@article{KrahBuentgenSchaeferetal.2019, author = {Krah, Franz-Sebastian and B{\"u}ntgen, Ulf and Schaefer, Hanno and M{\"u}ller, J{\"o}rg and Andrew, Carrie and Boddy, Lynne and Diez, Jeffrey and Egli, Simon and Freckleton, Robert and Gange, Alan C. and Halvorsen, Rune and Heegaard, Einar and Heideroth, Antje and Heibl, Christoph and Heilmann-Clausen, Jacob and H{\o}iland, Klaus and Kar, Ritwika and Kauserud, H{\aa}vard and Kirk, Paul M. and Kuyper, Thomas W. and Krisai-Greilhuber, Irmgard and Norden, Jenni and Papastefanou, Phillip and Senn-Irlet, Beatrice and B{\"a}ssler, Claus}, title = {European mushroom assemblages are darker in cold climates}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10767-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224815}, year = {2019}, abstract = {Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.}, language = {en} } @article{MilaneseMendePaolietal.2019, author = {Milanese, Alessio and Mende, Daniel R and Paoli, Lucas and Salazar, Guillem and Ruscheweyh, Hans-Joachim and Cuenca, Miguelangel and Hingamp, Pascal and Alves, Renato and Costea, Paul I and Coelho, Luis Pedro and Schmidt, Thomas S. B. and Almeida, Alexandre and Mitchell, Alex L and Finn, Robert D. and Huerta-Cepas, Jaime and Bork, Peer and Zeller, Georg and Sunagawa, Shinichi}, title = {Microbial abundance, activity and population genomic profiling with mOTUs2}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08844-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224089}, year = {2019}, abstract = {Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30\% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).}, language = {en} } @article{LeeLiRuanetal.2019, author = {Lee, Hong-Jen and Li, Chien-Feng and Ruan, Diane and He, Jiabei and Montal, Emily D. and Lorenz, Sonja and Girnun, Geoffrey D. and Chan, Chia-Hsin}, title = {Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10374-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236445}, year = {2019}, abstract = {Enormous efforts have been made to target metabolic dependencies of cancer cells for developing new therapies. However, the therapeutic efficacy of glycolysis inhibitors is limited due to their inability to elicit cell death. Hexokinase 2 (HK2), via its mitochondrial localization, functions as a central nexus integrating glycolysis activation and apoptosis resilience. Here we identify that K63-linked ubiquitination by HectH9 regulates the mitochondrial localization and function of HK2. Through stable isotope tracer approach and functional metabolic analyses, we show that HectH9 deficiency impedes tumor glucose metabolism and growth by HK2 inhibition. The HectH9/HK2 pathway regulates cancer stem cell (CSC) expansion and CSC-associated chemoresistance. Histological analyses show that HectH9 expression is upregulated and correlated with disease progression in prostate cancer. This work uncovers that HectH9 is a novel regulator of HK2 and cancer metabolism. Targeting HectH9 represents an effective strategy to achieve long-term tumor remission by concomitantly disrupting glycolysis and inducing apoptosis.}, language = {en} } @article{MercierWolmaransSchubertetal.2019, author = {Mercier, Rebecca and Wolmarans, Annemarie and Schubert, Jonathan and Neuweiler, Hannes and Johnson, Jill L. and LaPointe, Paul}, title = {The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09299-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224007}, year = {2019}, abstract = {Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.}, language = {en} } @article{LuebckeEbbersVolzkeetal.2019, author = {L{\"u}bcke, Paul M. and Ebbers, Meinolf N. B. and Volzke, Johann and Bull, Jana and Kneitz, Susanne and Engelmann, Robby and Lang, Hermann and Kreikemeyer, Bernd and M{\"u}ller-Hilke, Brigitte}, title = {Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44512-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237355}, year = {2019}, abstract = {Recent studies indicate a causal relationship between the periodontal pathogen P. gingivalis and rheumatoid arthritis involving the production of autoantibodies against citrullinated peptides. We therefore postulated that therapeutic eradication P. gingivalis may ameliorate rheumatoid arthritis development and here turned to a mouse model in order to challenge our hypothesis. F1 (DBA/1 x B10.Q) mice were orally inoculated with P. gingivalis before collagen-induced arthritis was provoked. Chlorhexidine or metronidazole were orally administered either before or during the induction phase of arthritis and their effects on arthritis progression and alveolar bone loss were compared to intraperitoneally injected methotrexate. Arthritis incidence and severity were macroscopically scored and alveolar bone loss was evaluated via microcomputed tomography. Serum antibody titres against P. gingivalis were quantified by ELISA and microbial dysbiosis following oral inoculation was monitored in stool samples via microbiome analyses. Both, oral chlorhexidine and metronidazole reduced the incidence and ameliorated the severity of collagen-induced arthritis comparable to methotrexate. Likewise, all three therapies attenuated alveolar bone loss. Relative abundance of Porphyromonadaceae was increased after oral inoculation with P. gingivalis and decreased after treatment. This is the first study to describe beneficial effects of non-surgical periodontal treatment on collagen-induced arthritis in mice and suggests that mouthwash with chlorhexidine or metronidazole may also be beneficial for patients with rheumatoid arthritis and a coexisting periodontitis. Methotrexate ameliorated periodontitis in mice, further raising the possibility that methotrexate may also positively impact on the tooth supporting tissues of patients with rheumatoid arthritis.}, language = {en} } @article{WoodcockGarrattPowneyetal.2019, author = {Woodcock, B. A. and Garratt, M. P. D. and Powney, G. D. and Shaw, R. F. and Osborne, J. L. and Soroka, J. and Lindstr{\"o}m, S. A. M. and Stanley, D. and Ouvrard, P. and Edwards, M. E. and Jauker, F. and McCracken, M. E. and Zou, Y. and Potts, S. G. and Rundl{\"o}f, M. and Noriega, J. A. and Greenop, A. and Smith, H. G. and Bommarco, R. and van der Werf, W. and Stout, J. C. and Steffan-Dewenter, I. and Morandin, L. and Bullock, J. M. and Pywell, R. F.}, title = {Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09393-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233787}, year = {2019}, abstract = {How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.}, language = {en} } @article{AnnunziatavandeVlekkertWolfetal.2019, author = {Annunziata, Ida and van de Vlekkert, Diantha and Wolf, Elmar and Finkelstein, David and Neale, Geoffrey and Machado, Eda and Mosca, Rosario and Campos, Yvan and Tillman, Heather and Roussel, Martine F. and Weesner, Jason Andrew and Fremuth, Leigh Ellen and Qiu, Xiaohui and Han, Min-Joon and Grosveld, Gerard C. and d'Azzo, Alessandra}, title = {MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11568-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221189}, year = {2019}, abstract = {Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.}, language = {en} } @article{HersterBittnerCodreaetal.2019, author = {Herster, Franziska and Bittner, Zsofia and Codrea, Marius Cosmin and Archer, Nathan K. and Heister, Martin and L{\"o}ffler, Markus W. and Heumos, Simon and Wegner, Joanna and Businger, Ramona and Schindler, Michael and Stegner, David and Sch{\"a}kel, Knut and Grabbe, Stephan and Ghoreschi, Kamran and Miller, Lloyd S. and Weber, Alexander N. R.}, title = {Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320175}, year = {2019}, abstract = {Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.}, language = {en} }