o}ntgenstrukturanalyse realisiert werden.}, subject = {Wirkstoff}, language = {de} } @phdthesis{NitschgebLube2017, author = {Nitsch [geb. Lube], J{\"o}rn S.}, title = {Struktur, Reaktivit{\"a}t und Photophysik von Kupfer(I)-Komplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In der Arbeit wurden die Strukturen, Reaktivit{\"a}ten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zun{\"a}chst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festk{\"o}rper auf. Es zeigte sich f{\"u}r diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zust{\"a}nde an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden m{\"o}gliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zust{\"a}nden diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabh{\"a}ngigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festk{\"o}rpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC {\"U}bergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einf{\"u}hrung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalit{\"a}t beinhalten. Es konnte gezeigt werden, dass diese Verkn{\"u}pfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70\% f{\"u}hren kann, wenn zus{\"a}tzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abst{\"a}nde um den Faktor zwei erh{\"o}hen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden f{\"u}r die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalit{\"a}t tragen. F{\"u}r eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner k{\"o}nnen die Substituenten am NHC ebenfalls die Strukturen im Festk{\"o}rper beeinflussen. So kann f{\"u}r 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalit{\"a}t in das Kupfer- bzw. Chloridatom (LMXCT-{\"U}bergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zus{\"a}tzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abst{\"a}nde in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einf{\"u}hrung von Methylen, Ethylen und Propylenbr{\"u}ckeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abst{\"a}nden auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht g{\"a}nzlich aufgekl{\"a}rt ist. M{\"o}glich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erkl{\"a}ren k{\"o}nnten. Die hochenergetische Bande kann f{\"u}r alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zust{\"a}nden zugeordnet werden, w{\"a}hrend niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zust{\"a}nde populiert werden k{\"o}nnen, bzw. wenn dispersive Cu-Cu-Wechselwirkungen m{\"o}glich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivit{\"a}t von d10 [M(NHC)n]-Komplexen beeinflussen k{\"o}nnen. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer L{\"o}sung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] f{\"u}r alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere h{\"o}here Koordination stark vom Metall bzw. von der Deformationsenergie abh{\"a}ngen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molek{\"u}lorbitalbetrachtung die Ursache f{\"u}r die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgekl{\"a}rt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsger{\"u}sts zur{\"u}ckzuf{\"u}hren, w{\"a}hrend niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-R{\"u}ckbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So k{\"o}nnen trotz hoher berechneter Werte f{\"u}r die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilit{\"a}t aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschr{\"a}nkt sein, und sind deswegen f{\"u}r Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden.}, subject = {Kupferkomplexe}, language = {de} } @phdthesis{Ritschel2022, author = {Ritschel, Benedikt Tobias}, title = {Lewis-Basen-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Reaktivit{\"a}tsstudien an Diboracumulenen und Dicyanodiborenen}, doi = {10.25972/OPUS-24330}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243306}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit umfasst im Wesentlichen Studien {\"u}ber die Reaktivit{\"a}t von Diboracumulenen sowie Dicyanodiborenen gegen{\"u}ber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und {\"U}bergangsmetallen. Auf diese Weise sollen zun{\"a}chst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen erm{\"o}glicht sowie ein Verst{\"a}ndnis f{\"u}r die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivit{\"a}t untersucht. Die aufgef{\"u}hrten Kapitel beziehen sich daher auf die Reaktivit{\"a}t der Diboracumulene wie auch die der Dicyanodiborene gegen{\"u}ber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit m{\"o}glich, miteinander verglichen.}, subject = {Bor}, language = {de} } @phdthesis{Roth2021, author = {Roth, Patrick}, title = {Metalltricarbonyl-basierte CO-releasing molecules (CORMs): Variation der Freisetzungskinetik und Biokonjugation}, doi = {10.25972/OPUS-24017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Kohlenstoffmonoxid ist ein wichtiges kleines Signalmolek{\"u}l das im menschlichen K{\"o}rper durch die enzymatische Wirkung von H{\"a}m-Oxygenase (HO) auf H{\"a}m produziert wird. F{\"u}r eine thera-peutische Anwendung werden Metallcarbonyl-Komplexe als CO-releasing molecules (CORMs) untersucht, die eine kontrollierte Freisetzung in biologischen Zielstrukturen erlauben. Daf{\"u}r wird entweder die Ligandenperipherie ("drug sphere") modifiziert oder die CORMs an bio-molekulare Tr{\"a}gersysteme konjugiert. Im Rahmen dieser Arbeit stand dabei die lichtinduzierte Freisetzung von Kohlenstoffmonoxid aus Mangan(I)tricarbonyl-Komplexen im Vordergrund. Die oktaedrische Koordinationssph{\"a}re des Metallzentrums wurde dabei durch verschiedene faciale tridentate Liganden komplettiert, welche außerdem eine einfache und modulare Verkn{\"u}pfung mit biologischen Tr{\"a}ger-molek{\"u}len erm{\"o}glichen sollten. Als Chelatoren wurden Derivate von N,N-Bis(pyridin-2-ylmethyl)amin (bpa) ausgew{\"a}hlt, in denen das zentrale Stickstoffatom mit Alkylaminen unterschiedlicher Kettenl{\"a}nge funktionalisiert ist, welche {\"u}ber Amid-Bindungen mit Carboxylat-modifizierten Tr{\"a}germolek{\"u}len verkn{\"u}pft werden k{\"o}nnen. Diesen bpa-Liganden sollte ein neuartiges Ligandensystem auf der Basis von N-(Phenanthridin-6-ylmethyl)-N-(chinolin-2-ylmethyl)ethan-1,2-diamin (pqen) gegen{\"u}bergestellt werden, in denen die Phenanthridin-Gruppe interessante photophysikalische und photochemische Eigenschaften erwarten l{\"a}sst. Die CO-releasing molecules sollten zudem mit den isostrukturellen Rhenium(I)tricarbonyl-Komplexen verglichen werden, die als Marker f{\"u}r die Fluoreszenz-mikroskopie dienen.}, subject = {Metallcarbonyle}, language = {de} } @phdthesis{Matler2022, author = {Matler, Alexander}, title = {Synthese und Reaktivit{\"a}t von {\"U}bergangsmetall-stabilisierten und Lewis-basenstabilisierten Borylenen}, doi = {10.25972/OPUS-24018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240184}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit befasst sich im ersten Teil mit der Reaktivit{\"a}t von Gruppe 8 Borylenkomplexen. Zun{\"a}chst wurde der Eisenborylenkomplex 71 mit verschiedenen Carbodiimiden umgesetzt. Die entstandenen Produkte in Form von Spiroverbindungen, [2+2]-Cycloadditionsprodukten sowie Diazadiboretidinen konnten strukturell und spektroskopisch untersucht werden. Außerdem wurde 71 mit Aziden umgesetzt, was NMR-spektroskopisch zur Bildung von Tetrazaborolen f{\"u}hrt. Der Eisenbis(borylen)komplex 72 wurde ebenfalls mit Carbodiimiden umgesetzt und die entstandenen Verbindungen, unter anderem Diazadiboretidine, strukturell und spektroskopisch untersucht. Eine Umsetzung von 72 mit Stickstoffbasen wie Azobenzol, 2,2'-Bipyridin oder Pyridazin f{\"u}hrte bei letzterem zur Bildung eines Koordinationsprodukts. W{\"a}hrend die Umsetzungen des Eisentetrakis(borylen)komplexes 73 mit Methylisocyanid, Magnesium und Trimethylphosphan zu Zersetzung f{\"u}hrten, konnten mit Bis(piperidyl)acetylen und Diisopropylcarbodiimid keine Umsetzungen festgestellt werden. Nach Aufnahme eines UV/Vis- und CV-Spektrums des Eisentetraborkomplexes 74 wurde versucht, diesen mit diversen Erd- und Erdalkalimetallverbindungen zu reduzieren. Hierbei konnte entweder keine Reaktion oder Zersetzung festgestellt werden. Weitere Umsetzungen von 74 erfolgten mit unterschiedlichen Lewis-Basen, Stickstoffbasen, S{\"a}uren, Gasen, Chalkogenen, DIC und einer Platin(0)-verbindung. Diese Umsetzungen f{\"u}hrten zu keinen identifizierbaren Produkten. Im zweiten Teil dieser Arbeit wurde die Synthese und Reaktivit{\"a}t des basenstabilisierten Borylens 89 untersucht. Nach Verbesserung der Synthesebedingungen konnte ein photolytisch induzierter Ligandenaustausch des CO-Liganden mit verschiedenen Substraten durchgef{\"u}hrt werden. Hierbei f{\"u}hrten die Umsetzungen mit Carbenen oder Phosphanen in Abh{\"a}ngigkeit derer sterischer Eigenschaften zu den entsprechenden Adduktverbindungen. Außerdem konnte eine Adduktverbindung mit Schwefel dargestellt werden, w{\"a}hrend eine Umsetzung mit Selen nur zur Zersetzung f{\"u}hrte. Die Umsetzung mit DMAP lieferte im Gegensatz zur den vorherigen Adduktverbindungen ein biradikalisches Produkt, welches durch ESR-Messung charakterisiert werden konnte. Eine l{\"o}sungmittelabh{\"a}ngige Reaktion findet mit Trifluorophosphan statt, mit welchem die entsprechende instabile Borylenverbindung NMR-spektroskopisch untersucht werden konnte. Die Borazidspezien 169 und 170 sowie das Aminoboran 171 konnten durch Umsetzung von 89 mit Mesityl- und Phenylazid generiert und vollst{\"a}ndig charakterisiert werden. In Anlehnung an die Synthese von Fischercarbenkomplexen wurde 89 mit Organometallverbindungen umgesetzt, um die Reaktivit{\"a}t des CO-Liganden zu erforschen. Nach Umsetzungen mit Phenyllithium, Methyllithium oder Benzylkalium erfolgte die Methylierung in situ mittels Methyltriflat oder dem Meerwein-Salz [Me3O][BF4]. Die entstandenen Fischercaben-analogen Verbindungen konnten strukturell und spektroskopisch charakterisiert werden.}, subject = {Borylene}, language = {de} } @phdthesis{Englert2022, author = {Englert, Lukas}, title = {Synthese und Reaktivit{\"a}t Phosphan-stabilisierter Diborene}, doi = {10.25972/OPUS-24136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Reaktivit{\"a}t von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweiz{\"a}hnigen (84a-87c) und einz{\"a}hnigen Phosphanen (43a-c; 88a-89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen F{\"a}llen gelang es mithilfe der Molek{\"u}lstrukturen im Festk{\"o}rper die Verbindungen n{\"a}her zu untersuchen. Dabei konnten erstmalig Phosphan-verbr{\"u}ckte Diboran(6)-Verbindungen 86a-87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zur{\"u}ckzuf{\"u}hren ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise f{\"u}r die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur f{\"u}r 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-{\"U}bergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend f{\"u}r eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der r{\"a}umliche Anspruch der Phosphane einen entscheidenden Stabilit{\"a}tsfaktor f{\"u}r das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a-98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbr{\"u}ckten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen f{\"u}r diese Verbindungsklasse typische NMR-spektroskopische und r{\"o}ntgenkristallographische Messdaten. Zus{\"a}tzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden n{\"a}her analysiert. Das Hauptaugenmerk der durchgef{\"u}hrten Forschungsarbeiten lag auf der Untersuchung der Reaktivit{\"a}t des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels f{\"u}r ein strukturell aufgekl{\"a}rtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollst{\"a}ndige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festk{\"o}rper und quantenchemisch n{\"a}her untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizit{\"a}t. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). W{\"a}hrend f{\"u}r die Umsetzungen mit diversen Silanen nur {\"u}ber die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufkl{\"a}rung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallr{\"o}ntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112-113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zus{\"a}tzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H-1H-NOESY-NMR-Experimenten best{\"a}tigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivit{\"a}tsverhalten gegen{\"u}ber kleinen Molek{\"u}len. Nach dem Austausch der Schutzgasatmosph{\"a}re gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. G{\"a}nzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molek{\"u}len und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festk{\"o}rperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da f{\"u}r alle drei Strukturvorschl{\"a}ge experimentelle Hinweise gefunden werden k{\"o}nnen. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erh{\"o}htem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen f{\"u}hrten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. F{\"u}r beide Reaktivit{\"a}ten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schl{\"u}sselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich f{\"u}r eine Vielzahl an Reaktivit{\"a}ten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen unges{\"a}ttigten Substraten. Die Reaktivit{\"a}t gegen{\"u}ber Aziden konnte hierbei nicht vollst{\"a}ndig aufgekl{\"a}rt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a-c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abh{\"a}ngig war. Das Azadiboretidin 123a konnte im Festk{\"o}rper n{\"a}her untersucht werden und stellt ein seltenes Beispiel f{\"u}r einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollst{\"a}ndig aufgekl{\"a}rtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-R{\"u}ckgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen f{\"u}r 124a {\"a}hnliche Bindungsparameter wie f{\"u}r ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen f{\"u}hrte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a-d. In L{\"o}sung konnten f{\"u}r 126c/d zus{\"a}tzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10\% NMR-spektroskopisch beobachtet werden. Im Festk{\"o}rper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen best{\"a}tigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabst{\"a}nden innerhalb der BCsp2B-Einheiten von 126a-c und 127d unterst{\"u}tzt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten l{\"a}sst. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festk{\"o}rper gibt einen Hinweis auf eine anf{\"a}ngliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die {\"u}ber eine 1,3-Umlagerung zur Bildung der 1,3-Diborete f{\"u}hrt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4-Diethinylbenzol die Darstellung der Mono- und Bis(1,3-dihydro-1,3-diborete) 128 und 129, wobei 129 nur im Festk{\"o}rper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5-Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen f{\"u}r das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen {\"u}ber den zentralen Benzolring voraus, was die Ursache f{\"u}r die beobachtete Fluoreszenz sein k{\"o}nnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a-e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem r{\"a}umlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen L{\"o}slichkeit in g{\"a}ngigen L{\"o}sungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abh{\"a}ngig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilit{\"a}t der Diborane(4) 132b/c gegen{\"u}ber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gew{\"a}hlten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivit{\"a}t wurde jedoch im Rahmen dieser Arbeit nicht durchgef{\"u}hrt. Die Schl{\"u}sselschritte des Reaktionsmechanismus zur Bildung von 133 f{\"u}hren h{\"o}chstwahrscheinlich wieder {\"u}ber das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse {\"u}ber die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane er{\"o}ffnen diesen Diborenen eine einzigartige Reaktivit{\"a}t, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft k{\"o}nnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. W{\"u}nschenswert w{\"a}re es die Diboren-Monomere miteinander zu Ketten zu verkn{\"u}pfen.}, subject = {Bor}, language = {de} } @phdthesis{Liu2021, author = {Liu, Zhiqiang}, title = {Fluorinated Aryl Boronates as Units in Organic Synthesis}, doi = {10.25972/OPUS-24576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {It is generally acknowledged that polyfluoroarenes are important fluorinated structural units for various organic molecules, such as pharmaceuticals, agrochemicals, and organic materials. Polyfluorinated aryl alkynes and alcohols are also powerful building blocks in chemical synthesis because of their versatility to be transformed into various useful molecules and also their ubiquity in natural product synthesis. Efficient methods for the synthesis of polyfluorinated aryl alkynes and alcohols are presented in Chapter 2 and Chapter 3. In addition, 3-amino-indoles have found a broad applications in medicinal chemistry as effective anticancer agents, compounds with analgesic properties and can function as potent inhibitors of tubulin polymerization, and agents for the prevention of type II diabetes. A simple method for the synthesis of 3-amino-indoles via the annulation reaction of polyfluorophenylboronates with DMF is reported in Chapter 4. Chapter 2 In Chapter 2, a mild process for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes (Scheme S-1) is reported. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. This copper-catalyzed reaction was conducted on a gram scale to generate the corresponding product in good yield (72\%). Scheme S-1. Copper-catalyzed oxidative cross-coupling of terminal alkynes with polyfluorophenylboronate esters. Based on previous reports and the aforementioned observations, a plausible catalytic cycle for this oxidative cross-coupling reaction is shown in Scheme S-2. The first step involves the addition of an alkynyl anion to Cu leading to the formation of alkynylcopper(II) species B. Subsequent transmetalation between ArFBpin and intermediate B occurs to form intermediate C. The desired product 3a is generated by eductive elimination. Finally, the oxidation of Cu(0) to Cu(II) with DDQ and Ag2O regenerates A to complete the catalytic cycle. Scheme S-2. Proposed mechanism of copper(II)-catalyzed oxidative cross-coupling between terminal alkynes and polyfluorophenylboronate esters. Chapter 3 In Chapter 3, A convenient and efficient protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones (Scheme S-3). The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Scheme S-3. Base-promoted 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Control experiments were carried out to gain insight into the reaction mechanism. The reaction of 2a with pentafluorobenzene 5 under standard conditions was examined, yet 3a was not formed in any detectable amounts (Scheme S-4a), indicating that the C-Bpin moiety is essential and deprotonation of the fluoroarene or nucleophilic attack at the fluoroarene by the base is not a plausible pathway. Interestingly, for the standard reaction between 1a and 2a, the yield dropped dramatically if 18-crown-6 ether and K2CO3 were added (Scheme S-4b). This experimental result indicates that the presence of the potassium ion plays a crucial role for the outcome of the reaction. Furthermore, if the reaction of 1a and 2a was performed in the presence of only a catalytic amount of K2CO3 (20 mol\%) (Scheme S-4c), reaction rates were reduced, and a week was required to produce 3a in good yield. This finding again indicates that the potassium ion (or the base) plays an important role in the reaction. Substituting ortho-fluorines by ortho-chlorines, using either C6Cl5Bpin 2,6-dichlorophenyl-1-Bpin as substrates, did not yield any product as shown by in situ GCMS studies. Scheme S-4. Control experiments. Based on DFT calculations, a mechanism for the 1,2-addition of polyfluorophenylboronates to aryl aldehydes in the presence of K2CO3 as base is proposed, as shown in Scheme S-5. K2CO3 interacts with the Lewis-acidic Bpin moiety of substrate 1 to generate base adduct A, which weakens the carbon-boron bond and ultimately cleaves the BC bond along with attachment of a potassium cation to the aryl group. The resulting ArF- anion adduct B undergoes nucleophilic attack at the aldehyde carbon atom of substrate 2 to generate methanolate C. The methanolate oxygen atom then attacks the electrophilic Bpin group to obtain compound D. Transfer of K2CO3 from intermediate D to the boron atom of the more Lewis-acidic polyfluorophenyl-Bpin 1 finally closes the cycle and regenerates complex A. Thus, the primary reaction product is the O-borylated addition product E, which was detected by HRMS and NMR spectroscopy for the perfluorinated derivative. Scheme S-5. Proposed mechanism of the 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Chapter 4 Chapter 4 presents a novel protocol for the transition metal-free addition and annulation of polyfluoroarylboronate esters to DMF, which provides 3-aminoindoles and tertiary amines in moderate to excellent yields (Scheme S-6). Scheme S-6. Annulation and addition reactions of polyfluorophenylboronates with DMF. While exploring the application of this strategy in synthesis, perfluorophenylBpin reacted smoothly with ethynylarenes and DMF to afford propargylamines with moderate to excellent yields (Scheme S-7). Scheme S-7. Three-component cross-coupling reaction for the synthesis of propargylamines.}, subject = {Fluorinated Aryl Boronates}, language = {en} } @phdthesis{Hagspiel2022, author = {Hagspiel, Stephan Alexander}, title = {Synthesis and Reactivity of Pseudohalide-substituted Boranes and Borylenes}, doi = {10.25972/OPUS-24945}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work involves the synthesis and reactivity of pseudohalide-substituted boranes and borylenes. A series of compounds of the type (CAAC)BR2Y (CAAC = cyclic alkyl(amino)carbene; R = H, Br; Y = CN, NCS, PCO) were prepared first. The two-electron reduction of (CAAC)BBr2Y (Y = CN, NCS) in the presence of a second Lewis base L (L = N-heterocyclic carbene) resulted in the formation of the corresponding doubly Lewis base-stabilized pseudohaloborylenes (CAAC)(L)BY. These borylenes show versatile reactivity patterns, including their oxidation to the corresponding radical cations, coordination via the respective pseudohalide substituent to group 6 metal carbonyl complexes, as well as a boron-centered protonation with Br{\o}nsted acids to boronium cations. Reduction of (CAAC)BBr2(NCS) in the absence of a second donor ligand, led to the formation of boron-doped thiazolothiazoles via reductive dimerization of two isothiocyanatoborylenes. These B,N,S-heterocycles possess a low degree of aromaticity as well as interesting photophysical properties and can furthermore be protonated as well as hydroborated. Additionally, CAAC adducts of the parent boraphosphaketene (CAAC)BH2(PCO) could be prepared, which readily reacted with boroles [Ph4BR'] (R' = aryl) via decarbonylation in a ring expansion reaction. The obtained 1,2-phosphaborinines represent B,P-isosteres of benzene and consequently could be coordinated to metal carbonyl complexes of the chromium triade via η6-coordination, resulting in new half-sandwich complexes thereof.}, subject = {Borylene}, language = {en} } @phdthesis{Rempel2022, author = {Rempel, Anna}, title = {Synthese und Reaktivit{\"a}t von Boryldiazenidokomplexen}, doi = {10.25972/OPUS-24741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivit{\"a}t von Boryldiazenidokomplexen. Im ersten Abschnitt wird die Synthese von neuartigen Boryldiazenidokomplexen behandelt. Im zweiten Teil werden Studien zu den Reaktivit{\"a}ten dieser Verbindungen gegen{\"u}ber Elektrophilen, Lewis-Basen sowie Reaktionen an den Element-Halogen-Bindungen vorgestellt.}, subject = {{\"U}bergangsmetallkomplexe}, language = {de} } @phdthesis{Drescher2022, author = {Drescher, Regina}, title = {Neue Aluminiumheterocyclen: Darstellung und Eigenschaften von Aluminolen und Aluminafluorenen}, doi = {10.25972/OPUS-24652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246523}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Vorliegende Arbeit befasst sich mit der Darstellung und Reaktivit{\"a}t von Aluminolen, als auch Aluminafluorenen. Die Aluminole gehen eine Ringerweiterungsreaktion mit organischen Aziden ein, welche zur Bildung von sechsgliedrigen Aluminium-Stickstoff-Heterocyclen, den ersten nicht annulierten 1,2 Azaaluminabenzolen f{\"u}hrt. Weiterhin findet die Ringerweiterung des Aluminols mit einem Nitron, einem Iminoboran und einem Amin-N-Oxid statt, wodurch neue sechs-, sieben- und achtgliedrige cyclische Spezies mit hohem Heteroatomgehalt entstehen. Insgesamt wurden f{\"u}nf neue Aluminafluorene hergestellt, die je nach Substituent am Aluminiumzentrum unterschiedliche Strukturen aufweisen. Ihre relativer Lewis-S{\"a}ure-St{\"a}rke wurde mit der Gutmann-Beckett-Methode ermittelt. Neben der Bildung von Addukten mit NHCs, CAAC und DMAP, wurde in das Bromaluminiumfluoren auch (tert-Butylimino)mesitylboran insertiert, welches zur Bildung eines siebengliedrigen Aluminacyclus f{\"u}hrte.}, subject = {Aluminiumverbindungen}, language = {de} } @article{StennettJayaramanBrueckneretal.2020, author = {Stennett, Tom E. and Jayaraman, Arumugam and Br{\"u}ckner, Tobias and Schneider, Lea and Braunschweig, Holger}, title = {Hydrophosphination of boron-boron multiple bonds}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, doi = {10.1039/c9sc05908c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240681}, pages = {1335-1341}, year = {2020}, abstract = {Five compounds containing boron-boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2- hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations.}, language = {en} } @phdthesis{Mueck2016, author = {M{\"u}ck, Felix Maximilian}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivit{\"a}ts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27-36, 38, 47-49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40-42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festk{\"o}rper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in L{\"o}sung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Mol{\"a}quivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Mol{\"a}quivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden" umgeben. Beide Verbindungen liegen sowohl im Festk{\"o}rper als auch in L{\"o}sung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in L{\"o}sung wurde auch durch quantenchemische Rechnungen best{\"a}tigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festk{\"o}rper trikoordiniert und in L{\"o}sung tetrakoordiniert. Reaktivit{\"a}tsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-S{\"a}ure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27-38). Mit Ausnahme der Bildung von 25, 27 und 34-36 ist das typische Reaktivit{\"a}tsspektrum des Silylens 23 an zus{\"a}tzliche Reaktivit{\"a}tsfacetten gekoppelt: (i) eine {\"A}nderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28-33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium-Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-S{\"a}ure/Base-Reaktion unter Bildung des Lewis-S{\"a}ure/Base-Adduktes 25 und - nach einer zus{\"a}tzlichen Umlagerung - Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verl{\"a}uft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium-Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zun{\"a}chst mit einer der beiden C-C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermedi{\"a}r gebildeten Silacyclopropenringes. Die Verbindungen 30-33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Ger{\"u}st dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zun{\"a}chst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium-Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. F{\"u}r die Bildung von 31-33 postuliert man zun{\"a}chst eine homolytische El-El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si-ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden f{\"u}hrt dann unter Abspaltung von Me3SiElPh zur Bildung von 31-33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verl{\"a}uft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34-36 mit einer Silicium-Chalcogen-Doppelbindung. F{\"u}r die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molek{\"u}l Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zun{\"a}chst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Molek{\"u}ls Kohlenstoffdioxid an die Silicium-Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gest{\"u}tzt, dass 37 ebenfalls durch Umsetzung von 30 mit einem {\"U}berschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27-36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34-36) bzw. Imino-Liganden (nur 28-33) sowie einer Si-El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si-El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 l{\"a}sst sich als verzerrtes Tetraeder beschreiben. Reaktivit{\"a}tsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-S{\"a}uren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium-Bor-, Silicium-Aluminium- bzw. Silicium-Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-S{\"a}ure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer {\"a}quatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium-Zink-Verbindung 42 auch in L{\"o}sung stabil ist, w{\"a}hrend die Silicium-Bor- und Silicium-Aluminium-Verbindung 39 bzw. 40 in L{\"o}sung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen {\"a}hnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilit{\"a}t in L{\"o}sung. Da 39 und 40 in L{\"o}sung auch bei tieferer Temperatur (T = -20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei h{\"o}herer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine st{\"a}rkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den {\"U}bergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43-45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43-45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbr{\"u}ckt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer {\"a}quatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43-46 mit den jeweiligen Amidinato-Analoga 4-7 f{\"a}llt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) f{\"u}hrt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4-6, w{\"a}hrend die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden f{\"u}hrt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43-45 mit einem verbr{\"u}ckenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47-51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47-51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49-51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium-Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47-51 wird erneut die unterschiedliche Reaktivit{\"a}t der Amidinato/Guanidinato-analogen Silylene 1 (im Festk{\"o}rper tri- und in L{\"o}sung tetrakoordiniert) und 24 (sowohl in L{\"o}sung als auch im Festk{\"o}rper trikoordiniert) deutlich. Interessanterweise f{\"u}hren die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10-12 repr{\"a}sentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49-51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, w{\"a}hrend der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden tr{\"a}gt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer {\"a}quatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verl{\"a}uft formal unter heterolytischer Aktivierung einer Chalcogen-Chalcogen-Bindung und f{\"u}hrt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu f{\"u}hrt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se-Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivit{\"a}t des Silylens 24 gegen{\"u}ber kleinen Molek{\"u}len untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem {\"U}berschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer {\"a}quimolaren Menge an Kohlenstoffdisulfid (→ 56), einer st{\"o}chio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen {\"U}berschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repr{\"a}sentieren sehr seltene Beispiele f{\"u}r Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repr{\"a}sentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbr{\"u}ckenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele f{\"u}r Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten f{\"u}hren (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), w{\"a}hrend in der Mehrzahl der F{\"a}lle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer {\"a}quatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repr{\"a}sentiert mit seinem {\"u}ber das Kohlenstoff-Atom bindenden CS22--Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel f{\"u}r das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform.}, subject = {Siliciumkomplexe}, language = {de} } @phdthesis{Dannenbauer2015, author = {Dannenbauer, Nicole}, title = {Koordinationspolymere und -verbindungen mit intrinsischer Lumineszenz auf Basis von Selten-Erd-Chloriden, Thiazol, Thiolaten und Amin-Co-Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In dieser Arbeit konnten 69 neue und neuartige Koordinationspolymere sowie Komplexe mit schwefelhaltigen Liganden auf Selten-Erd-Chlorid-Basis synthetisiert und strukturell charak-terisiert werden. Durch die Umsetzung der Chloride mit dem Liganden Thiazol konnten bei Raumtemperatur, abh{\"a}ngig vom Ionenradius und der eingesetzten Menge Thiazol, sowohl Koordinationspolymere wie 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimere Komplexe [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] sowie monomere Komplexe [LnCl3(thz)4]2·thz (Ln = Sm , Eu , Tb, Ho) erhalten werden. Mittels temperaturabh{\"a}ngiger Pulverdiffraktometrie und in-situ Infra-rotspektroskopie sowie DTA/TG-Messungen konnte exemplarisch an 1∞[LaCl3(thz)6]·thz und [Pr2Cl6(thz)8] gezeigt werden, dass stufenweise thermisch bedingt Thiazolmolek{\"u}le aus den Strukturen abgegeben werden bis hin zur R{\"u}ckbildung des eingesetzten LnCl3. Unter der Vo-raussetzung, dass die fl{\"u}chtige Komponente Thiazol resorbiert wird, ist daher ein Kreispro-zess denkbar. Ferner konnten zus{\"a}tzlich wasserhaltige Phasen wie der vierkernige Cluster [Pr4Cl10(OH)2(thz)8(H2O)2] erhalten werden. Durch die Zugabe eines geeigneten Linkermolek{\"u}ls in das Reaktionssystem aus trivalenten Lanthanidchloriden und Thiazol konnten unter solvothermalen Bedingungen eine Vielzahl an Koordinationspolymeren und Komplexen erhalten werden. Als Linker oder als end-on Ligan-den eigneten sich sowohl eine Reihe an ditopischer Pyridylliganden 4,4'-Biypridin (bipy), 1,2-Di-(4-pyridyl)ethen (dpe), trans-1-(2-Pyridyl)-2-(4-pyridyl)ethylen (tppe), 1,2-Di-(4-pyridyl)ethan (dpa), sowie die Diazine Pyrazin (pyz) und Pyrimidin (pym) oder auch Azole wie 1,2,4-Triazol (tzH) und Pyrazol (pzH). Mittels Einkristallstrukturanalyse und pulverdiffrakto-metrischer Methoden konnten die dreidimensionalen Ger{\"u}stverbindungen 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), die Schichtstrukturen 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) und die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]· 0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) sowie die Komplexe [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pzH)3(thz)2] (Ln = Pr, Gd) charakterisiert werden.   Ferner konnten die erhaltenen Verbindungen weitestgehend auf ihre photolumineszenz-spektroskopischen sowie thermischen Eigenschaften hin untersucht werden. Außerdem konn-ten auch durch direkte Schwefelkoordination an die Ln3+-Zentren eindimensionale Koordina-tionspolymere 1∞[PrCl2(amt)(py)3] (amt- = 3-Amino-5-mercapto-1,2,4-triazolat), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) und Komplexe [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-Mercaptobenzimdiazolat) generiert werden}, subject = {Lanthanoide}, language = {de} } @phdthesis{WuertembergerPietsch2017, author = {W{\"u}rtemberger-Pietsch, Sabrina}, title = {Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Anionic Adducts Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]-, [OtBu]-), a phenoxy-group (L = [4-tBuC6H4O]-) and fluoride (L = [F]-, with [nBu4N]+ as the counter ion) as Lewis-bases. Neutral Adducts Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si. Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes.}, subject = {Addukt}, language = {en} }