@phdthesis{DiegmanngebWeissbach2019, author = {Diegmann [geb. Weißbach], Susann}, title = {Identifizierung des Mutationsspektrums und Charakterisierung relevanter Mutationen im Multiplen Myelom}, doi = {10.25972/OPUS-11480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114800}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Multiple Myelom (MM) ist eine maligne B-Zell-Erkrankung, welche von einer großen Heterogenit{\"a}t auf der biologischen und klinischen Ebene sowie in der Therapieantwort gepr{\"a}gt ist. Durch die biologische Interpretation von whole exome sequencing (WES)-Daten der Tumor- und Normalproben von f{\"u}nf MM-Patienten und sechs MM-Zelllinien (ZL) sowie dem Einbezug von publizierten next generation sequencing (NGS)-Daten von 38 MM-Patienten konnten in dieser Dissertation sowohl somatische tumorrelevante Mutationen identifiziert als auch ein MM-spezifisches Signaltransduktionsnetzwerk definiert werden. Interessanterweise wurde in fast 100 \% der MM-Patienten mindestens eine Mutation und in ~50 \% der MM-Patienten sogar mehr als eine Mutation innerhalb dieses Netzwerkes beobachtet, was auf eine inter- und intra-individuelle Signalweg-Redundanz hinweist, die f{\"u}r die individuelle Therapieentscheidung m{\"o}glicherweise von Bedeutung sein k{\"o}nnte. Außerdem konnte best{\"a}tigt werden, dass identische, positionsspezifische und genspezifische Mutationen im MM selten wiederholt auftreten. Als h{\"a}ufig mutierte Gene im MM konnten KRAS, NRAS, LRP1B, FAM46C, WHSC1, ALOX12B, DIS3 und PKHD1 identifiziert werden. Interessanterweise wurde die DIS3-Mutation in der MM-ZL OPM2 gemeinsam mit einer copy neutral loss of heterozygosity (CNLOH) im DIS3-Lokus detektiert, und in der MM-ZL AMO1 wurde eine noch nicht n{\"a}her charakterisierte KRAS-Mutation in Exon 4 in Verbindung mit einem copy number (CN)-Zugewinn und einer erh{\"o}hten KRAS-Genexpression gefunden. DIS3 ist ein enzymatisch aktiver Teil des humanen RNA-Exosom-Komplexes und KRAS ein zentrales Protein im RTK-Signalweg, wodurch genetische Aberrationen in diesen Genen m{\"o}glicherweise in der Entstehung oder Progression des MMs eine zentrale Rolle spielen. Daher wurde die gesamte coding sequence (CDS) der Gene DIS3 und KRAS an Tumorproben eines einheitlich behandelten Patientensets der DSMM-XI-Studie mit einem Amplikon-Tiefen-Sequenzierungsansatz untersucht. Das Patientenset bestand aus 81 MM-Patienten mit verf{\"u}gbaren zytogenetischen und klinischen Daten. Dies ergab Aufschluss {\"u}ber die Verteilung der Mutationen innerhalb der Gene und dem Vorkommen der Mutationen in Haupt- und Nebenklonen des Tumors. Des Weiteren wurde die Assoziation der Mutationen mit weiteren klassischen zytogenetischen Alterationen (z.B. Deletion von Chr 13q14, t(4;14)-Translokation) untersucht und der Einfluss der Mutationen in Haupt- und Nebenklonen auf den klinischen Verlauf und die Therapieantwort bestimmt. Besonders hervorzuheben war dabei die Entdeckung von sieben neuen Mutationen sowie drei zuvor unbeschriebenen hot spot-Mutationen an den Aminos{\"a}ure (AS)-Positionen p.D488, p.E665 und p.R780 in DIS3. Es wurde des Weiteren die Assoziation von DIS3-Mutationen mit einer Chr 13q14-Deletion und mit IGH-Translokationen best{\"a}tigt. Interessanterweise wurde ein niedrigeres medianes overall survival (OS) f{\"u}r MM-Patienten mit einer DIS3-Mutation sowie auch eine schlechtere Therapieantwort f{\"u}r MM-Patienten mit einer DIS3-Mutation im Nebenklon im Vergleich zum Hauptklon beobachtet. In KRAS konnten die bereits publizierten Mutationen best{\"a}tigt und keine Auswirkungen der KRAS-Mutationen in Haupt- oder Nebenklon auf den klinischen Verlauf oder die Therapieantwort erkannt werden. Erste siRNA vermittelte knockdown-Experimente von KRAS und {\"U}berexpressionsexperimente von KRAS-Wildtyp (WT) und der KRAS-Mutationen p.G12A, p.A146T und p.A146V mittels lentiviraler Transfektion zeigten eine Abh{\"a}ngigkeit der Phosphorylierung von MEK1/2 und ERK1/2 von dem KRAS-Mutationsstatus. Zusammenfassend liefert die vorliegende Dissertation einen detaillierten Einblick in die molekularen Strukturen des MMs, vor allem im Hinblick auf die Rolle von DIS3 und KRAS bei der Tumorentwicklung und dem klinischen Verlauf.}, subject = {Plasmozytom}, language = {de} } @article{DraganovSantidrianMinevetal.2019, author = {Draganov, Dobrin D. and Santidrian, Antonio F. and Minev, Ivelina and Duong, Nguyen and Kilinc, Mehmet Okyay and Petrov, Ivan and Vyalkova, Anna and Lander, Elliot and Berman, Mark and Minev, Boris and Szalay, Aladar A.}, title = {Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, issn = {100}, doi = {10.1186/s12967-019-1829-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226312}, year = {2019}, abstract = {Background Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. Methods To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. Results Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. Conclusions Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{DuquePoelmanSteffanDewenter2019, author = {Duque, Laura and Poelman, Erik H. and Steffan-Dewenter, Ingolf}, title = {Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-56234-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202805}, pages = {19891}, year = {2019}, abstract = {Abiotic stress by elevated tropospheric ozone and temperature can alter plants' metabolism, growth, and nutritional value and modify the life cycle of their herbivores. We investigated how the duration of exposure of Sinapis arvensis plants to high ozone and temperature levels affect the life cycle of the large cabbage white, Pieris brassicae. Plants were exposed to ozone-clean (control) or ozone-enriched conditions (120 ppb) for either 1 or 5 days and were afterwards kept in a greenhouse with variable temperature conditions. When given the choice, P. brassicae butterflies laid 49\% fewer eggs on ozone-exposed than on control plants when the exposure lasted for 5 days, but showed no preference when exposure lasted for 1 day. The caterpillars took longer to hatch on ozone-exposed plants and at lower ambient temperatures. The ozone treatment had a positive effect on the survival of the eggs. Ozone decreased the growth of caterpillars reared at higher temperatures on plants exposed for 5 days, but not on plants exposed for 1 day. Overall, longer exposure of the plants to ozone and higher temperatures affected the life cycle of the herbivore more strongly. With global warming, the indirect impacts of ozone on herbivores are likely to become more common.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{ElHawarySayedMohammedetal.2019, author = {El-Hawary, Seham S. and Sayed, Ahmed M. and Mohammed, Rabab and Hassan, Hossam M. and Rateb, Mostafa E. and Amin, Elham and Mohammed, Tarek A. and El-Mesery, Mohamed and Bin Muhsinah, Abdullatif and Alsayari, Abdulrhman and Wajant, Harald and Anany, Mohamed A. and Abdelmohsen, Usama Ramadan}, title = {Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella}, series = {Marine Drugs}, volume = {17}, journal = {Marine Drugs}, number = {8}, doi = {10.3390/md17080465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201485}, pages = {465}, year = {2019}, abstract = {In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32\% and 41.76\% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.}, language = {en} } @article{ElMeseryRosenthalRauertWunderlichetal.2019, author = {El-Mesery, Mohamed and Rosenthal, Tina and Rauert-Wunderlich, Hilka and Schreder, Martin and St{\"u}hmer, Thorsten and Leich, Ellen and Schlosser, Andreas and Ehrenschwender, Martin and Wajant, Harald and Siegmund, Daniela}, title = {The NEDD8-activating enzyme inhibitor MLN4924 sensitizes a TNFR1+ subgroup of multiple myeloma cells for TNF-induced cell death}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1860-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226666}, year = {2019}, abstract = {The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase βTrCP. MLN4924 therefore inhibits also the βTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment.}, language = {en} } @article{ElmaidomyMohammedHassanetal.2019, author = {Elmaidomy, Abeer H. and Mohammed, Rabab and Hassan, Hossam M. and Owis, Asmaa I. and Rateb, Mostafa E. and Khanfar, Mohammad A. and Krischke, Markus and Mueller, Martin J. and Abdelmohsen, Usama Ramadan}, title = {Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco}, series = {Metabolites}, volume = {9}, journal = {Metabolites}, number = {10}, issn = {2218-1989}, doi = {10.3390/metabo9100223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193187}, pages = {223}, year = {2019}, abstract = {Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC-HRESIMS. The identified metabolites (1-34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35-38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target's active site.}, language = {en} } @article{FigueiredoKraussSteffanDewenteretal.2019, author = {Figueiredo, Ludmilla and Krauss, Jochen and Steffan-Dewenter, Ingolf and Cabral, Juliano Sarmento}, title = {Understanding extinction debts: spatio-temporal scales, mechanisms and a roadmap for future research}, series = {Ecography}, volume = {42}, journal = {Ecography}, number = {12}, doi = {10.1111/ecog.04740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204859}, pages = {1973-1990}, year = {2019}, abstract = {Extinction debt refers to delayed species extinctions expected as a consequence of ecosystem perturbation. Quantifying such extinctions and investigating long-term consequences of perturbations has proven challenging, because perturbations are not isolated and occur across various spatial and temporal scales, from local habitat losses to global warming. Additionally, the relative importance of eco-evolutionary processes varies across scales, because levels of ecological organization, i.e. individuals, (meta)populations and (meta)communities, respond hierarchically to perturbations. To summarize our current knowledge of the scales and mechanisms influencing extinction debts, we reviewed recent empirical, theoretical and methodological studies addressing either the spatio-temporal scales of extinction debts or the eco-evolutionary mechanisms delaying extinctions. Extinction debts were detected across a range of ecosystems and taxonomic groups, with estimates ranging from 9 to 90\% of current species richness. The duration over which debts have been sustained varies from 5 to 570 yr, and projections of the total period required to settle a debt can extend to 1000 yr. Reported causes of delayed extinctions are 1) life-history traits that prolong individual survival, and 2) population and metapopulation dynamics that maintain populations under deteriorated conditions. Other potential factors that may extend survival time such as microevolutionary dynamics, or delayed extinctions of interaction partners, have rarely been analyzed. Therefore, we propose a roadmap for future research with three key avenues: 1) the microevolutionary dynamics of extinction processes, 2) the disjunctive loss of interacting species and 3) the impact of multiple regimes of perturbation on the payment of debts. For their ability to integrate processes occurring at different levels of ecological organization, we highlight mechanistic simulation models as tools to address these knowledge gaps and to deepen our understanding of extinction dynamics.}, language = {en} } @phdthesis{Frank2019, author = {Frank, Erik Thomas}, title = {Behavioral adaptations in the foraging behaviour of \(Megaponera\) \(analis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {An efficient foraging strategy is one of the most important traits for the fitness of animals. The theory of optimal foraging tries to predict foraging behaviour through the overarching question: how animals should forage so as to minimize costs while maximizing profits? Social insects, having occupied nearly every natural niche through widely different strategies, offer themselves as an ideal group to study how well optimal foraging theory can explain their behaviour and success. Specialization often leads to unique adaptations in morphology and behaviour. I therefore decided to investigate the behaviour of Megaponera analis. This ponerine ant species is specialized on hunting only termites of the subfamily Macrotermitinae at their foraging sites. Their foraging behaviour is regulated by a handful of individual scouts (10-20) that search for termite foraging sites before returning to the nest to recruit a large number of nestmates (200-500 ants). These ants then follow the scout in a column formation to the termites and after the hunt return together to the nest, these raids occur two to five times per day. Predators of highly defensive prey likely develop cost reducing adaptations. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites, e.g. a caste specialized in fighting predators. As M. analis incurs high injury/mortality risks when preying on termites, some risk mitigating adaptations have evolved. I show that a unique rescue behaviour in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. These injured ants "call for help" with pheromones present in their mandibular gland reservoirs. A model accounting for this rescue behaviour identifies the drivers favouring its evolution and estimates that rescuing allows for maintaining a 29\% larger colony size. Heavily injured ants that lost too many legs during the fight on the other hand are not helped. Interestingly, this was regulated not by the helper but by the uncooperativeness of the injured ant. I further observed treatment of the injury by nestmates inside the nest through intense allogrooming directly at the wound. Lack of treatment increased mortality from 10\% to 80\% within 24 hours, with the cause of death most likely being infections. Collective decision-making is one of the main mechanisms in social insects through which foraging is regulated. However, individual decision-making can also play an important role, depending on the type of foraging behaviour. In M. analis only a handful of individuals (the scouts) hold all the valuable information about foraging sites. I therefore looked at predictions made by optimal foraging theory to better understand the interplay between collective and individual decision-making in this obligate group-raiding predator. I found a clear positive relation between raid size and termite abundance at the foraging site. Furthermore, selectivity of the food source increased with distance. The confirmation of optimal foraging theory suggests that individual scouts must be the main driver behind raid size, choice and raiding behaviour. Therefore most central place foraging behaviours in M. analis were not achieved by collective decisions but rather by individual decisions of scout ants. Thus, 1\% of the colony (10-20 scouts) decided the fate and foraging efficiency of the remaining 99\%. Division of labour is one of the main reasons for the success of social insects. Worker polymorphism, age polyethism and work division in more primitive ants, like the ponerines, remain mostly unexplored though. Since M. analis specializes on a defensive prey, adaptations to reduce their foraging costs can be expected. I found that the work division, task allocation and column-formation during the hunt were much more sophisticated than was previously thought. The column-formation was remarkably stable, with the same ants resuming similar positions in subsequent raids and front ants even returning to their positions if displaced in the same raid. Most of the raid tasks were not executed by predetermined members of the raid but were filled out as need arose during the hunt, with a clear preference for larger ants to conduct most tasks. I show that specialization towards a highly defensive prey can lead to very unique adaptations in the foraging behaviour of a species. I explored experimentally the adaptive value of rescue behaviour focused on injured nestmates in social insects. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk) but moreover includes a differentiated treatment inside the nest. These observations will help to improve our understanding of the evolution of rescue behaviour in animals. I further show that most optimal foraging predictions are fulfilled and regulated by a handful of individuals in M. analis. Lastly, I propose that the continuous allometric size polymorphism in M. analis allows for greater flexibility in task allocation, necessary due to the unpredictability of task requirements in an irregular system such as hunting termites in groups. All of my observations help to further understand how a group-hunting predator should forage so as to minimize costs while maximizing profits.}, subject = {Stechameisen}, language = {en} }