@phdthesis{RoesergebAssmus2019, author = {R{\"o}ser [geb. Aßmus], Benjamin}, title = {SPRED2 (Sprouty-related EVH1 domain containing 2) reguliert die Autophagie in Kardiomyozyten}, doi = {10.25972/OPUS-18270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182700}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Sprouty-related, EVH1 domain containing protein 2 (SPRED2) ist ein inhibitorisches, downstream von Ras wirkendes Protein des MAP-Kinase Signalwegs, welches entscheidenden Einfluss auf die Regulation von Proliferation, Expression von Proteinen und der zellul{\"a}ren Hom{\"o}ostase hat. Der kardiale Ph{\"a}notyp von SPRED2- defizienten M{\"a}usen zeigt nicht nur eine deutliche linksventrikul{\"a}re Hypertrophie, sondern auch eine erh{\"o}hte Fibrosierung des Herzgewebes. Zellul{\"a}r wird die SPRED2- Defizienz durch die Akkumulation von vesikul{\"a}ren Strukturen innerhalb der Zelle, sowie eine markant erh{\"o}hte Anzahl von Vesikeln entlang der longitudinalen Reihen der Mitochondrien gekennzeichnet. Ziel dieser Arbeit war es, den Charakter dieser vesikul{\"a}ren Strukturen n{\"a}her zu beleuchten und festzustellen, in welchem Zusammenhang die subzellul{\"a}r ver{\"a}nderte Architektur mit der Hypertrophie der SPRED2-defizienten Tiere steht. Um diese Fragestellung zu beantworten, wurde zun{\"a}chst nach einem vesikul{\"a}ren Degradationsmechanismus gesucht, der in SPRED2-/--Cardiomyocyten betroffen sein k{\"o}nnte. Die Macroautophagie, im folgenden Autophagie bezeichnet, ist ein solcher Degradationsmechanismus, bei dem selektiv langlebige Proteine und Zellorganellen abgebaut werden. Es konnten signifikante Ver{\"a}nderung der Protein-Level an Schl{\"u}sselpositionen der Autophagie identifiziert werden. Das Ubiquitin-aktivierende (E1) Enzym Homolog Atg7 sowie die Cystein-Protease Atg4B zeigen sich im SPRED2- KO deutlich reduziert. Ebenso Atg16L, das als essentieller Bestandteil des Atg5- Atg12-Atg16-Konjugationssystems bei der Konjugation von MAPLC3-II an das Phospholipid Phosphatidylethanolamin beteiligt ist. Die Autophagie-Rate als Verh{\"a}ltnis von konjugiertem zu unkonjugiertem MAPLC3 ist ebenfalls reduziert. Die Akkumulation der autophagischen Vesikel zeigt sich kongruent zu dem erh{\"o}hten Protein-Level der autophagischen Cargo-Rezeptoren SQSTM1 und NBR1, sowie des lysosomalen Markers CathepsinD. Außer der verringerten Autophagie-Rate zeigt sich in Einklang mit der Fibrosierung des Herzgewebes eine erh{\"o}ht aktive Caspase-3 als Marker f{\"u}r Apoptose. Um die mitochondriale Integrit{\"a}t n{\"a}her zu beleuchten, wurde die Menge an reaktiven Sauerstoffspezies (ROS) in Wildtyp und SPRED2-KO untersucht. Hierbei zeigte sich eine erh{\"o}hte Menge an ROS im KO, was ein Hinweis auf eine Beeintr{\"a}chtigung der Mitochondrien darstellt. Letztlich wurde die Hypothese {\"u}berpr{\"u}ft, ob ein gest{\"o}rter Transport der Vesikel durch eine Beeintr{\"a}chtigung der Motorproteine Dynein und Kinesin vorliegt. In der Tat zeigte sich die Aktivit{\"a}t der Dynein-ATPase verringert in der Abwesenheit von SPRED2. Diese Beobachtung wird durch die erh{\"o}hten Mengen des vSNARE-Proteins VTI1b unterst{\"u}tzt, was letztlich die Akkumulation der autophagischen Vesikel mit einer verringerten F{\"a}higkeit zur Membranfusion und dem ineffizienteren Transport der Vesikel in Einklang bringt. Da die gesamten Experimente in einem globalen SPRED2-KO System durchgef{\"u}hrt wurden, k{\"o}nnen eventuelle Auswirkungen der beeinflussten hormonellen Situation der SPRED2-KO Tiere auf den Herzph{\"a}notyp nicht final ausgeschlossen werden. Um die genaue Wirkung einer SPRED2-Defizienz auf das Herzgewebe und das Herz als Organ zu untersuchen, wurde im Rahmen dieser Arbeit eine SPRED2- defiziente knockout Mauslinie mit konditionalem Potential generiert, die eine gesteuerte Deletion von SPRED2 im Herzgewebe erlaubt.}, subject = {Spred-Proteine}, language = {de} } @phdthesis{MendesPereira2019, author = {Mendes Pereira, Lenon}, title = {Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung}, doi = {10.25972/OPUS-18317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183176}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through-plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{delOlmoToledo2019, author = {del Olmo Toledo, Valentina}, title = {Evolution of DNA binding preferences in a family of eukaryotic transcription regulators}, doi = {10.25972/OPUS-18789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Regulation of gene expression by the control of transcription is essential for any cell to adapt to the environment and survive. Transcription regulators, i.e. sequence-specific DNA binding proteins that regulate gene expression, are central elements within the gene networks of most organisms. Transcription regulators are grouped into distinct families based on structural features that determine, to a large extent, the DNA sequence(s) that they can recognise and bind. Less is known, however, about how the DNA binding preferences can diversify within transcription regulator families during evolutionary timescales, and how such diversification can affect the biology of the organism. In this dissertation I study the SREBP (sterol regulatory element binding protein) family of transcriptional regulators in yeasts, and in Candida albicans in particular, as an experimental system to address these questions. The SREBPs are conserved from fungi to humans and represent a subgroup of basic helix-loop-helix DNA binding proteins. Early chromatin immunoprecipitation experiments with SREBPs from humans and yeasts showed that these proteins bound in vivo to the canonical DNA sequence, termed E-box, most basic helix-loop-helix proteins bind to. By contrast, most recent analysis carried out with less-studied fungal SREBPs revealed a non-canonical DNA motif to be the most overrepresented sequence in the bound regions. This study aims to establish the intrinsic DNA binding preferences of key branches of this family and to determine how the divergence in DNA binding affinities originated. To this end, I combined phylogenetic and ancestral reconstruction with extensive biochemical characterisation of key SREBP proteins. The results indicated that while the most-studied SREBPs (in mammals) indeed show preference for the E-box, a second branch of the family preferentially binds the non-E-box, and a third one is able to bind both sequences with similar affinity. The preference for one or the other DNA sequence is an intrinsic property of each protein because their purified DNA binding domain was sufficient to recapitulate their in vivo binding preference. The ancestor that gave rise to these two different types of SREBPs (the branch that binds E-box and the one that binds non-E-box DNA) appears to be a protein with a broader DNA binding capability that had a slight preference for the non-canonical motif. Thus, the results imply these two branches originated by either enhancing the original ancestral preference for non-E-box or tilting it towards the E-box DNA and flipping the preference for this sequence. The main function associated with members of the SREBP family in most eukaryotes is the control of lipid biosynthesis. I have further studied the function of these proteins in the lineage that encompasses the human associated yeast C. albicans. Strikingly, the three SREBPs present in the fungus' genome contribute to the colonisation of the mammalian gut by regulating cellular processes unrelated to lipid metabolism. Here I describe that two of the three C. albicans SREBPs form a regulatory cascade that regulates morphology and cell wall modifications under anaerobic conditions, whereas the third SREBP has been shown to be involved in the regulation of glycolysis genes. Therefore, I posit that the described diversification in DNA binding specificity in these proteins and the concomitant expansion of targets of regulation were key in enabling this fungal lineage to associate with animals.}, subject = {Candida albicans}, language = {en} } @article{LiuMaierhoferRybaketal.2019, author = {Liu, Yi and Maierhofer, Tobias and Rybak, Katarzyna and Sklenar, Jan and Breakspear, Andy and Johnston, Matthew G. and Fliegmann, Judith and Huang, Shouguang and Roelfsema, M. Rob G. and Felix, Georg and Faulkner, Christine and Menke, Frank L.H. and Geiger, Dietmar and Hedrich, Rainer and Robatzek, Silke}, title = {Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.44474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202631}, pages = {e44474}, year = {2019}, abstract = {In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.}, language = {en} } @article{MammadovaBachBraun2019, author = {Mammadova-Bach, Elmina and Braun, Attila}, title = {Zinc homeostasis in platelet-related diseases}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms20215258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285554}, year = {2019}, abstract = {Zn\(^{2+}\) deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn\(^{2+}\)-deficient diets, accounting for 1-4\% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn\(^{2+}\) deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn\(^{2+}\) status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn\(^{2+}\) uptake in the gut using different nutritional supplementation of Zn\(^{2+}\) could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn\(^{2+}\) diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn\(^{2+}\) in hemostasis. Storage protein metallothionein maintains or releases Zn\(^{2+}\) in the cytoplasm, and the dynamic change of this cytoplasmic Zn\(^{2+}\) pool is regulated by the redox status of the cell. An increase of labile Zn\(^{2+}\) pool can be toxic for the cells, and therefore cytoplasmic Zn\(^{2+}\) levels are tightly regulated by several Zn\(^{2+}\) transporters located on the cell surface and also on the intracellular membrane of Zn\(^{2+}\) storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn\(^{2+}\) is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn\(^{2+}\) transport and the physiological role of Zn\(^{2+}\) store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn\(^{2+}\) to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn\(^{2+}\) homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.}, language = {en} } @article{HerzBrehm2019, author = {Herz, Michaela and Brehm, Klaus}, title = {Evidence for densovirus integrations into tapeworm genomes}, series = {Parasites \& Vectors}, volume = {12}, journal = {Parasites \& Vectors}, doi = {10.1186/s13071-019-3820-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202478}, pages = {560}, year = {2019}, abstract = {Background Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. Methods The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. Results We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. Conclusions Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes.}, language = {en} } @article{PaponovDindas Krol etal.2019, author = {Paponov, Ivan A. and Dindas , Julian and Kr{\´o}l , Elżbieta and Friz, Tatyana and Budnyk, Vadym and Teale, William and Paponov, Martina and Hedrich , Rainer and Palme, Klaus}, title = {Auxin-Induced plasma membrane depolarization is regulated by Auxin transport and not by AUXIN BINDING PROTEIN1}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01953}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195914}, year = {2019}, abstract = {Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.}, language = {en} } @article{RothDoerflerBaessleretal.2019, author = {Roth, Nicolas and Doerfler, Inken and B{\"a}ssler, Claus and Blaschke, Markus and Bussler, Heinz and Gossner, Martin M. and Heideroth, Antje and Thorn, Simon and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg}, title = {Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity}, series = {Diversity and Distributions}, volume = {25}, journal = {Diversity and Distributions}, number = {3}, doi = {10.1111/ddi.12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227061}, pages = {430-441}, year = {2019}, abstract = {Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests.}, language = {en} } @article{BluemelZinkKlopockietal.2019, author = {Bl{\"u}mel, Rabea and Zink, Miriam and Klopocki, Eva and Liedtke, Daniel}, title = {On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio)}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201428}, pages = {e0218286}, year = {2019}, abstract = {The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.}, language = {en} } @article{LiedtkeOrthMeissleretal.2019, author = {Liedtke, Daniel and Orth, Melanie and Meissler, Michelle and Geuer, Sinje and Knaup, Sabine and K{\"o}blitz, Isabell and Klopocki, Eva}, title = {ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-50055-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202141}, pages = {13383}, year = {2019}, abstract = {Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.}, language = {en} }