@phdthesis{Franke2019, author = {Franke, Christian}, title = {Advancing Single-Molecule Localization Microscopy: Quantitative Analyses and Photometric Three-Dimensional Imaging}, doi = {10.25972/OPUS-15635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156355}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Since its first experimental implementation in 2005, single-molecule localization microscopy (SMLM) emerged as a versatile and powerful imaging tool for biological structures with nanometer resolution. By now, SMLM has compiled an extensive track-record of novel insights in sub- and inter- cellular organization.\\ Moreover, since all SMLM techniques rely on the analysis of emission patterns from isolated fluorophores, they inherently allocate molecular information \$per\$ \$definitionem\$.\\ Consequently, SMLM transitioned from its origin as pure high-resolution imaging instrument towards quantitative microscopy, where the key information medium is no longer the highly resolved image itself, but the raw localization data set.\\ The work presented in this thesis is part of the ongoing effort to translate those \$per\$ \$se\$ molecular information gained by SMLM imaging to insights into the structural organization of the targeted protein or even beyond. Although largely consistent in their objectives, the general distinction between global or segmentation clustering approaches on one side and particle averaging or meta-analyses techniques on the other is usually made.\\ During the course of my thesis, I designed, implemented and employed numerous quantitative approaches with varying degrees of complexity and fields of application.\\ \\ In my first major project, I analyzed the localization distribution of the integral protein gp210 of the nuclear pore complex (NPC) with an iterative \textit{k}-means algorithm. Relating the distinct localization statistics of separated gp210 domains to isolated fluorescent signals led, among others, to the conclusion that the anchoring ring of the NPC consists of 8 homo-dimers of gp210.\\ This is of particular significance, both because it answered a decades long standing question about the nature of the gp210 ring and it showcased the possibility to gain structural information well beyond the resolution capabilities of SMLM by crafty quantification approaches.\\ \\ The second major project reported comprises an extensive study of the synaptonemal complex (SNC) and linked cohesin complexes. Here, I employed a multi-level meta-analysis of the localization sets of various SNC proteins to facilitate the compilation of a novel model of the molecular organization of the major SNC components with so far unmatched extend and detail with isotropic three-dimensional resolution.\\ In a second venture, the two murine cohesin components SMC3 and STAG3 connected to the SNC were analyzed. Applying an adapted algorithm, considering the disperse nature of cohesins, led to the realization that there is an apparent polarization of those cohesin complexes in the SNC, as well as a possible sub-structure of STAG3 beyond the resolution capabilities of SMLM.\\ \\ Other minor projects connected to localization quantification included the study of plasma membrane glycans regarding their overall localization distribution and particular homogeneity as well as the investigation of two flotillin proteins in the membrane of bacteria, forming clusters of distinct shapes and sizes.\\ \\ Finally, a novel approach to three-dimensional SMLM is presented, employing the precise quantification of single molecule emitter intensities. This method, named TRABI, relies on the principles of aperture photometry which were improved for SMLM.\\ With TRABI it was shown, that widely used Gaussian fitting based localization software underestimates photon counts significantly. This mismatch was utilized as a \$z\$-dependent parameter, enabling the conversion of 2D SMLM data to a virtual 3D space. Furthermore it was demonstrated, that TRABI can be combined beneficially with a multi-plane detection scheme, resulting in superior performance regarding axial localization precision and resolution.\\ Additionally, TRABI has been subsequently employed to photometrically characterize a novel dye for SMLM, revealing superior photo-physical properties at the single-molecule level.\\ Following the conclusion of this thesis, the TRABI method and its applications remains subject of diverse ongoing research.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @phdthesis{Froeschel2019, author = {Fr{\"o}schel, Christian}, title = {Genomweite Analyse der zellschichtspezifischen Expression in der Arabidopsis-Wurzel nach Inokulation mit pathogenen und mutualistischen Mikroorganismen}, doi = {10.25972/OPUS-14643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146439}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine {\"U}berpr{\"u}fung dieser Hypothese war bisher wegen methodischen Limitierungen nicht m{\"o}glich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinit{\"a}tsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, erm{\"o}glicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenb{\"u}rtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Ertr{\"a}ge positiv beeinflussen, wohingegen der vaskul{\"a}re Pilz Verticillium longisporum f{\"u}r erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen bef{\"a}llt und Ernten zerst{\"o}rt. F{\"u}r die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen w{\"a}hrend ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgef{\"u}hrt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterst{\"u}tzt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begr{\"u}ndbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, {\"u}ber den {\"a}ußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verst{\"a}rkung der Barriere-Funktionen dieser Zellschicht f{\"u}hren. So k{\"o}nnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen l{\"o}sten besonders im Cortex die Induktion von Genen f{\"u}r die Biosynthese Trp-abh{\"a}ngiger, antimikrobieller Sekund{\"a}rmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun gekl{\"a}rt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgel{\"o}st werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes erm{\"o}glicht nun, gezielt testbare Hypothesen zu generieren. Ein Verst{\"a}ndnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell f{\"u}r die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft.}, subject = {Schmalwand }, language = {de} } @phdthesis{Fuellsack2019, author = {F{\"u}llsack, Simone Alexandra}, title = {Die Bedeutung von Todesdom{\"a}ne Adapterproteinen f{\"u}r die Signaltransduktion des TNFR1 und der TRAIL Todesrezeptoren}, doi = {10.25972/OPUS-18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184518}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die NFκB-Signalwege, Apoptose und Nekroptose sind essentielle Prozesse in der Immunantwort. Außerdem sind diese Signalwege Teil der Regulation von Zelldifferenzierung, -proliferation, -tod und Entz{\"u}ndungsreaktionen. Dabei wird zuerst der Rezeptor (TNFR1 oder TRAILR 1/2) aktiviert, die rekrutierten DD-Adapterproteine TRADD, FADD und RIPK1 leiten dann die entsprechende Signalkaskade weiter und bestimmen durch ihre Zusammenwirkung, ob der NFκB-Signalweg, Apoptose oder Nekroptose induziert wird. TNFR1 und TRAILR 1/2 ben{\"o}tigen die DD-Adapterproteine TRADD, FADD und RIPK1 f{\"u}r die Zelltodinduktion, deren konkrete Bedeutung in Bezug auf Rezeptor-Spezifit{\"a}t, Zusammenwirken und Relevanz allerdings noch unklar ist. Um das Zusammenspiel dieser Proteine besser zu verstehen, wurden in dieser Arbeit Nekroptose-kompetente RIPK3-exprimierende HeLa-Zellen verwendet, bei denen die DD-Adapterproteine FADD, TRADD und RIPK1 einzeln oder in Kombination von zweien ausgeknockt wurden. Es stellte sich heraus, dass RIPK1 essentiell f{\"u}r die TNFR1- und TRAILR 1/2-vermittelte Nekroptose-Induktion ist, doch RIPK1 alleine, d.h. ohne FADD- oder TRADD-Mitbeteiligung, nur bei der TNFR1-Nekroptose-Induktion ausreicht. Wiederum inhibiert TRADD die TNFR1- und TRAILR 1/2-induzierte Nekroptose. RIPK1 und TRADD sind aber unverzichtbar f{\"u}r die NFκB-Aktivierung durch TNFR1 oder TRAILR 1/2 und spielen eine wichtige Rolle bei TNFR1-induzierter Apoptose. Andererseits ist FADD alleine ausreichend f{\"u}r die TRAILR 1/2-bezogene Caspase-8 Aktivierung. Zudem ist FADD notwendig f{\"u}r die TRAIL-induzierte NFκB-Signalaktivierung. In Abwesenheit von FADD und TRADD vermittelt RIPK1 die TNF-induzierte Caspase-8 Aktivierung. FADD wird f{\"u}r die TRAIL-induzierte Nekroptose ben{\"o}tigt, aber gegenl{\"a}ufig wirkt die TNF-induzierte Nektroptose in einer Caspase-8 abh{\"a}ngigen und unabh{\"a}ngigen Weise. Zudem sensitiviert TWEAK die TNF- und TRAIL-induzierte Nekroptose. Zusammenfassend wurde in dieser Arbeit die Auswirkung von TNFR1 und TRAILR 1/2 auf die Aktivierung der unterschiedlichen Signalkaskaden untersucht. Des Weiteren wurde gezeigt, in welcher Weise sich das Zusammenspiel von TRADD, FADD und RIPK1 auf die Induktion von NFκB, Apoptose und Nekroptose auswirkt.}, subject = {Signaltransduktion}, language = {de} } @article{GebertSteffanDewenterMorettoetal.2019, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Moretto, Philippe and Peters, Marcell K.}, title = {Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {2}, doi = {10.1111/jbi.13710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204701}, pages = {371 -- 381}, year = {2019}, abstract = {Aim: While elevational gradients in species richness constitute some of the best depicted patterns in ecology, there is a large uncertainty concerning the role of food resource availability for the establishment of diversity gradients in insects. Here, we analysed the importance of climate, area, land use and food resources for determining diversity gradients of dung beetles along extensive elevation and land use gradients on Mt. Kilimanjaro, Tanzania. Location: Mt. Kilimanjaro, Tanzania. Taxon: Scarabaeidae (Coleoptera). Methods: Dung beetles were recorded with baited pitfall traps at 66 study plots along a 3.6 km elevational gradient. In order to quantify food resources for the dung beetle community in form of mammal defecation rates, we assessed mammalian diversity and biomass with camera traps. Using a multi-model inference framework and path analysis, we tested the direct and indirect links between climate, area, land use and mammal defecation rates on the species richness and abundance of dung beetles. Results: We found that the species richness of dung beetles declined exponentially with increasing elevation. Human land use diminished the species richness of functional groups exhibiting complex behaviour but did not have a significant influence on total species richness. Path analysis suggested that climate, in particular temperature and to a lesser degree precipitation, were the most important predictors of dung beetle species richness while mammal defecation rate was not supported as a predictor variable. Main conclusions: Along broad climatic gradients, dung beetle diversity is mainly limited by climatic factors rather than by food resources. Our study points to a predominant role of temperature-driven processes for the maintenance and origination of species diversity of ectothermic organisms, which will consequently be subject to ongoing climatic changes.}, language = {en} } @phdthesis{Glenz2019, author = {Glenz, Ren{\´e}}, title = {Die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion}, doi = {10.25972/OPUS-18790}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Sphingobasen bilden das Grundger{\"u}st und die Ausgangsbausteine f{\"u}r die Biosynthese von Sphingolipiden. W{\"a}hrend komplexere Sphingolipide einen wichtigen Bestandteil von eukaryotischen Membranen bilden, sind Sphingobasen, die auch als long-chain bases (LCBs) bezeichnet werden, als Signalmolek{\"u}le bei zellul{\"a}ren Prozessen in Eukaryoten bekannt. Im tierischen System wurden antagonistische Effekte von nicht-phosphorylierten Sphingobasen (LCBs) und ihren phosphorylierten Gegenst{\"u}cken (LCB-Ps) bei vielen Zellfunktionen, insbesondere der Apoptose, nachgewiesen und die zugrundeliegenden Signalwege umfassend aufgekl{\"a}rt. Im Gegensatz dazu sind in Pflanzen weniger Belege f{\"u}r einen antagonistischen Effekt und m{\"o}gliche Signaltransduktionsmechanismen bekannt. F{\"u}r eine regulatorische Funktion von Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen existieren mehrere Hinweise: (I) Mutationen in Genen, die den Sphingobasen-Metabolismus betreffen, f{\"u}hren zum Teil zu spontanem PCD und ver{\"a}nderten Zelltodreaktionen. (II) Die Gehalte von LCBs sind bei verschiedenen Zelltod-ausl{\"o}senden Bedingungen erh{\"o}ht. (III) Nekrotrophe Pathogene produzieren Toxine, wie Fumonisin B1 (FB1), die mit dem Sphingolipid-Metabolismus der Wirtspflanze interferieren, was wiederum die Ursache f{\"u}r den dadurch ausgel{\"o}sten PCD darstellt. (IV) Die Behandlung von Pflanzen mit LCBs, nicht aber mit LCB-Ps, f{\"u}hrt zu Zelltod. In dieser Arbeit wurde die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion untersucht, wobei der Fokus auf der {\"U}berpr{\"u}fung der Hypothese eines antagonistischen, Zelltod-hemmenden Effekts von LCB-Ps lag. Anhand von Leitf{\"a}higkeit-basierten Messungen bei Blattscheiben von Arabidopsis thaliana wurde der durch Behandlung mit LCBs und separater oder gleichzeitiger Zugabe von LCB-Ps auftretende Zelltod bestimmt. Mit dieser Art der Quantifizierung wurde der an anderer Stelle publizierte inhibierende Effekt von LCB-Ps auf den LCB-induzierten Zelltod nachgewiesen. Durch parallele Messung der Spiegel der applizierten Sphingobasen im Gewebe mittels HPLC-MS/MS konnte dieser Antagonismus allerdings auf eine reduzierte Aufnahme der LCB bei Anwesenheit der LCB-P zur{\"u}ckgef{\"u}hrt werden, was auch durch eine zeitlich getrennte Behandlung mit den Sphingobasen best{\"a}tigt wurde. Dar{\"u}ber hinaus wurde der Einfluss einer exogenen Zugabe von LCBs und LCB-Ps auf den durch Pseudomonas syringae induzierten Zelltod von A. thaliana untersucht. F{\"u}r LCB-Ps wurde dabei kein Zelltod-hemmender Effekt beobachtet, ebenso wenig wie ein Einfluss von LCB-Ps auf den PCD, der durch rekombinante Expression und Erkennung eines Avirulenzproteins in Arabidopsis ausgel{\"o}st wurde. F{\"u}r LCBs wurde dagegen eine direkte antibakterielle Wirkung im Zuge der Experimente mit P. syringae gezeigt, die den in einer anderen Publikation beschriebenen inhibierenden Effekt von LCBs auf den Pathogen-induzierten Zelltod in Pflanzen relativiert. In weiteren Ans{\"a}tzen wurden Arabidopsis-Mutanten von Enzymen des Sphingobasen-Metabolismus (LCB-Kinase, LCB-P-Phosphatase, LCB-P-Lyase) hinsichtlich ver{\"a}nderter in-situ-Spiegel von LCBs/LCB-Ps funktionell charakterisiert. Der Ph{\"a}notyp der Mutanten gegen{\"u}ber Fumonisin B1 wurde zum einen anhand eines Wachstumstests mit Keimlingen und zum anderen anhand des Zelltods von Blattscheiben bestimmt und die dabei akkumulierenden Sphingobasen quantifiziert. Die Sensitivit{\"a}t der verschiedenen Linien gegen{\"u}ber FB1 korrelierte eng mit den Spiegeln der LCBs, w{\"a}hrend hohe Gehalte von LCB-Ps alleine nicht in der Lage waren den Zelltod zu verringern. In einzelnen Mutanten konnte sogar eine Korrelation von stark erh{\"o}hten LCB-P-Spiegeln mit einer besonderen Sensitivit{\"a}t gegen{\"u}ber FB1 festgestellt werden. Die Ergebnisse der vorliegenden Arbeit stellen die Hypothese eines antagonistischen Effekts von phosphorylierten Sphingobasen beim pflanzlichen Zelltod in Frage. Stattdessen konnte in detaillierten Analysen der Sphingobasen-Spiegel die positive Korrelation der Gehalte von LCBs mit dem Zelltod gezeigt werden. Die hier durchgef{\"u}hrten Experimente liefern damit nicht nur weitere Belege f{\"u}r die Zelltod-f{\"o}rdernde Wirkung von nicht-phosphorylierten Sphingobasen, sondern tragen zum Verst{\"a}ndnis der Sphingobasen-Hom{\"o}ostase und des Sphingobasen-induzierten PCD in Pflanzen bei.}, subject = {Sphingolipide}, language = {de} } @article{GoosDejungWehmanetal.2019, author = {Goos, Carina and Dejung, Mario and Wehman, Ann M. and M-Natus, Elisabeth and Schmidt, Johannes and Sunter, Jack and Engstler, Markus and Butter, Falk and Kramer, Susanne}, title = {Trypanosomes can initiate nuclear export co-transcriptionally}, series = {Nucleic Acids Research}, volume = {47}, journal = {Nucleic Acids Research}, number = {1}, doi = {10.1093/nar/gky1136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177709}, pages = {266-282}, year = {2019}, abstract = {The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.}, language = {en} } @phdthesis{Gorelashvili2019, author = {Gorelashvili, Maximilian Georg}, title = {Investigation of megakaryopoiesis and the acute phase of ischemic stroke by advanced fluorescence microscopy}, doi = {10.25972/OPUS-18600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186002}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In mammals, anucleate platelets circulate in the blood flow and are primarily responsible for maintaining functional hemostasis. Platelets are generated in the bone marrow (BM) by megakaryocytes (MKs), which mainly reside directly next to the BM sinusoids to release proplatelets into the blood. MKs originate from hematopoietic stem cells and are thought to migrate from the endosteal to the vascular niche during their maturation, a process, which is, despite being intensively investigated, still not fully understood. Long-term intravital two photon microscopy (2PM) of MKs and vasculature in murine bone marrow was performed and mean squared displacement analysis of cell migration was performed. The MKs exhibited no migration, but wobbling-like movement on time scales of 3 h. Directed cell migration always results in non-random spatial distribution. Thus, a computational modelling algorithm simulating random MK distribution using real 3D light-sheet fluorescence microscopy data sets was developed. Direct comparison of real and simulated random MK distributions showed, that MKs exhibit a strong bias to vessel-contact. However, this bias is not caused by cell migration, as non-vessel-associated MKs were randomly distributed in the intervascular space. Furthermore, simulation studies revealed that MKs strongly impair migration of other cells in the bone marrow by acting as large-sized obstacles. MKs are thought to migrate from the regions close to the endosteum towards the vasculature during their maturation process. MK distribution as a function of their localization relative to the endosteal regions of the bones was investigated by light sheet fluorescence microscopy (LSFM). The results show no bone-region dependent distribution of MKs. Taken together, the newly established methods and obtained results refute the model of MK migration during their maturation. Ischemia reperfusion (I/R) injury is a frequent complication of cerebral ischemic stroke, where brain tissue damage occurs despite successful recanalization. Platelets, endothelial cells and immune cells have been demonstrated to affect the progression of I/R injury in experimental mouse models 24 h after recanalization. However, the underlying Pathomechanisms, especially in the first hours after recanalization, are poorly understood. Here, LSFM, 2PM and complemental advanced image analysis workflows were established for investigation of platelets, the vasculature and neutrophils in ischemic brains. Quantitative analysis of thrombus formation in the ipsilateral and contralateral hemispheres at different time points revealed that platelet aggregate formation is minimal during the first 8 h after recanalization and occurs in both hemispheres. Considering that maximal tissue damage already is present at this time point, it can be concluded that infarct progression and neurological damage do not result from platelet aggregated formation. Furthermore, LSFM allowed to confirm neutrophil infiltration into the infarcted hemisphere and, here, the levels of endothelial cell marker PECAM1 were strongly reduced. However, further investigations must be carried out to clearly identify the role of neutrophils and the endothelial cells in I/R injury.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{GotruvanGeffenNagyetal.2019, author = {Gotru, Sanjeev Kiran and van Geffen, Johanna P. and Nagy, Magdolna and Mammadova-Bach, Elmina and Eilenberger, Julia and Volz, Julia and Manukjan, Georgi and Schulze, Harald and Wagner, Leonard and Eber, Stefan and Schambeck, Christian and Deppermann, Carsten and Brouns, Sanne and Nurden, Paquita and Greinacher, Andreas and Sachs, Ulrich and Nieswandt, Bernhard and Hermanns, Heike M. and Heemskerk, Johan W. M. and Braun, Attila}, title = {Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44751-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227455}, year = {2019}, abstract = {Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.}, language = {en} } @article{GrebinykPrylutskaBuchelnikovetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Buchelnikov, Anatoliy and Tverdokhleb, Nina and Grebinyk, Sergii and Evstigneev, Maxim and Matyshevska, Olga and Cherepanov, Vsevolod and Prylutskyy, Yuriy and Yashchuk, Valeriy and Naumovets, Anton and Ritter, Uwe and Dandekar, Thomas and Frohme, Marcus}, title = {C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {11}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11110586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193216}, pages = {586}, year = {2019}, abstract = {A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells.}, language = {en} } @article{GrebinykPrylutskaChepurnaetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Chepurna, Oksana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Ohulchanskyy, Tymish Y. and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex}, series = {Nanomaterials}, volume = {9}, journal = {Nanomaterials}, number = {11}, issn = {2079-4991}, doi = {10.3390/nano9111540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193140}, year = {2019}, abstract = {A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C\(_{60}\) fullerene increases doxorubicin efficiency against leukemic cells in vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, number = {61}, doi = {10.1186/s11671-019-2894-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228257}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C\(_{60}\) fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C\(_{60}\) fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C\(_{60}\)-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C\(_{60}\) fullerene considerable nanocarrier function.The results of this study indicated that C\(_{60}\) fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} } @phdthesis{Griffoni2019, author = {Griffoni, Chiara}, title = {Towards advanced immunocompetent skin wound models for in vitro drug evaluation}, doi = {10.25972/OPUS-19212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192125}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Current preclinical models used to evaluate novel therapies for improved healing include both in vitro and in vivo methods. However, ethical concerns related to the use of animals as well as the poor physiological translation between animal and human skin wound healing designate in vitro models as a highly relevant and promising platforms for healing investigation. While current in vitro 3D skin models recapitulate a mature tissue with healing properties, they still represent a simplification of the in vivo conditions, where for example the inflammatory response originating after wound formation involves the contribution of immune cells. Macrophages are among the main contributors to the inflammatory response and regulate its course thanks to their plasticity. Therefore, their implementation into in vitro skin could greatly increase the physiological relevance of the models. As no full-thickness immunocompetent skin model containing macrophages has been reported so far, the parameters necessary for a successful triple co-culture of fibroblasts, keratinocytes and macrophages were here investigated. At first, cell source and culture timed but also an implementation strategy for macrophages were deter-mined. The implementation of macrophages into the skin model focused on the minimization of the culture time to preserve immune cell viability and phenotype, as the environment has a major influence on cell polarization and cytokine production. To this end, incorporation of macrophages in 3D gels prior to the combination with skin models was selected to better mimic the in vivo environment. Em-bedded in collagen hydrogels, macrophages displayed a homogeneous cell distribution within the gel, preserving cell viability, their ability to respond to stimuli and their capability to migrate through the matrix, which are all needed during the involvement of macrophages in the inflammatory response. Once established how to introduce macrophages into skin models, different culture media were evaluated for their effects on primary fibroblasts, keratinocytes and macrophages, to identify a suitable medium composition for the culture of immunocompetent skin. The present work confirmed that each cell type requires a different supplement combination for maintaining functional features and showed for the first time that media that promote and maintain a mature skin structure have negative effects on primary macrophages. Skin differentiation media negatively affected macrophages in terms of viability, morphology, ability to respond to pro- and anti-inflammatory stimuli and to migrate through a collagen gel. The combination of wounded skin equivalents and macrophage-containing gels con-firmed that culture medium inhibits macrophage participation in the inflammatory response that oc-curs after wounding. The described macrophage inclusion method for immunocompetent skin creation is a promising approach for generating more relevant skin models. Further optimization of the co-cul-ture medium will potentially allow mimicking a physiological inflammatory response, enabling to eval-uate the effects novel drugs designed for improved healing on improved in vitro models.}, subject = {Haut}, language = {en} } @phdthesis{Grimm2019, author = {Grimm, Johannes}, title = {Autocrine and paracrine effects of BRAF inhibitor induced senescence in melanoma}, doi = {10.25972/OPUS-18116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The FDA approval of targeted therapy with BRAFV600E inhibitors like vemurafenib and dabrafenib in 2011 has been the first major breakthrough in the treatment of metastatic melanoma since almost three decades. Despite increased progression free survival and elevated overall survival rates, complete responses are scarce due to resistance development approximately six months after the initial drug treatment. It was previously shown in our group that melanoma cells under vemurafenib pressure in vitro and in vivo exhibit features of drug-induced senescence. It is known that some cell types, which undergo this cell cycle arrest, develop a so-called senescence associated secretome and it has been reported that melanoma cell lines also upregulate the expression of different factors after senescence induction. This work describes the effect of the vemurafenib-induced secretome on cells. Conditioned supernatants of vemurafenib-treated cells increased the viability of naive fibroblast and melanoma cell lines. RNA analysis of donor melanoma cells revealed elevated transcriptional levels of FGF1, MMP2 and CCL2 in the majority of tested cell lines under vemurafenib pressure, and I could confirm the secretion of functional proteins. Similar observations were also done after MEK inhibition as well as in a combined BRAF and MEK inhibitor treatment situation. Interestingly, the transcription of other FGF ligands (FGF7, FGF17) was also elevated after MEK/ERK1/2 inhibition. As FGF receptors are therapeutically relevant, I focused on the analysis of FGFR-dependent processes in response to BRAF inhibition. Recombinant FGF1 increased the survival rate of melanoma cells under vemurafenib pressure, while inhibition of the FGFR pathway diminished the viability of melanoma cells in combination with vemurafenib and blocked the stimulatory effect of vemurafenib conditioned medium. The BRAF inhibitor induced secretome is regulated by active PI3K/AKT signaling, and the joint inhibition of mTor and BRAFV600E led to decreased senescence induction and to a diminished induction of the secretome-associated genes. In parallel, combined inhibition of MEK and PI3K also drastically decreased mRNA levels of the relevant secretome components back to basal levels. In summary, I could demonstrate that BRAF inhibitor treated melanoma cell lines acquire a specific PI3K/AKT dependent secretome, which is characterized by FGF1, CCL2 and MMP2. This secretome is able to stimulate other cells such as naive melanoma cells and fibroblasts and contributes to a better survival under drug pressure. These data are therapeutically highly relevant, as they imply the usage of novel drug combinations, especially specific FGFR inhibitors, with BRAF inhibitors in the clinic.}, subject = {Inhibitor}, language = {en} } @article{GrollBurdickChoetal.2019, author = {Groll, J and Burdick, J A and Cho, D-W and Derby, B and Gelinsky, M and Heilshorn, S C and J{\"u}ngst, T and Malda, J and Mironov, V A and Nakayama, K and Ovsianikov, A and Sun, W and Takeuchi, S and Yoo, J J and Woodfield, T B F}, title = {A definition of bioinks and their distinction from biomaterial inks}, series = {Biofabrication}, volume = {11}, journal = {Biofabrication}, number = {1}, doi = {10.1088/1758-5090/aaec52}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253993}, year = {2019}, abstract = {Biofabrication aims to fabricate biologically functional products through bioprinting or bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are positioned at defined coordinates in three-dimensional space using automated and computer controlled techniques (Moroni et al 2018 Trends Biotechnol. 36 384-402), usually with the aid of biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii) deposited simultaneously in a separate printing process, or (iii) used as a transient support material. Materials that are suited for biofabrication are often referred to as bioinks and have become an important area of research within the field. In view of this special issue on bioinks, we aim herein to briefly summarize the historic evolution of this term within the field of biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its distinction from biomaterial inks.}, language = {en} } @article{GrubisicHaimBhusaletal.2019, author = {Grubisic, Maja and Haim, Abraham and Bhusal, Pramod and Dominoni, Davide M. and Gabriel, Katharina M. A. and Jechow, Andreas and Kupprat, Franziska and Lerner, Amit and Marchant, Paul and Riley, William and Stebelova, Katarina and van Grunsven, Roy H. A. and Zeman, Michal and Zubidat, Abed E. and H{\"o}lker, Franz}, title = {Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {22}, issn = {2071-1050}, doi = {10.3390/su11226400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193095}, year = {2019}, abstract = {Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the "hormone of darkness" and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01-0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.}, language = {en} } @phdthesis{Gulve2019, author = {Gulve, Nitish}, title = {Subversion of Host Genome Integrity by Human Herpesvirus 6 and \(Chlamydia\) \(trachomatis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162026}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ovarian cancer is one of the most common gynecological malignancies in the world. The prevalence of a microbial signature in ovarian cancer has been reported by several studies till date. In these microorganisms, Human herpesvirus 6 (HHV-6) and Chlamydia trachomatis (C.tr) are especially important as they have significantly high prevalence rate. Moreover, these pathogens are directly involved in causing DNA damage and thereby disrupting the integrity of host genome which is the underlying cause of any cancer. This study focuses on how the two pathogens, HHV-6 and C. trachomatis can affect the genome integrity in their individual capacities and thereby may drive ovarian epithelial cells towards transformation. HHV-6 has unique tendency to integrate its genome into the host genome at subtelomeric regions and achieve a state of latency. This latent virus may get reactivated during the course of life by stress, drugs such as steroids, during transplantation, pregnancy etc. The study presented here began with an interesting observation wherein the direct repeat (DR) sequences flanking the ends of double stranded viral genome were found in unusually high numbers in human blood samples as opposed to normal ratio of two DR copies per viral genome. This study was corroborated with in vitro data where cell lines were generated to mimic the HHV-6 status in human samples. The same observation of unusually high DR copies was found in these cell lines as well. Interestingly, fluorescence in situ hybridization (FISH) and inverse polymerase chain reaction followed by southern blotting showed that DR sequences were found to be integrated in nontelomeric regions as opposed to the usual sub-telomeric integration sites in both human samples and in cell lines. Sanger sequencing confirmed the non-telomeric integration of viral DR sequences in the host genome. Several studies have shown that C. trachomatis causes DNA damage and inhibits the signaling cascade of DNA damage response. However, the effect of C. trachomatis infection on process of DNA repair itself was not addressed. In this study, the effect of C. trachomatis infection on host base excision repair (BER) has been addressed. Base excision repair is a pathway which is responsible for replacing the oxidized bases with new undamaged ones. Interestingly, it was found that C. trachomatis infection downregulated polymerase β expression and attenuated polymerase β- mediated BER in vitro. The mechanism of the polymerase β downregulation was found to be associated with the changes in the host microRNAs and downregulation of tumor suppressor, p53. MicroRNA-499 which has a binding site in the polymerase β 3'UTR was shown to be upregulated during C. trachomatis infection. Inhibition of miR-499 using synthetic miR-499 inhibitor indeed improved the repair efficiency during C. trachomatis infection in the in vitro repair assay. Moreover, p53 transcriptionally regulates polymerase β and stabilizing p53 during C. trachomatis infection enhanced the repair efficiency. Previous studies have shown that C. trachomatis can reactivate latent HHV-6. Therefore, genomic instability due to insertions of unstable 'transposon-like' HHV-6 DR followed by compromised BER during C. trachomatis infection cumulatively support the hypothesis of pathogenic infections as a probable cause of ovarian cancer}, subject = {Chlamydia trachomatis}, language = {en} } @phdthesis{Goettlich2019, author = {G{\"o}ttlich, Claudia}, title = {Etablierung eines humanen 3D Lungentumor-Testsystems zur Analyse von Behandlungseffekten}, doi = {10.25972/OPUS-16413}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164132}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Lungenkrebs ist weltweit f{\"u}r die meisten krebsassoziierten Tode verantwortlich. Ursache daf{\"u}r ist unter anderem, dass viele Medikamente in der klinischen Anwendung, aufgrund nicht {\"u}bertragbarer Ergebnisse aus der Pr{\"a}klinik, scheitern. Zur Entwicklung neuer Therapiestrategien werden deshalb Modelle ben{\"o}tigt, welche die in vivo Situation besser widerspiegeln. Besonders wichtig ist es dabei, zu zeigen, f{\"u}r welche Fragestellungen ein neues Testsystem valide Ergebnisse liefert. In dieser Arbeit ist es mit Hilfe des Tissue Engineering gelungen, ein humanes 3D in vitro Lungentumor-Testsystem weiter zu entwickeln und f{\"u}r verschiedene Fragestellungen zu validieren. Zudem konnten sowohl f{\"u}r die Herstellung als auch f{\"u}r die Behandlung der Tumormodelle SOPs etabliert werden. Hier wurde zun{\"a}chst beobachtet, dass die Auswerteparameter f{\"u}r die Beurteilung von Behandlungseffekten eine geringe Varianz aufweisen und das 3D Modell deshalb als Testsystem geeignet ist. Ein Vergleich der Morphologie, des EMT-Status und der Differenzierung der Tumorzelllinien im 3D Modell mit Tumorbiopsaten von Adenokarzinompatienten verdeutlichte, dass die 3D Modelle tumorrelevante Merkmale besitzen. So sind die Zelllinien auf der biologischen Matrix, verglichen mit der jeweiligen 2D Kultur, durch eine reduzierte Proliferationsrate gekennzeichnet, welche eher der in vivo Situation entspricht. F{\"u}r die Etablierung und Validierung des 3D Modells als Testsystem war es notwendig, klinisch relevante Therapien in dem Modell anzuwenden und die Ergebnisse der Behandlung in vitro mit denen im Patienten zu vergleichen. Dabei konnte zun{\"a}chst best{\"a}tigt werden, dass eine zielgerichtete Therapie gegen den EGFR in dem 3D System zu einer verst{\"a}rkten Induktion der Apoptose im Vergleich zu 2D f{\"u}hrt. Dies entspricht klinischen Beobachtungen, bei denen EGFR-mutierte Patienten gut auf eine Therapie mit Tyrosin-Kinase-Inhibitoren (TKI) ansprechen. Anschließend wurde in dieser Arbeit erstmals in vitro gezeigt, dass die Behandlung mit einem HSP90-Inhibitor bei KRAS-Mutation wie in behandelten Patienten keine eindeutigen Vorteile bringt, diese jedoch in Experimenten der 2D Zellkultur mit den entsprechenden Zelllinien vorhergesagt werden. Die Ergebnisse aus dem in vitro Modell spiegeln damit verschiedene klinische Studien wider und unterstreichen das Potenzial des 3D Lungentumor-Testsystems die Wirkung zielgerichteter Therapien vorherzusagen. Durch die Messung von Signalwegsaktivierungen {\"u}ber Phospho-Arrays und Western Blot konnten in dieser Arbeit Unterschiede zwischen 2D und 3D nach Behandlung gezeigt werden. Diese lieferten die Grundlage f{\"u}r bioinformatische Vorhersagen f{\"u}r Medikamente. Mit fortschreitender Erkrankung und dem Entstehen invasiver Tumore, die m{\"o}glicherweise Metastasen bilden, verschlechtert sich die Prognose von Krebspatienten. Zudem entwickeln Patienten, die zun{\"a}chst auf eine Therapie mit TKI ansprechen, bereits nach kurzer Zeit Resistenzen, die ebenfalls zur Progression des Tumorwachstums f{\"u}hren. Zur Wirkungsuntersuchung von Substanzen in solchen fortgeschrittenen Erkrankungsstadien wurde das bestehende Testsystem erweitert. Zum einen wurde mit Hilfe des Wachstumsfaktors TGF-β1 eine EMT ausgel{\"o}st. Hier konnte beobachtet werden, dass sich die Expression verschiedener EMT- und invasionsassoziierter Gene und Proteine ver{\"a}nderte und die Zellen vor allem in dynamischer Kultur verst{\"a}rkt die Basalmembran der Matrix {\"u}berquerten. Zum anderen wurde die Ausbildung von Resistenzen gegen{\"u}ber TKI durch die Generierung von resistenten Subpopulationen aus einer urspr{\"u}nglich sensitiven Zelllinie und anschließender Kultivierung auf der Matrix abgebildet. Dabei zeigte sich keine der klinisch bekannten Mutationen als urs{\"a}chlich f{\"u}r die Resistenz, sodass weitere Mechanismen untersucht wurden. Hier konnten Ver{\"a}nderungen in der Signaltransduktion sowie der Expression EMT-assoziierter Proteine festgestellt werden. Im letzten Teil der Arbeit wurde eine neuartige Behandlung im Bereich der Immuntherapie erfolgreich in dem 3D Modell angewendet. Daf{\"u}r wurden T-Zellen, die einen chim{\"a}ren Antigen-Rezeptor (CAR) gegen ROR1 tragen, in statischer und dynamischer Kultur zu den Tumorzellen gegeben und der Therapieeffekt mittels histologischer F{\"a}rbung und der Bestimmung der Apoptose evaluiert. Zus{\"a}tzlich konnten Eigenschaften der T-Zellen, wie deren Proliferation sowie Zytokinaussch{\"u}ttung quantifiziert und damit eine spezifische Wirkung der CAR transduzierten T-Zellen gegen{\"u}ber Kontroll-T-Zellen nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Lungentumor-Testsystem f{\"u}r die Anwendung in der pr{\"a}klinischen Entwicklung von Krebsmedikamenten sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Dieses Testsystem ist in der Lage relevante Daten zu Biomarker-geleiteten Therapien, zur Behandlung fortgeschrittener Tumorstadien und zur Verbesserung neuartiger Therapiestrategien zu liefern.}, subject = {Tissue Engineering}, language = {de} } @article{HarnošCanizalJuraseketal.2019, author = {Harnoš, Jakub and Ca{\~n}izal, Maria Consuelo Alonso and Jur{\´a}sek, Miroslav and Kumar, Jitender and Holler, Cornelia and Schambony, Alexandra and Han{\´a}kov{\´a}, Kateřina and Bernat{\´i}k, Ondřej and Zdr{\´a}hal, Zbyn{\^e}k and G{\"o}m{\"o}ryov{\´a}, Krist{\´i}na and Gybeľ, Tom{\´a}š and Radaszkiewicz, Tomasz Witold and Kravec, Marek and Trant{\´i}rek, Luk{\´a}š and Ryneš, Jan and Dave, Zankruti and Fern{\´a}ndez-Llamazares, Ana Iris and V{\´a}cha, Robert and Tripsianes, Konstantinos and Hoffmann, Carsten and Bryja, V{\´i}tězslav}, title = {Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09651-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227837}, year = {2019}, abstract = {Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.}, language = {en} } @article{HeibyGoretzkiJohnsonetal.2019, author = {Heiby, Julia C. and Goretzki, Benedikt and Johnson, Christopher M. and Hellmich, Ute A. and Neuweiler, Hannes}, title = {Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12365-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202539}, pages = {4378}, year = {2019}, abstract = {Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider's dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function.}, language = {en} } @phdthesis{Hell2019, author = {Hell, Dennis}, title = {Development of self-adjusting cytokine neutralizer cells as a closed-loop delivery system of anti-inflammatory biologicals}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The current treatment strategies for diseases are assessed on the basis of diagnosed phenotypic changes due to an accumulation of asymptomatic events in physiological processes. Since a diagnosis can only be established at advanced stages of the disease, mainly due to insufficient early detection possibilities of physiological disorders, doctors are forced to treat diseases rather than prevent them. Therefore, it is desirable to link future therapeutic interventions to the early detection of physiological changes. So-called sensor-effector systems are designed to recognise disease-specific biomarkers and coordinate the production and delivery of therapeutic factors in an autonomous and automated manner. Such approaches and their development are being researched and promoted by the discipline of synthetic biology, among others. Against this background, this paper focuses on the in vitro design of cytokine-neutralizing sensor-effector cells designed for the potential treatment of recurrent autoimmune diseases, especially rheumatoid arthritis. The precise control of inducible gene expression was successfully generated in human cells. At first, a NF-κB-dependent promoter was developed, based on HIV-1 derived DNA-binding motives. The activation of this triggerable promoter was investigated using several inducers including the physiologically important NF-κB inducers tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β). The activation strength of the NF-κB-triggered promoter was doubled by integrating a non-coding RNA. The latter combined expressed RNA structures, which mimic DNA by double stranded RNAs and have been demonstrated to bind to p50 or p65 by previous publications. The sensitivity was investigated for TNFα and IL-1β. The detection limit and the EC50 values were in in the lower picomolar range. Besides the sensitivity, the reversibility and dynamic of the inducible system were characterized. Hereby a close correlation between pulse times and expression profile was shown. The optimized NF-κB-dependent promoter was then coupled to established TNFα- and IL-1-blocking biologicals to develop sensor-effector systems with anti-inflammatory activity, and thus potential use against autoimmune diseases such as rheumatoid arthritis. The biologicals were differentiated between ligand-blocking and receptor-blocking biologicals and different variants were selected: Adalimumab, etanercept and anakinra. The non-coding RNA improved again the activation strength of NF-κB-dependent expressed biologicals, indicating its universal benefit. Furthermore, it was shown that the TNFα-induced expression of NF-κB-regulated TNFα-blocking biologics led to an extracellular negative feedback loop. Interestingly, the integration of the non-coding RNA and this negative feedback loop has increased the dynamics and reversibility of the NF-κB-regulated gene expression. The controllability of drug release can also be extended by the use of inhibitors of classical NF-κB signalling such as TPCA-1. The efficacy of the expressed biologicals was detected through neutralization of the cytokines using different experiments. For future in vivo trials, first alginate encapsulations of the cells were performed. Furthermore, the activation of NF-κB-dependent promoter was demonstrated using co-cultures with human plasma samples or using synovial liquids. With this generated sensor-effector system we have developed self-adjusting cytokine neutralizer cells as a closed-loop delivery system for anit-inflammatory biologics.}, subject = {Biologika}, language = {en} } @article{HerzBrehm2019, author = {Herz, Michaela and Brehm, Klaus}, title = {Evidence for densovirus integrations into tapeworm genomes}, series = {Parasites \& Vectors}, volume = {12}, journal = {Parasites \& Vectors}, doi = {10.1186/s13071-019-3820-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202478}, pages = {560}, year = {2019}, abstract = {Background Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. Methods The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. Results We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. Conclusions Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes.}, language = {en} } @article{HeydarianYangSchweinlinetal.2019, author = {Heydarian, Motaharehsadat and Yang, Tao and Schweinlin, Matthias and Steinke, Maria and Walles, Heike and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Biomimetic human tissue model for long-term study of Neisseria gonorrhoeae infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1740}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.01740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197912}, year = {2019}, abstract = {Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.}, language = {en} } @article{HicklHeintzBuschartTrautweinSchultetal.2019, author = {Hickl, Oskar and Heintz-Buschart, Anna and Trautwein-Schult, Anke and Hercog, Rajna and Bork, Peer and Wilmes, Paul and Becher, D{\"o}rte}, title = {Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome}, series = {Microorganisms}, volume = {7}, journal = {Microorganisms}, number = {9}, issn = {2076-2607}, doi = {10.3390/microorganisms7090367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195976}, year = {2019}, abstract = {With the technological advances of the last decade, it is now feasible to analyze microbiome samples, such as human stool specimens, using multi-omic techniques. Given the inherent sample complexity, there exists a need for sample methods which preserve as much information as possible about the biological system at the time of sampling. Here, we analyzed human stool samples preserved and stored using different methods, applying metagenomics as well as metaproteomics. Our results demonstrate that sample preservation and storage have a significant effect on the taxonomic composition of identified proteins. The overall identification rates, as well as the proportion of proteins from Actinobacteria were much higher when samples were flash frozen. Preservation in RNAlater overall led to fewer protein identifications and a considerable increase in the share of Bacteroidetes, as well as Proteobacteria. Additionally, a decrease in the share of metabolism-related proteins and an increase of the relative amount of proteins involved in the processing of genetic information was observed for RNAlater-stored samples. This suggests that great care should be taken in choosing methods for the preservation and storage of microbiome samples, as well as in comparing the results of analyses using different sampling and storage methods. Flash freezing and subsequent storage at -80 °C should be chosen wherever possible.}, language = {en} } @phdthesis{Hieke2019, author = {Hieke, Marie}, title = {Synaptic arrangements and potential communication partners of \(Drosophila's\) PDF-containing clock neurons within the accessory medulla}, doi = {10.25972/OPUS-17598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla's edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors' are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons' conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs' terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations}, subject = {Taufliege}, language = {en} } @phdthesis{Horn2019, author = {Horn, Jessica}, title = {Molecular and functional characterization of the long non-coding RNA SSR42 in \(Staphylococcus\) \(aureus\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175778}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Staphylococcus aureus asymptomatically colonizes the skin and anterior nares of 20-30\% of the healthy human population. As an opportunistic human pathogen it elicits a variety of infections ranging from skin and soft tissue infections to highly severe manifestations such as pneumonia, endocarditis and osteomyelitis. Due to the emergence of multi resistant strains, treatment of staphylococcal infections becomes more and more challenging and the WHO therefore classified S. aureus as a "superbug". The variety of diseases triggered by S. aureus is the result of a versatile expression of a large set of virulence factors. The most prominent virulence factor is the cytotoxic and haemolytic pore-forming α-toxin whose expression is mediated by a complex regulatory network involving two-component systems such as the agr quorum-sensing system, accessory transcriptional regulators and alternative sigma-factors. However, the intricate regulatory network is not yet understood in its entirety. Recently, a transposon mutation screen identified the AraC-family transcriptional regulator 'Repressor of surface proteins' (Rsp) to regulate haemolysis, cytotoxicity and the expression of various virulence associated factors. Deletion of rsp was accompanied by a complete loss of transcription of a 1232 nt long non-coding RNA, SSR42. This doctoral thesis focuses on the molecular and functional characterization of SSR42. By analysing the transcriptome and proteome of mutants in either SSR42 or both SSR42 and rsp, as well as by complementation of SSR42 in trans, the ncRNA was identified as the main effector of Rsp-mediated virulence. Mutants in SSR42 exhibited strong effects on transcriptional and translational level when compared to wild-type bacteria. These changes resulted in phenotypic alterations such as strongly reduced haemolytic activity and cytotoxicity towards epithelial cells as well as reduced virulence in a murine infection model. Deletion of SSR42 further promoted the formation of small colony variants (SCV) during long term infection of endothelial cells and demonstrated the importance of this molecule for intracellular bacteria. The impact of this ncRNA on staphylococcal haemolysis was revealed to be executed by modulation of sae mRNA stability and by applying mutational studies functional domains within SSR42 were identified. Moreover, various stressors modulated the transcription of SSR42 and antibiotic challenge resulted in SSR42-dependently increased haemolysis and cytotoxicity. Transcription of SSR42 itself was found under control of various important global regulators including AgrA, SaeS, CodY and σB, thereby illustrating a central position in S. aureus virulence gene regulation. The present study thus demonstrates SSR42 as a global virulence regulatory RNA which is important for haemolysis, disease progression and adaption of S. aureus to intracellular conditions via formation of SCVs.}, subject = {Staphylococcus aureus}, language = {en} } @article{HornMitesserHovestadtetal.2019, author = {Horn, Melanie and Mitesser, Oliver and Hovestadt, Thomas and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The circadian clock improves fitness in the fruit fly, Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {1374}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195738}, year = {2019}, abstract = {It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant's natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and - as revealed for perl mutants - this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants.}, language = {en} } @article{HovestadtThomasMitesseretal.2019, author = {Hovestadt, Thomas and Thomas, Jeremy A. and Mitesser, Oliver and Sch{\"o}nrogge, Karsten}, title = {Multiple host use and the dynamics of host-switching in host-parasite systems}, series = {Insect Conservation and Diversity}, volume = {12}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204747}, pages = {511-522}, year = {2019}, abstract = {The link between multi-host use and host switching in host-parasite interactions is a continuing area of debate. Lycaenid butterflies in the genus Maculinea, for example, exploit societies of different Myrmica ant species across their ranges, but there is only rare evidence that they simultaneously utilise multiple hosts at a local site, even where alternative hosts are present. We present a simple population-genetic model accounting for the proportion of two alternative hosts and the fitness of parasite genotypes on each host. In agreement with standard models, we conclude that simultaneous host use is possible whenever fitness of heterozygotes on alternative hosts is not too low. We specifically focus on host-shifting dynamics when the frequency of hosts changes. We find that (i) host shifting may proceed so rapidly that multiple host use is unlikely to be observed, (ii) back and forth transition in host use can exhibit a hysteresis loop, (iii) the parasites' host use may not be proportional to local host frequencies and be restricted to the rarer host under some conditions, and (iv) that a substantial decline in parasite abundance may typically precede a shift in host use. We conclude that focusing not just on possible equilibrium conditions but also considering the dynamics of host shifting in non-equilibrium situations may provide added insights into host-parasite systems.}, language = {en} } @article{HuppRosenkranzBonfigetal.2019, author = {Hupp, Sabrina and Rosenkranz, Maaria and Bonfig, Katharina and Pandey, Chandana and Roitsch, Thomas}, title = {Noninvasive Phenotyping of Plant-Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, number = {1239}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189425}, year = {2019}, abstract = {Plant-pathogen interactions have been widely studied, but mostly from the site of the plant secondary defense. Less is known about the effects of pathogen infection on plant primary metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present study, virulent and avirulent Pseudomonas syringae strains were transformed with green fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-Modulation (PAM) fluorescence and conventional binocular microscopy. The combination of various wavelengths and filters allowed simultaneous detection of GFP-transformed bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel means to study complex plant-pathogen interactions and relate the responses of primary and secondary metabolism to pathogen spread and multiplication. The study establishes a deeper understanding of imaging data and their implementation into disease screening.}, language = {en} } @phdthesis{Jannasch2019, author = {Jannasch, Maren Annika}, title = {In vitro Fremdk{\"o}rpermodellsysteme zur Vorhersage von biomaterialinduzierten Immunreaktionen}, doi = {10.25972/OPUS-16289}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162893}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die Implantation eines Medizinprodukts in den menschlichen K{\"o}rper ruft eine Immunreaktion hervor, die zur fibr{\"o}sen Einkapselung f{\"u}hren kann. Makrophagen in direktem Kontakt mit der Oberfl{\"a}che des Implantats erfassen sensorisch den Fremdk{\"o}rper und {\"u}bersetzten das Signal in die Freisetzung zahlreicher l{\"o}slicher Mediatoren. Das generierte Entz{\"u}ndungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erh{\"o}hung der Matrixsyntheserate in der Wundumgebung f{\"u}hren. Eine dichte fibr{\"o}se Kapsel um ein Medizinprodukt beeintr{\"a}chtigt den Ersatz von K{\"o}rperstrukturen, das Unterst{\"u}tzen physiologischer K{\"o}rperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterst{\"u}tzt werden. Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begr{\"u}ndet die Komplexi-t{\"a}t der ablaufenden Fremdk{\"o}rperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verf{\"u}gbarkeit validierter, verl{\"a}sslicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen w{\"a}hrend einer Fremdk{\"o}rperreaktion abbildet und sich zur Testung {\"u}ber l{\"a}ngere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch k{\"o}nnen in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine h{\"o}here {\"U}bertragbarkeit auf den Menschen aufweisen. Zus{\"a}tzlich adressiert die Pr{\"a}ferenz zu in vitro Testmethoden den Aspekt „Reduzierung" der 3R-Prinzipien „Replacement, Reduction, Refinement" (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begr{\"u}ndeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium f{\"u}r die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellul{\"a}rer Matrix in der Wundumgebung stellen wichtige Teilprozesse w{\"a}hrend einer Fremdk{\"o}rperreaktion dar. F{\"u}r beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von l{\"o}slichen Mediatoren durch materialadh{\"a}rente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden. Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialst{\"a}ndige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberfl{\"a}chenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix erm{\"o}glichte die {\"U}bersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Dar{\"u}ber hinaus konnte in einem dreidimensionalen Fremdk{\"o}rpermodell die komplexe dreidimensionale Struktur der extrazellul{\"a}ren Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdk{\"o}rpermodelle erm{\"o}glichten die Testung von Biomaterialien {\"u}ber l{\"a}ngere Testphasen und k{\"o}nnen in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen erm{\"o}glichen, (II) die Identifizierung verl{\"a}sslicher Testbedingungen unterst{\"u}tzen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verl{\"a}ssliche Unterscheidungskapazit{\"a}t zwischen Biomaterialien aufweist.}, subject = {Biomaterial}, language = {de} } @article{JaślanDreyerLuetal.2019, author = {Jaślan, Dawid and Dreyer, Ingo and Lu, Jinping and O'Malley, Ronan and Dindas, Julian and Marten, Irene and Hedrich, Rainer}, title = {Voltage-dependent gating of SV channel TPC1 confers vacuole excitability}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10599-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202029}, pages = {2659}, year = {2019}, abstract = {In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K\(^+\)-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca\(^{2+}\) levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca\(^{2+}\), can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K\(^{+}\) transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K\(^+\)-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca\(^{2+}\)- and voltage-induced electrical excitability to the central organelle of plant cells.}, language = {en} } @phdthesis{KaltdorfgebSchuch2019, author = {Kaltdorf [geb. Schuch], Kristin Verena}, title = {Mikroskopie, Bildverarbeitung und Automatisierung der Analyse von Vesikeln in \(C.\) \(elegans\) und anderen biologischen Strukturen}, doi = {10.25972/OPUS-16062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160621}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Thema dieser Thesis ist die Analyse sekretorischer Vesikelpools auf Ultrastrukturebene in unterschiedlichen biologischen Systemen. Der erste und zweite Teil dieser Arbeit fokussiert sich auf die Analyse synaptischer Vesikelpools in neuromuskul{\"a}ren Endplatten (NME) im Modellorganismus Caenorhabditis elegans. Dazu wurde Hochdruckgefrierung und Gefriersubstitution angewandt, um eine unverz{\"u}gliche Immobilisation der Nematoden und somit eine Fixierung im nahezu nativen Zustand zu gew{\"a}hrleisten. Anschließend wurden dreidimensionale Aufnahmen der NME mittels Elektronentomographie erstellt. Im ersten Teil dieser Arbeit wurden junge adulte, wildtypische C. elegans Hermaphroditen mit Septin-Mutanten verglichen. Um eine umfassende Analyse mit hoher Stichprobenzahl zu erm{\"o}glichen und eine automatisierte L{\"o}sung f{\"u}r {\"a}hnliche Untersuchungen von Vesikelpools bereit zu stellen wurde eine Software namens 3D ART VeSElecT zur automatisierten Vesikelpoolanalyse entwickelt. Die Software besteht aus zwei Makros f{\"u}r ImageJ, eines f{\"u}r die Registrierung der Vesikel und eines zur Charakterisierung. Diese Trennung in zwei separate Schritte erm{\"o}glicht einen manuellen Verbesserungsschritt zum Entfernen falsch positiver Vesikel. Durch einen Vergleich mit manuell ausgewerteten Daten neuromuskul{\"a}rer Endplatten von larvalen Stadien des Modellorganismus Zebrafisch (Danio rerio) konnte erfolgreich die Funktionalit{\"a}t der Software bewiesen werden. Die Analyse der neuromuskul{\"a}ren Endplatten in C. elegans ergab kleinere synaptische Vesikel und dichtere Vesikelpools in den Septin-Mutanten verglichen mit Wildtypen. Im zweiten Teil der Arbeit wurden neuromuskul{\"a}rer Endplatten junger adulter C. elegans Hermaphroditen mit Dauerlarven verglichen. Das Dauerlarvenstadium ist ein spezielles Stadium, welches durch widrige Umweltbedingungen induziert wird und in dem C. elegans {\"u}ber mehrere Monate ohne Nahrungsaufnahme {\"u}berleben kann. Da hier der Vergleich der Abundanz zweier Vesikelarten, der „clear-core"-Vesikel (CCV) und der „dense-core"-Vesikel (DCV), im Fokus stand wurde eine Erweiterung von 3D ART VeSElecT entwickelt, die einen „Machine-Learning"-Algorithmus zur automatisierten Klassifikation der Vesikel integriert. Durch die Analyse konnten kleinere Vesikel, eine erh{\"o}hte Anzahl von „dense-core"-Vesikeln, sowie eine ver{\"a}nderte Lokalisation der DCV in Dauerlarven festgestellt werden. Im dritten Teil dieser Arbeit wurde untersucht ob die f{\"u}r synaptische Vesikelpools konzipierte Software auch zur Analyse sekretorischer Vesikel in Thrombozyten geeignet ist. Dazu wurden zweidimensionale und dreidimensionale Aufnahmen am Transmissionselektronenmikroskop erstellt und verglichen. Die Untersuchung ergab, dass hierf{\"u}r eine neue Methodik entwickelt werden muss, die zwar auf den vorherigen Arbeiten prinzipiell aufbauen kann, aber den besonderen Herausforderungen der Bilderkennung sekretorischer Vesikel aus Thrombozyten gerecht werden muss.}, subject = {Mikroskopie}, language = {de} } @phdthesis{Kaymak2019, author = {Kaymak, Irem}, title = {Identification of metabolic liabilities in 3D models of cancer}, doi = {10.25972/OPUS-18154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Inefficient vascularisation of solid tumours leads to the formation of oxygen and nutrient gradients. In order to mimic this specific feature of the tumour microenvironment, a multicellular tumour spheroid (SPH) culture system was used. These experiments were implemented in p53 isogenic colon cancer cell lines (HCT116 p53 +/+ and HCT116 p53-/-) since Tp53 has important regulatory functions in tumour metabolism. First, the characteristics of the cells cultured as monolayers and as spheroids were investigated by using RNA sequencing and metabolomics to compare gene expression and metabolic features of cells grown in different conditions. This analysis showed that certain features of gene expression found in tumours are also present in spheroids but not in monolayer cultures, including reduced proliferation and induction of hypoxia related genes. Moreover, comparison between the different genotypes revealed that the expression of genes involved in cholesterol homeostasis is induced in p53 deficient cells compared to p53 wild type cells and this difference was only detected in spheroids and tumour samples but not in monolayer cultures. In addition, it was established that loss of p53 leads to the induction of enzymes of the mevalonate pathway via activation of the transcription factor SREBP2, resulting in a metabolic rewiring that supports the generation of ubiquinone (coenzyme Q10). An adequate supply of ubiquinone was essential to support mitochondrial electron transport and pyrimidine biosynthesis in p53 deficient cancer cells under conditions of metabolic stress. Moreover, inhibition of the mevalonate pathway using statins selectively induced oxidative stress and apoptosis in p53 deficient colon cancer cells exposed to oxygen and nutrient deprivation. This was caused by ubiquinone being required for electron transfer by dihydroorotate dehydrogenase, an essential enzyme of the pyrimidine nucleotide biosynthesis pathway. Supplementation with exogenous nucleosides relieved the demand for electron transfer and restored viability of p53 deficient cancer cells under metabolic stress. Moreover, the mevalonate pathway was also essential for the synthesis of ubiquinone for nucleotide biosynthesis to support growth of intestinal tumour organoids. Together, these findings highlight the importance of the mevalonate pathway in cancer cells and provide molecular evidence for an enhanced sensitivity towards the inhibition of mitochondrial electron transfer in tumour-like metabolic environments.}, subject = {Tumor}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant?}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-51916-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202549}, pages = {15593}, year = {2019}, abstract = {Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201165}, pages = {e0218824}, year = {2019}, abstract = {Climate warming has the potential to disrupt plant-pollinator interactions or to increase competition of co-flowering plants for pollinators, due to species-specific phenological responses to temperature. However, studies focusing on the effect of temperature on solitary bee emergence and the flowering onset of their food plants under natural conditions are still rare. We studied the effect of temperature on the phenology of the two spring bees Osmia cornuta and Osmia bicornis, by placing bee cocoons on eleven grasslands differing in mean site temperature. On seven grasslands, we additionally studied the effect of temperature on the phenology of the red-list plant Pulsatilla vulgaris, which was the first flowering plant, and of co-flowering plants with later flowering. With a warming of 0.1°C, the abundance-weighted mean emergence of O. cornuta males advanced by 0.4 days. Females of both species did not shift their emergence. Warmer temperatures advanced the abundance-weighted mean flowering of P. vulgaris by 1.3 days per 0.1°C increase, but did not shift flowering onset of co-flowering plants. Competition for pollinators between P. vulgaris and co-flowering plants does not increase within the studied temperature range. We demonstrate that temperature advances plant flowering more strongly than bee emergence suggesting an increased risk of pollinator limitation for the first flowers of P. vulgaris.}, language = {en} } @article{KimAmoresKangetal.2019, author = {Kim, Bo-Mi and Amores, Angel and Kang, Seunghyun and Ahn, Do-Hwan and Kim, Jin-Hyoung and Kim, Il-Chan and Lee, Jun Hyuck and Lee, Sung Gu and Lee, Hyoungseok and Lee, Jungeun and Kim, Han-Woo and Desvignes, Thomas and Batzel, Peter and Sydes, Jason and Titus, Tom and Wilson, Catherine A. and Catchen, Julian M. and Warren, Wesley C. and Schartl, Manfred and Detrich, H. William III and Postlethwait, John H. and Park, Hyun}, title = {Antarctic blackfin icefish genome reveals adaptations to extreme environments}, series = {Nature Ecology \& Evolution}, volume = {3}, journal = {Nature Ecology \& Evolution}, doi = {10.1038/s41559-019-0812-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325811}, pages = {469-478}, year = {2019}, abstract = {Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.}, language = {en} } @article{KimShustaDoran2019, author = {Kim, Brandon J. and Shusta, Eric V. and Doran, Kelly S.}, title = {Past and current perspectives in modeling bacteria and blood-brain barrier interactions}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1336}, doi = {10.3389/fmicb.2019.01336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201766}, year = {2019}, abstract = {The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.}, language = {en} } @phdthesis{Kiser2019, author = {Kiser, Dominik Pascal}, title = {Gene x Environment Interactions in Cdh13-deficient Mice: CDH13 as a Factor for Adaptation to the Environment}, doi = {10.25972/OPUS-17959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are disorders of mostly unknown etiopathogenesis, for which both genetic and environmental influences are expected to contribute to the phenotype observed in patients. Changes at all levels of brain function, from network connectivity between brain areas, over neuronal survival, synaptic connectivity and axonal growth, down to molecular changes and epigenetic modifications are suspected to play a key roles in these diseases, resulting in life-long behavioural changes. Genome-wide association as well as copy-number variation studies have linked cadherin-13 (CDH13) as a novel genetic risk factor to neuropsychiatric and neurodevelopmental disorders. CDH13 is highly expressed during embryonic brain development, as well as in the adult brain, where it is present in regions including the hippocampus, striatum and thalamus (among others) and is upregulated in response to chronic stress exposure. It is however unclear how CDH13 interacts with environmentally relevant cues, including stressful triggers, in the formation of long-lasting behavioural and molecular changes. It is currently unknown how the environment influences CDH13 and which long term changes in behaviour and gene expression are caused by their interaction. This work therefore investigates the interaction between CDH13 deficiency and neonatal maternal separation (MS) in mice with the aim to elucidate the function of CDH13 and its role in the response to early-life stress (ELS). For this purpose, mixed litters of wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous knockout (Cdh13-/-) mice were maternally separated from postnatal day 1 (PN1) to postnatal day 14 (PN14) for 3 hours each day (180MS; PN1-PN14). In a first series of experiments, these mice were subjected to a battery of behavioural tests starting at 8 weeks of age in order to assess motor activity, memory functions as well as measures of anxiety. Subsequently, expression of RNA in various brain regions was measured using quantitativ real-time polymerase chain reaction (qRT-PCR). A second cohort of mice was exposed to the same MS procedure, but was not behaviourally tested, to assess molecular changes in hippocampus using RNA sequencing. Behavioural analysis revealed that MS had an overall anxiolytic-like effect, with mice after MS spending more time in the open arms of the elevated-plus-maze (EPM) and the light compartment in the light-dark box (LDB). As a notable exception, Cdh13-/- mice did not show an increase of time spent in the light compartment after MS compared to Cdh13+/+ and Cdh13+/- MS mice. During the Barnes-maze learning task, mice of most groups showed a similar ability in learning the location of the escape hole, both in terms of primary latency and primary errors. Cdh13-/- control (CTRL) mice however committed more primary errors than Cdh13-/- MS mice. In the contextual fear conditioning (cFC) test, Cdh13-/- mice showed more freezing responses during the extinction recall, indicating a reduced extinction of fear memory. In the step-down test, an impulsivity task, Cdh13-/- mice had a tendency to wait longer before stepping down from the platform, indicative of more hesitant behaviour. In the same animals, qRT-PCR of several brain areas revealed changes in the GABAergic and glutamatergic systems, while also highlighting changes in the gatekeeper enzyme Glykogensynthase-Kinase 3 (Gsk3a), both in relation to Cdh13 deficiency and MS. Results from the RNA sequencing study and subsequent gene-set enrichment analysis revealed changes in adhesion and developmental genes due to Cdh13 deficiency, while also highlighting a strong link between CDH13 and endoplasmatic reticulum function. In addition, some results suggest that MS increased pro-survival pathways, while a gene x environment analysis showed alterations in apoptotic pathways and migration, as well as immune factors and membrane metabolism. An analysis of the overlap between gene and environment, as well as their interaction, highlighted an effect on cell adhesion factors, underscoring their importance for adaptation to the environment. Overall, the stress model resulted in increased stress resilience in Cdh13+/+ and Cdh13+/- mice, a change absent in Cdh13-/- mice, suggesting a role of CDH13 during programming and adaptation to early-life experiences, that can results in long-lasting consequences on brain functions and associated behaviours. These changes were also visible in the RNA sequencing, where key pathways for cell-cell adhesion, neuronal survival and cell-stress adaptation were altered. In conclusion, these findings further highlight the role of CDH13 during brain development, while also shedding light on its function in the adaptation and response during (early life) environmental challenges.}, subject = {Cadherine}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{KrebsBehrmannKalogirouetal.2019, author = {Krebs, Markus and Behrmann, Christoph and Kalogirou, Charis and Sokolakis, Ioannis and Kneitz, Susanne and Kruithof-de Julio, Marianna and Zoni, Eugenio and Rech, Anne and Schilling, Bastian and K{\"u}bler, Hubert and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221 Augments TRAIL-mediated apoptosis in prostate cancer cells by inducing endogenous TRAIL expression and targeting the functional repressors SOCS3 and PIK3R1}, series = {BioMed Research International}, volume = {2019}, journal = {BioMed Research International}, doi = {10.1155/2019/6392748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202480}, pages = {6392748}, year = {2019}, abstract = {miR-221 is regarded as an oncogene in many malignancies, and miR-221-mediated resistance towards TRAIL was one of the first oncogenic roles shown for this small noncoding RNA. In contrast, miR-221 is downregulated in prostate cancer (PCa), thereby implying a tumour suppressive function. By using proliferation and apoptosis assays, we show a novel feature of miR-221 in PCa cells: instead of inducing TRAIL resistance, miR-221 sensitized cells towards TRAIL-induced proliferation inhibition and apoptosis induction. Partially responsible for this effect was the interferon-mediated gene signature, which among other things contained an endogenous overexpression of the TRAIL encoding gene TNFSF10. This TRAIL-friendly environment was provoked by downregulation of the established miR-221 target gene SOCS3. Moreover, we introduced PIK3R1 as a target gene of miR-221 in PCa cells. Proliferation assays showed that siRNA-mediated downregulation of SOCS3 and PIK3R1 mimicked the effect of miR-221 on TRAIL sensitivity. Finally, Western blotting experiments confirmed lower amounts of phospho-Akt after siRNA-mediated downregulation of PIK3R1 in PC3 cells. Our results further support the tumour suppressing role of miR-221 in PCa, since it sensitises PCa cells towards TRAIL by regulating the expression of the oncogenes SOCS3 and PIK3R1. Given the TRAIL-inhibiting effect of miR-221 in various cancer entities, our results suggest that the influence of miR-221 on TRAIL-mediated apoptosis is highly context- and entity-dependent.}, language = {en} } @phdthesis{Kremer2019, author = {Kremer, Antje}, title = {Tissue Engineering of a Vascularized Meniscus Implant}, doi = {10.25972/OPUS-18432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli.}, subject = {Meniskus}, language = {en} } @phdthesis{Kress2019, author = {Kreß, Sebastian}, title = {Development and proof of concept of a biological vascularized cell-based drug delivery system}, doi = {10.25972/OPUS-17865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on-demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell-based therapies and the generation of complex and customized cell-specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co-cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc-TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies.}, subject = {Vaskularisation}, language = {en} } @phdthesis{Kraehnke2019, author = {Kr{\"a}hnke, Martin}, title = {Chondrogenic differentiation of bone marrow-derived stromal cells in pellet culture and silk scaffolds for cartilage engineering - Effects of different growth factors and hypoxic conditions}, doi = {10.25972/OPUS-19299}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Articular cartilage lesions that occur upon intensive sport, trauma or degenerative disease represent a severe therapeutic problem. At present, osteoarthritis is the most common joint disease worldwide, affecting around 10\% of men and 18\% of women over 60 years of age (302). The poor self-regeneration capacity of cartilage and the lack of efficient therapeutic treatment options to regenerate durable articular cartilage tissue, provide the rationale for the development of new treatment options based on cartilage tissue engineering approaches (281). The integrated use of cells, biomaterials and growth factors to guide tissue development has the potential to provide functional substitutes of lost or damaged tissues (2,3). For the regeneration of cartilage, the availability of mesenchymal stromal cells (MSCs) or their recruitment into the defect site is fundamental (281). Due to their high proliferation capacity, the possibility to differentiate into chondrocytes and their potential to attract other progenitor cells into the defect site, bone marrow-derived mesenchymal stromal cells (BMSCs) are still regarded as an attractive cell source for cartilage tissue engineering (80). However, in order to successfully engineer cartilage tissue, a better understanding of basic principles of developmental processes and microenvironmental cues that guide chondrogenesis is required.}, subject = {Hypoxie}, language = {en} } @article{KunzGoetzSaueretal.2019, author = {Kunz, Tobias C. and G{\"o}tz, Ralph and Sauer, Markus and Rudel, Thomas}, title = {Detection of chlamydia developmental forms and secreted effectors by expansion microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {276}, issn = {2235-2988}, doi = {10.3389/fcimb.2019.00276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195716}, year = {2019}, abstract = {Expansion microscopy (ExM) is a novel tool to improve the resolution of fluorescence-based microscopy that has not yet been used to visualize intracellular pathogens. Here we show the expansion of the intracellular pathogen Chlamydia trachomatis, enabling to differentiate its two distinct forms, catabolic active reticulate bodies (RB) and infectious elementary bodies (EB), on a conventional confocal microscope. We show that ExM enables the possibility to precisely locate chlamydial effector proteins, such as CPAF or Cdu1, within and outside of the chlamydial inclusion. Thus, we claim that ExM offers the possibility to address a broad range of questions and may be useful for further research on various intracellular pathogens.}, language = {en} } @phdthesis{Koenig2019, author = {K{\"o}nig, Eva-Maria}, title = {Pathogenese von Kraniosynostosen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175181}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das humane Sch{\"a}deldach besteht aus f{\"u}nf Sch{\"a}delplatten, die durch intramembran{\"o}se Ossifikation entstehen. Wenn diese in der Embryonalentwicklung aufeinandertreffen, bilden sich Sch{\"a}deln{\"a}hte aus, die eine Fusion der Sch{\"a}delplatten verhindern und damit ein Sch{\"a}delwachstum parallel zu Gehirnentwicklung erm{\"o}glichen. F{\"u}r diesen Prozess ist eine Balance aus Zellproliferation und Differenzierung n{\"o}tig, deren Aufrechterhaltung wiederum durch eine komplexe Regulation von verschiedenen Signalwegen gew{\"a}hrleistet wird. St{\"o}rungen in diesem regulatorischen System k{\"o}nnen zu einer vorzeitigen Fusion der Sch{\"a}delplatten, Kraniosynostose genannt, f{\"u}hren. Die Kraniosynostose ist eine der h{\"a}ufigsten kraniofazialen Fehlbildungen beim Menschen. Durch kompensatorisches Wachstum an den nicht fusionierten Suturen entstehen charakteristische Sch{\"a}deldeformationen, die sekund{\"a}r einen erh{\"o}hten intrakranialen Druck zur Folge haben k{\"o}nnen. Eine vorzeitige Fusion der Suturen kann sowohl isoliert als auch syndromal zusammen mit weiteren klinischen Auff{\"a}lligkeiten vorliegen. Bisher sind {\"u}ber 150 verschiedene Kraniosynostose Syndrome beschrieben und insgesamt 25-30\% aller Kraniosynostose Patienten sind von einer syndromalen Form betroffen. Da die klinischen Merkmale der Kraniosynostose Syndrome variabel sind und zum Teil {\"u}berlappen, ist eine klare klinische Diagnose h{\"a}ufig erschwert. Sowohl Umwelteinfl{\"u}sse als auch genetische Ver{\"a}nderungen k{\"o}nnen die Ursache f{\"u}r Kraniosynostosen sein. Vor allem bei syndromalen Kraniosynostosen wurden genetische Ver{\"a}nderungen, wie beispielsweise Mutationen in den Genen FGFR2, FGFR3, TWIST1 und EFNB1, identifiziert. Dar{\"u}ber hinaus wurden chromosomale Ver{\"a}nderungen wie partielle Monosomien von 7p, 9p oder 11p sowie partielle Trisomien von 5q, 13q oder 15q mit Kraniosynostose assoziiert. Trotzdem ist in {\"u}ber 50\% der F{\"a}lle die genetische Ursache unbekannt und die Pathogenese von Kraniosynostosen noch nicht vollst{\"a}ndig gekl{\"a}rt. Ziel dieser Arbeit war es neue genetische Ursachen bei Kraniosynostose Patienten zu identifizieren und so zur Aufkl{\"a}rung der Pathogenese beizutragen. Es wurde die genomische DNA von 83 Patienten molekulargenetisch durch Mikroarray basierte vergleichende Genomhybridisierung (Array-CGH) oder durch ein speziell entworfenes Next Generation Sequencing (NGS) Genpanel untersucht. Bei 30\% der Patienten konnte eine potentiell pathogene Ver{\"a}nderung identifiziert werden. Davon waren 23\% chromosomale Aberrationen wie unbalancierte Translokationen, isolierte interstitielle Verluste und ein Zugewinn an genomischen Material. Bei zwei Patienten wurden unbalancierte Translokationen mit partieller 5q Trisomie nachgewiesen. Das Gen MSX2 liegt innerhalb des duplizierten Bereichs, sodass m{\"o}glicherweise eine MSX2 {\"U}berexpression vorliegt. F{\"u}r ein normales Sch{\"a}delwachstum ist jedoch die richtige Menge an MSX2 kritisch. Des Weiteren wurde eine partielle Deletion von TCF12 detektiert, die in einer Haploinsuffizienz von TCF12 resultiert. TCF12 Mutationen sind mit Koronarnahtsynosten assoziiert. In einem anderen Fall lag das Gen FGF10 innerhalb der duplizierten 5p15.1-p12 Region. Das Gen kodiert f{\"u}r einen Liganden des FGF Signalwegs und wurde bisher noch nicht mit Kraniosynostose assoziiert. Aufgrund dessen wurden Analysen im Tiermodell Danio rerio durchgef{\"u}hrt. Eine simulierte {\"U}berexpression durch Injektion der fgf10a mRNA in das 1-Zell Stadium f{\"u}hrte zu schweren Gehirn-, Herz- und Augendefekten. Mittels NGS wurden 77\% der potentiell pathogenen genetischen Ver{\"a}nderungen identifiziert. Hierf{\"u}r wurde in dieser Arbeit ein Genpanel erstellt, das 68 Gene umfasst. Es wurden sowohl bekannte Kraniosynostose- als auch Kandidaten-Gene sowie Gene, die mit der Ossifikation assoziiert sind, in die Analyse eingeschlossen. Das Genpanel wurde durch die Sequenzierung von f{\"u}nf Kontrollproben mit bekannten Mutationen erfolgreich validiert. Anschließend wurde die genomische DNA von 66 Patienten analysiert. Es konnten 20 (potentiell) pathogene Varianten identifiziert werden. Neben bereits bekannten Mutationen in den Genen FGFR1, FGFR2, FGFR3 und TWIST1, konnten zus{\"a}tzlich 8 neue, potentiell pathogene Varianten in den Genen ERF, MEGF8, MSX2, PTCH1 und TCF12 identifiziert werden. Die Ergebnisse dieser Arbeit tragen dazu bei das Mutationsspektrum dieser Gene zu erweitern. Bei zwei der Varianten handelte es sich um potentielle Spleißvarianten. F{\"u}r diese konnte in einem in vitro Spleißsystem gezeigt werden, dass sie eine {\"A}nderung des Spleißmusters bewirken. Der Nachweis von zwei seltenen Varianten in den Genen FGFR2 und HUWE1 hat außerdem dazu beigetragen die Pathogenit{\"a}t dieser spezifischen Varianten zu bekr{\"a}ftigen. Eine Variante in POR, die aufgrund bioinformatischer Analysen als potentiell pathogen bewertet wurde, wurde nach der Segregationsanalyse als wahrscheinlich benigne eingestuft. Zusammenfassend konnten bei etwa einem Drittel der Patienten, die mit dem NGS Genpanel analysiert wurden, eine genetische Ursache identifiziert werden. Dieses Genpanel stellt somit ein effizientes diagnostisches Tool dar, das zuk{\"u}nftig in der genetischen Routine-Diagnostik von Kraniosynostose-Patienten eingesetzt werden kann. Die Ergebnisse dieser Arbeit zeigen, dass sowohl eine Untersuchung auf CNVs als auch auf Sequenz{\"a}nderungen bei Kraniosynostose Patienten sinnvoll ist.}, subject = {Kraniosynostose}, language = {de} } @article{LatifiValbuena2019, author = {Latifi, Hooman and Valbuena, Ruben}, title = {Current trends in forest ecological applications of three-dimensional remote sensing: Transition from experimental to operational solutions?}, series = {Forests}, volume = {10}, journal = {Forests}, number = {10}, issn = {1999-4907}, doi = {10.3390/f10100891}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193282}, year = {2019}, abstract = {The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue "3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function", which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide.}, language = {en} } @phdthesis{Letschert2019, author = {Letschert, Sebastian}, title = {Quantitative Analysis of Membrane Components using Super-Resolution Microscopy}, doi = {10.25972/OPUS-16213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The plasma membrane is one of the most thoroughly studied and at the same time most complex, diverse, and least understood cellular structures. Its function is determined by the molecular composition as well as the spatial arrangement of its components. Even after decades of extensive membrane research and the proposal of dozens of models and theories, the structural organization of plasma membranes remains largely unknown. Modern imaging tools such as super-resolution fluorescence microscopy are one of the most efficient techniques in life sciences and are widely used to study the spatial arrangement and quantitative behavior of biomolecules in fixed and living cells. In this work, direct stochastic optical reconstruction microscopy (dSTORM) was used to investigate the structural distribution of mem-brane components with virtually molecular resolution. Key issues are different preparation and staining strategies for membrane imaging as well as localization-based quantitative analyses of membrane molecules. An essential precondition for the spatial and quantitative analysis of membrane components is the prevention of photoswitching artifacts in reconstructed localization microscopy images. Therefore, the impact of irradiation intensity, label density and photoswitching behavior on the distribution of plasma membrane and mitochondrial membrane proteins in dSTORM images was investigated. It is demonstrated that the combination of densely labeled plasma membranes and inappropriate photoswitching rates induces artificial membrane clusters. Moreover, inhomogeneous localization distributions induced by projections of three-dimensional membrane structures such as microvilli and vesicles are prone to generate artifacts in images of biological membranes. Alternative imaging techniques and ways to prevent artifacts in single-molecule localization microscopy are presented and extensively discussed. Another central topic addresses the spatial organization of glycosylated components covering the cell membrane. It is shown that a bioorthogonal chemical reporter system consisting of modified monosaccharide precursors and organic fluorophores can be used for specific labeling of membrane-associated glycoproteins and -lipids. The distribution of glycans was visualized by dSTORM showing a homogeneous molecule distribution on different mammalian cell lines without the presence of clusters. An absolute number of around five million glycans per cell was estimated and the results show that the combination of metabolic labeling, click chemistry, and single-molecule localization microscopy can be efficiently used to study cell surface glycoconjugates. In a third project, dSTORM was performed to investigate low-expressing receptors on cancer cells which can act as targets in personalized immunotherapy. Primary multiple myeloma cells derived from the bone marrow of several patients were analyzed for CD19 expression as potential target for chimeric antigen receptor (CAR)-modified T cells. Depending on the patient, 60-1,600 CD19 molecules per cell were quantified and functional in vitro tests demonstrate that the threshold for CD19 CAR T recognition is below 100 CD19 molecules per target cell. Results are compared with flow cytometry data, and the important roles of efficient labeling and appropriate control experiments are discussed.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{LiLiLinketal.2019, author = {Li, Shan and Li, Xin and Link, Roman and Li, Ren and Deng, Liping and Schuldt, Bernhard and Jiang, Xiaomei and Zhao, Rongjun and Zheng, Jingming and Li, Shuang and Yin, Yafang}, title = {Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China}, series = {Forests}, volume = {10}, journal = {Forests}, number = {8}, issn = {1999-4907}, doi = {10.3390/f10080662}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196297}, year = {2019}, abstract = {Studying how cambial age and axial height affects wood anatomical traits may improve our understanding of xylem hydraulics, heartwood formation and axial growth. Radial strips were collected from six different heights (0-11.3 m) along the main trunk of three Manchurian catalpa (Catalpa bungei) trees, yielding 88 samples. In total, thirteen wood anatomical vessel and fiber traits were observed usinglight microscopy (LM) and scanning electron microscopy (SEM), and linear models were used to analyse the combined effect of axial height, cambial age and their interaction. Vessel diameter differed by about one order of magnitude between early- and latewood, and increased significantly with both cambial age and axial height in latewood, while it was positively affected by cambial age and independent of height in earlywood. Vertical position further had a positive effect on earlywood vessel density, and negative effects on fibre wall thickness, wall thickness to diameter ratio and length. Cambial age had positive effects on the pit membrane diameter and vessel element length, while the annual diameter growth decreased with both cambial age and axial position. In contrast, early- and latewood fiber diameter were unaffected by both cambial age and axial height. We further observed an increasing amount of tyloses from sapwood to heartwood, accompanied by an increase of warty layers and amorphous deposits on cell walls, bordered pit membranes and pit apertures. This study highlights the significant effects of cambial age and vertical position on xylem anatomical traits, and confirms earlier work that cautions to take into account xylem spatial position when interpreting wood anatomical structures, and thus, xylem hydraulic functioning.}, language = {en} } @article{LiedtkeOrthMeissleretal.2019, author = {Liedtke, Daniel and Orth, Melanie and Meissler, Michelle and Geuer, Sinje and Knaup, Sabine and K{\"o}blitz, Isabell and Klopocki, Eva}, title = {ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-50055-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202141}, pages = {13383}, year = {2019}, abstract = {Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.}, language = {en} } @article{LiuKinoshitaAdolfietal.2019, author = {Liu, Ruiqi and Kinoshita, Masato and Adolfi, Mateus C. and Schartl, Manfred}, title = {Analysis of the role of the Mc4r system in development, growth, and puberty of medaka}, series = {Frontiers in Endocrinology}, volume = {10}, journal = {Frontiers in Endocrinology}, doi = {10.3389/fendo.2019.00213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201472}, pages = {213}, year = {2019}, abstract = {In mammals the melanocortin 4 receptor (Mc4r) signaling system has been mainly associated with the regulation of appetite and energy homeostasis. In fish of the genus Xiphophorus (platyfish and swordtails) puberty onset is genetically determined by a single locus, which encodes the mc4r. Wild populations of Xiphophorus are polymorphic for early and late-maturing individuals. Copy number variation of different mc4r alleles is responsible for the difference in puberty onset. To answer whether this is a special adaptation of the Mc4r signaling system in the lineage of Xiphophorus or a more widely conserved mechanism in teleosts, we studied the role of Mc4r in reproductive biology of medaka (Oryzias latipes), a close relative to Xiphophorus and a well-established model to study gonadal development. To understand the potential role of Mc4r in medaka, we characterized the major features of the Mc4r signaling system (mc4r, mrap2, pomc, agrp1). In medaka, all these genes are expressed before hatching. In adults, they are mainly expressed in the brain. The transcript of the receptor accessory protein mrap2 co-localizes with mc4r in the hypothalamus in adult brains indicating a conserved function of modulating Mc4r signaling. Comparing growth and puberty between wild-type and mc4r knockout medaka revealed that absence of Mc4r does not change puberty timing but significantly delays hatching. Embryonic development of knockout animals is retarded compared to wild-types. In conclusion, the Mc4r system in medaka is involved in regulation of growth rather than puberty.}, language = {en} } @article{LiuMaierhoferRybaketal.2019, author = {Liu, Yi and Maierhofer, Tobias and Rybak, Katarzyna and Sklenar, Jan and Breakspear, Andy and Johnston, Matthew G. and Fliegmann, Judith and Huang, Shouguang and Roelfsema, M. Rob G. and Felix, Georg and Faulkner, Christine and Menke, Frank L.H. and Geiger, Dietmar and Hedrich, Rainer and Robatzek, Silke}, title = {Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.44474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202631}, pages = {e44474}, year = {2019}, abstract = {In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.}, language = {en} } @phdthesis{Lotz2019, author = {Lotz, Christian}, title = {Entwicklung eines Augenirritationstests zur Identifikation aller GHS-Kategorien f{\"u}r den Endpunkt Augenreizung}, doi = {10.25972/OPUS-17012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die Risikobewertung von Chemikalien ist f{\"u}r die {\"o}ffentliche Gesundheit von entschei-dender Bedeutung, weshalb strenge Testverfahren zu deren toxikologischer Begutach-tung angewandt werden. Die urspr{\"u}nglich tierbasierten Testverfahren werden aufgrund von neuen wissenschaftlichen Erkenntnissen und wegen {\"o}konomischer Ineffizienz sowie ethischer Fragw{\"u}rdigkeit immer mehr durch alternative Methoden ohne Tiermodelle ersetzt. F{\"u}r den toxikologischen Endpunkt der Augenreizung wurden bereits die ersten alternativen Testsysteme auf der Basis von ex vivo- oder in vitro-Modellen entwickelt. Jedoch ist bis dato kein alternatives Testsystem in der Lage, das gesamte Spektrum der verschiedenen Kategorien der Augenreizungen nach dem global harmonisierten System zur Einstufung und Kennzeichnung von Chemikalien (GHS) vorherzusagen und damit den tierbasierten Draize-Augenreizungstest vollends zu ersetzen. Gr{\"u}nde hierf{\"u}r sind fehlende physiologische Merkmale im Modell sowie eine destruktive Analysemethode. Aufgrund dessen wurden in dieser Studie die Hypothesen getestet, ob ein verbessertes In-vitro-Modell oder eine zerst{\"o}rungsfreie, hochsensitive Analysemethode die Vorher-sagekraft des Augenreizungstests verbessern k{\"o}nnen. Daf{\"u}r wurden zun{\"a}chst neue Mo-delle aus humanen Hornhaut- und Hautepithelzellen entwickelt. Die Modelle aus pri-m{\"a}ren cornealen Zellen zeigten eine gewebespezifische Expression der Marker Zytokera-tin 3 und 12 sowie Loricrin. In beiden Modellen konnte durch die Verk{\"u}rzung der Kul-turdauer die Ausbildung einer Hornschicht verhindert werden. Die Modelle wiesen dadurch eine sensiblere Barriere vergleichbar der nativen Cornea auf. Dar{\"u}ber hinaus konnte durch die chemische Quervernetzung mit Polyethylenglykolsuccinimidylglutara-tester ein transparentes, nicht kontrahierendes Stroma-{\"A}quivalent etabliert werden. Der Stroma-Ersatz konnte zur Generierung von Hemi- und Voll-Cornea-{\"A}quivalenten einge-setzt werden und lieferte somit erste Ansatzpunkte f{\"u}r die Rekonstruktion der nativen Hornhaut. Parallel dazu konnte ein zerst{\"o}rungsfreies Analyseverfahren basierend auf der Impe-danzspektroskopie entwickelt werden, das wiederholte Messungen der Gewebeintegri-t{\"a}t zul{\"a}sst. Zur verbesserten Messung der Barriere in dreidimensionalen Modelle wurde hierf{\"u}r ein neuer Parameter, der transepitheliale elektrische Widerstand (TEER) bei der Frequenz von 1000 Hz, der TEER1000 Hz definiert, der eine genauere Aussage {\"u}ber die Integrit{\"a}t der Modelle zul{\"a}sst. Durch die Kombination der entwickelten cornealen Epithelzellmodelle mit der TEER1000 Hz-Messung konnte die Pr{\"a}dikitivit{\"a}t des Augenrei-zungstests auf 78 - 100 \% erh{\"o}ht werden. Von besonderer Bedeutung ist dabei, dass die nicht destruktive Messung des TEER1000 Hz zum ersten Mal erlaubte, die Persistenz von Irritationen durch wiederholte Messungen in einem in vitro-Modell zu erkennen und somit die GHS-Kategorie 1 von GHS-Kategorie 2 zu unterscheiden. Der wissenschaftli-che Gewinn dieser Forschungsarbeit ist ein neues Testverfahren, das alle GHS-Kategorien in einem einzigen in vitro-Test nachweisen und den Draize-Augenreizungstest g{\"a}nzlich ersetzen kann.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{Lyutova2019, author = {Lyutova, Radostina}, title = {Functional dissection of recurrent feedback signaling within the mushroom body network of the Drosophila larva}, doi = {10.25972/OPUS-18728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Behavioral adaptation to environmental changes is crucial for animals' survival. The prediction of the outcome of one owns action, like finding reward or avoiding punishment, requires recollection of past experiences and comparison with current situation, and adjustment of behavioral responses. The process of memory acquisition is called learning, and the Drosophila larva came up to be an excellent model organism for studying the neural mechanisms of memory formation. In Drosophila, associative memories are formed, stored and expressed in the mushroom bodies. In the last years, great progress has been made in uncovering the anatomical architecture of these brain structures, however there is still a lack of knowledge about the functional connectivity. Dopamine plays essential roles in learning processes, as dopaminergic neurons mediate information about the presence of rewarding and punishing stimuli to the mushroom bodies. In the following work, the function of a newly identified anatomical connection from the mushroom bodies to rewarding dopaminergic neurons was dissected. A recurrent feedback signaling within the neuronal network was analyzed by simultaneous genetic manipulation of the mushroom body Kenyon cells and dopaminergic neurons from the primary protocerebral anterior (pPAM) cluster, and learning assays were performed in order to unravel the impact of the Kenyon cells-to-pPAM neurons feedback loop on larval memory formation. In a substitution learning assay, simultaneous odor exposure paired with optogenetic activation of Kenyon cells in fruit fly larvae in absence of a rewarding stimulus resulted in formation of an appetitive memory, whereas no learning behavior was observed when pPAM neurons were ablated in addition to the KC activation. I argue that the activation of Kenyon cells may induce an internal signal that mimics reward exposure by feedback activation of the rewarding dopaminergic neurons. My data further suggests that the Kenyon cells-to-pPAM communication relies on peptidergic signaling via short neuropeptide F and underlies memory stabilization.}, subject = {Lernen}, language = {en} } @article{MammadovaBachBraun2019, author = {Mammadova-Bach, Elmina and Braun, Attila}, title = {Zinc homeostasis in platelet-related diseases}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms20215258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285554}, year = {2019}, abstract = {Zn\(^{2+}\) deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn\(^{2+}\)-deficient diets, accounting for 1-4\% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn\(^{2+}\) deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn\(^{2+}\) status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn\(^{2+}\) uptake in the gut using different nutritional supplementation of Zn\(^{2+}\) could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn\(^{2+}\) diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn\(^{2+}\) in hemostasis. Storage protein metallothionein maintains or releases Zn\(^{2+}\) in the cytoplasm, and the dynamic change of this cytoplasmic Zn\(^{2+}\) pool is regulated by the redox status of the cell. An increase of labile Zn\(^{2+}\) pool can be toxic for the cells, and therefore cytoplasmic Zn\(^{2+}\) levels are tightly regulated by several Zn\(^{2+}\) transporters located on the cell surface and also on the intracellular membrane of Zn\(^{2+}\) storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn\(^{2+}\) is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn\(^{2+}\) transport and the physiological role of Zn\(^{2+}\) store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn\(^{2+}\) to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn\(^{2+}\) homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.}, language = {en} } @article{MatosMachadoSchartletal.2019, author = {Matos, Isa and Machado, Miguel P. and Schartl, Manfred and Coelho, Maria Manuela}, title = {Allele-specific expression variation at different ploidy levels in Squalius alburnoides}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40210-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200910}, pages = {3688}, year = {2019}, abstract = {Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.}, language = {en} } @phdthesis{Mekala2019, author = {Mekala, SubbaRao}, title = {Generation of cardiomyocytes from vessel wall-resident stem cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Myocardial infarction (MI) is a major cause of health problems and is among the leading deadly ending diseases. Accordingly, regenerating functional myocardial tissue and/or cardiac repair by stem cells is one of the most desired aims worldwide. Indeed, the human heart serves as an ideal target for regenerative intervention, because the capacity of the adult myocardium to restore itself after injury or infarct is limited. Thus, identifying new sources of tissue resident adult stem or progenitor cells with cardiovascular potential would help to establish more sophisticated therapies in order to either prevent cardiac failure or to achieve a functional repair. Ongoing research worldwide in this field is focusing on a) induced pluripotent stem (iPS) cells, b) embryonic stem (ES) cells and c) adult stem cells (e. g. mesenchymal stem cells) as well as cardiac fibroblasts or myofibroblasts. However, thus far, these efforts did not result in therapeutic strategies that were transferable into the clinical management of MI and heart failure. Hence, identifying endogenous and more cardiac-related sources of stem cells capable of differentiating into mature cardiomyocytes would open promising new therapeutic opportunities. The working hypothesis of this thesis is that the vascular wall serves as a niche for cardiogenic stem cells. In recent years, various groups have identified different types of progenitors or mesenchymal stem cell-like cells in the adventitia and sub-endothelial zone of the adult vessel wall, the so called vessel wall-resident stem cells (VW-SCs). Considering the fact that heart muscle tissue contains blood vessels in very high density, the physiological relevance of VW-SCs for the myocardium can as yet only be assumed. The aim of the present work is to study whether a subset of VW-SCs might have the capacity to differentiate into cardiomyocyte-like cells. This assumption was challenged using adult mouse aorta-derived cells cultivated in different media and treated with selected factors. The presented results reveal the generation of spontaneously beating cardiomyocyte-like cells using specific media conditions without any genetic manipulation. The cells reproducibly started beating at culture days 8-10. Further analyses revealed that in contrast to several publications reporting the Sca-1+ cells as cardiac progenitors the Sca-1- fraction of aortic wall-derived VW-SCs reproducibly delivered beating cells in culture. Similar to mature cardiomyocytes the beating cells developed sarcomeric structures indicated by the typical cross striated staining pattern upon immunofluorescence analysis detecting α-sarcomeric actinin (α-SRA) and electron microscopic analysis. These analyses also showed the formation of sarcoplasmic reticulum which serves as calcium store. Correspondingly, the aortic wall-derived beating cardiomyocyte-like cells (Ao-bCMs) exhibited calcium oscillations. This differentiation seems to be dependent on an inflammatory microenvironment since depletion of VW-SC-derived macrophages by treatment with clodronate liposomes in vitro stopped the generation of Ao bCMs. These locally generated F4/80+ macrophages exhibit high levels of VEGF (vascular endothelial growth factor). To a great majority, VW-SCs were found to be positive for VEGFR-2 and blocking this receptor also stopped the generation VW-SC-derived beating cells in vitro. Furthermore, the treatment of aortic wall-derived cells with the ß-receptor agonist isoproterenol or the antagonist propranolol resulted in a significant increase or decrease of beating frequency. Finally, fluorescently labeled aortic wall-derived cells were implanted into the developing chick embryo heart field where they became positive for α-SRA two days after implantation. The current data strongly suggest that VW-SCs resident in the vascular adventitia deliver both progenitors for an inflammatory microenvironment and beating cells. The present study identifies that the Sca-1- rather than Sca-1+ fraction of mouse aortic wall-derived cells harbors VW-SCs differentiating into cardiomyocyte-like cells and reveals an essential role of VW-SCs-derived inflammatory macrophages and VEGF-signaling in this process. Furthermore, this study demonstrates the cardiogenic capacity of aortic VW-SCs in vivo using a chimeric chick embryonic model.}, subject = {Herzmuskelzelle}, language = {en} } @phdthesis{Memmel2019, author = {Memmel, Simon}, title = {Automatisierte Algorithmen zur Analyse der Migration und der strahleninduzierten DNA-Sch{\"a}den humaner Glioblastomzellen nach kombinierter PI3K/mTOR/Hsp90-Inhibierung}, doi = {10.25972/OPUS-18571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185710}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das hohe invasive Potential und die starke Resistenz gegen Radio-/Chemotherapie von Glioblastoma multiforme (GBM) Zellen machen sie zu dem t{\"o}dlichsten Tumor ihrer Art. Es ist deshalb von großem Interesse die Grundlagen, welche der Migrationsf{\"a}higkeit und DNA Reparatur zu Grunde liegen, besser zu verstehen. Im ersten Teil dieser Arbeit wurden zwei Algorithmen zur automatischen Analyse der Migration in der Einzelzellverfolgung und im Wundheilungsassay modifiziert. Die Auswertung der Daten konnte automatisch und somit schnell, effektiv und mit geringerem Arbeitsaufwand durchgef{\"u}hrt werden. Mit Hilfe dieser automatischen Algorithmen wurde die Migrationsf{\"a}higkeit von zwei GBM-Zelllinien (DK-MG und SNB19) untersucht. Zus{\"a}tzlich wurde die konfokale Laserscanning- sowie die hochaufl{\"o}sende dSTORM-Fluoreszenzmikroskopie verwendet um die, der Zellbewegung zu Grunde liegende, Struktur des F Aktin und der fokalen Adh{\"a}sionskinase (FAK) aufzul{\"o}sen und darzustellen. Unter Anwendung dieser genannten Methoden sind die Effekte des dualen PI3K/mTOR Inhibitors PI-103 alleine und in Kombination mit dem Hsp90 Inhibitor NVP AUY922 mit und ohne Bestrahlung auf die Bewegung untersucht worden. Es konnte festgestellt werden, dass sich beide Zelllinien deutlich in ihrem migratorischem Potential in vitro unterscheiden und zudem auch markante Unterschiede in ihrer Morphologie aufweisen. Die weniger invasiven DK MG-Zellen besitzen eine polarisierte Zellstruktur, wohingegen SNB19-Zellen sich durch multipolare ungerichtete Bewegung auszeichneten. Zudem wurde die Migration, durch PI3K/mTOR Inhibition mit PI-103 bei den DK-MG-Zellen (p53 wt, PTEN wt), sehr effektiv unterdr{\"u}ckt. Wohingegen sich die SNB19-Zellen (p53 mut, PTEN mut) resistent gegen diesen Inhibitor zeigten. Hsp90 Inhibition offenbarte in beiden Zelllinien einen starken inhibitorischen Effekt auf die Migration der Zellen sowie die Reorganisierung des F Aktinskelettes. In der zweiten H{\"a}lfte dieser Arbeit wurde ein Augenmerk auf die DNA-DSB-Reparatur der GBM Zellen nach ionisierender Strahlung gelegt. Zun{\"a}chst wurde eine automatische Analysesoftware „FocAn-3D" entwickelt, mit dessen Hilfe die DNA Doppelstrangbruchreparaturkinetik untersucht werden sollte. Diese Software erm{\"o}glicht es die gesamten Zellkerne mit ihren γH2AX-Foci in 3D-cLSM-Aufnahmen zu untersuchen. Es konnte somit eine Verbesserung der Genauigkeit in der Ausz{\"a}hlung der γH2AX-Foci erreicht werden, welche 2D beschr{\"a}nkter Software verwehrt bleibt. Mit FocAn-3D konnte der gesamte Verlauf der Induktions- und Abbauphase der γH2AX-Foci in DK MG- und SNB19-Zellen mit einem mathematischen Modell ausgewertet und dargestellt werden. Des Weiteren wurde die Nanometerstruktur von γH2AX- und pDNA-PKcs-Foci mittels hochaufl{\"o}sender dSTORM-Mikroskopie untersucht. Konventionelle Mikroskopiemethoden, begrenzt durch das Beugungslimit und einer Aufl{\"o}sung von ~200 nm, konnten die Nanometerstruktur (<100 nm) der Reparaturfoci bisher nicht darstellen. Mit Hilfe der beugungsunbegrenzten dSTORM-Mikroskopie war es m{\"o}glich in DK MG- und SNB19-Zellen die Nanometerstruktur genannten Reparaturproteine in den Foci mit einer Aufl{\"o}sung von bis zu ~20 nm darzustellen. γH2AX-Foci zeigten sich als eine Verteilung aus einzelnen Untereinheiten („Nanofoci") mit einem Durchmesser von ~45 nm. Dies l{\"a}sst die Vermutung zu, dass es sich hier um die elementare Substruktur der Foci und somit der γH2AX enthaltenen Nukleosome handelt. DNA-PK-Foci wiesen hingegen eine diffusere Verteilung auf. Die in dieser Arbeit ermittelten Unterschiede im Migrationsverhalten der Zellen rechtfertigen eine weitere pr{\"a}klinische Untersuchung der verwendeten Inhibitoren als potentielle Zelltherapeutika f{\"u}r die Behandlung von GBM. Zudem konnte sich dSTORM als machtvolles Hilfsmittel, sowohl zur Analyse der Migration zugrundeliegenden Zytoskelettstruktur und der Effekte der Hsp90 Inhibierung, als auch, der Nanostruktur der DNA-DSB-Reparaturfoci herausstellen. Es ist anzunehmen, dass beugungsunbegrenzte Mikroskopiemethoden sich als bedeutende Werkzeuge in der medizinischen und biologischen Erforschung der DNA-Reparaturmechanismen herausstellen werden. Das in dieser Arbeit entwickelte ImageJ Plugin „FocAn-3D" bewies sich ebenfalls als ein vielversprechendes Werkzeug f{\"u}r die Analyse der Reparaturkinetik. Mit Hilfe von „FocAn-3D" sollte es somit m{\"o}glich sein u.a. den Einfluss gezielter Inhibition auf den zeitlichen Verlauf der Induktion und des Abbaus der DNA-Reparaturmaschinerie genauer zu studieren.}, subject = {Glioblastom}, language = {de} } @phdthesis{MendesPereira2019, author = {Mendes Pereira, Lenon}, title = {Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung}, doi = {10.25972/OPUS-18317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183176}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through-plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies.}, subject = {Kernspintomografie}, language = {en} } @article{MinevLanderFelleretal.2019, author = {Minev, Boris R. and Lander, Elliot and Feller, John F. and Berman, Mark and Greenwood, Bernadette M. and Minev, Ivelina and Santidrian, Antonio F. and Nguyen, Duong and Draganov, Dobrin and Killinc, Mehmet O. and Vyalkova, Anna and Kesari, Santosh and McClay, Edward and Carabulea, Gabriel and Marincola, Francesco M. and Butterfield, Lisa H. and Szalay, Aladar A.}, title = {First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, doi = {10.1186/s12967-019-2011-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224105}, year = {2019}, abstract = {Background ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). Methods Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. Results No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days—an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. Conclusions Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN\#10201650) on October 22, 2018.}, language = {en} } @article{MolinasGonzalezCastroGonzalezMegiasetal.2019, author = {Molinas-Gonz{\´a}lez, Carlos R. and Castro, Jorge and Gonz{\´a}lez-Meg{\´i}as, Adela and Leverkus, Alexandro B.}, title = {Effects of post-fire deadwood management on soil macroarthropod communities}, series = {Forests}, volume = {10}, journal = {Forests}, number = {11}, issn = {1999-4907}, doi = {10.3390/f10111046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193079}, year = {2019}, abstract = {Dead wood comprises a vast amount of biological legacies that set the scene for ecological regeneration after wildfires, yet its removal is the most frequent management strategy worldwide. Soil-dwelling organisms are conspicuous, and they provide essential ecosystem functions, but their possible affection by different post-fire management strategies has so far been neglected. We analyzed the abundance, richness, and composition of belowground macroarthropod communities under two contrasting dead-wood management regimes after a large wildfire in the Sierra Nevada Natural and National Park (Southeast Spain). Two plots at different elevation were established, each containing three replicates of two experimental treatments: partial cut, where trees were cut and their branches lopped off and left over the ground, and salvage logging, where all the trees were cut, logs were piled, branches were mechanically masticated, and slash was spread on the ground. Ten years after the application of the treatments, soil cores were extracted from two types of microhabitat created by these treatments: bare-soil (in both treatments) and under-logs (in the partial cut treatment only). Soil macroarthropod assemblages were dominated by Hemiptera and Hymenoptera (mostly ants) and were more abundant and richer in the lowest plot. The differences between dead-wood treatments were most evident at the scale of management interventions: abundance and richness were lowest after salvage logging, even under similar microhabitats (bare-soil). However, there were no significant differences between microhabitat types on abundance and richness within the partial cut treatment. Higher abundance and richness in the partial cut treatment likely resulted from higher resource availability and higher plant diversity after natural regeneration. Our results suggest that belowground macroarthropod communities are sensitive to the manipulation of dead-wood legacies and that management through salvage logging could reduce soil macroarthropod recuperation compared to other treatments with less intense management even a decade after application.}, language = {en} } @article{MottolaMorschhaeuser2019, author = {Mottola, Austin and Morschh{\"a}user, Joachim}, title = {An intragenic recombination event generates a Snf4-independent form of the essential protein kinase SNF1 in Candida albicans}, series = {mSphere}, volume = {4}, journal = {mSphere}, number = {3}, doi = {10.1128/mSphere.00352-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202170}, pages = {e00352-19}, year = {2019}, abstract = {The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1\(^{Δ311 - 316}\) was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1\(^{Δ311 - 316}\) still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4.}, language = {en} } @phdthesis{Nelke2019, author = {Nelke, Lena}, title = {Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing}, doi = {10.25972/OPUS-17228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172280}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments.}, subject = {Brustkrebs}, language = {en} } @phdthesis{Neubert2019, author = {Neubert, Franziska}, title = {Markierung postsynaptischer Proteine f{\"u}r die hochaufl{\"o}sende Fluoreszenzmikroskopie}, doi = {10.25972/OPUS-19239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das menschliche Gehirn ist ein Organ, das aufgrund seiner Komplexit{\"a}t und zellul{\"a}ren Diversit{\"a}t noch am wenigsten verstanden ist. Eine der Ursachen daf{\"u}r sind zahlreiche Herausforderungen in diversen neurobiologischen Bild-gebungsverfahren. Erst seit der Erfindung der hochaufl{\"o}senden Fluoreszenz-mikroskopie ist es m{\"o}glich, Strukturen unterhalb der Beugungsgrenze zu visua-lisieren und somit eine maximale Aufl{\"o}sung von bis zu 20 nm zu erreichen. Zus{\"a}tzlich h{\"a}ngt die F{\"a}higkeit, biologische Strukturen aufzul{\"o}sen, von der Markierungs-gr{\"o}ße und -dichte ab. Derzeit ist die h{\"a}ufigste Methode zur Proteinf{\"a}rbung die indirekte Antik{\"o}rperf{\"a}rbung, bei der ein Fluorophor-markierter Sekund{\"a}rantik{\"o}rper an einen Epitop-spezifischen Prim{\"a}rantik{\"o}rper bindet. Dabei kann der Abstand von Zielstruktur und Fluorophor bis zu 30 nm betragen, was eine Aufl{\"o}sungs-verminderung zur Folge haben kann. Aufgrund dessen wurden in dieser Arbeit alternative Markierungsmethoden getestet, um postsynaptische Proteine sicht-bar zu machen. Zun{\"a}chst wurde der postsynaptische N-Methyl-D-Aspartat (NMDA)-Rezeptor mit Hilfe konventioneller indirekter Antik{\"o}rperf{\"a}rbung markiert. Hier war die NR1-Untereinheit des NMDA-Rezeptors von besonderem Interesse, da diese in der Autoimmunerkrankung Anti-NMDA-Rezeptor-Enzephalitis invol-viert ist. Patienten dieser seltenen Krankheit bilden Autoantik{\"o}rper gegen die NR1-Untereinheit, wodurch ein schneller reversibler Verlust der NMDA-Rezeptoren auf der Postsynapse induziert wird. Wichtige Informationen k{\"o}nnen nicht mehr ausreichend weitergegeben werden, was psychiatrische und neurologi-sche St{\"o}rungen zur Folge hat. In dieser Arbeit wurden sowohl kommerzielle NR1-Antik{\"o}rper, als auch rekombinante monoklonale NR1-Antik{\"o}rper von Patien-ten mit Anti-NMDA-Rezeptor-Enzephalitis getestet. In konfokalen und in hochaufgel{\"o}sten SIM- (engl. structured illumination microscopy) und dSTORM- (engl. direct stochastic optical reconstruction microscopy) Messun-gen konnten kommerzielle NR1-Antik{\"o}rper keine erfolgreichen F{\"a}rbungen erzielen. Dagegen erwiesen sich die rekombinanten monoklonalen NR1-Patientenantik{\"o}rper als sehr spezifisch, sowohl in prim{\"a}ren Neuronen als auch im Hippocampus von murinen Gehirnschnitten und lieferten gute Kolokalisati-onen mit dem postsynaptischen Markerprotein Homer. Um die optische Aufl{\"o}sung zu verbessern, wurde eine neue Markierungs-methode mit sog. „Super-Binde-Peptiden" (SBPs) getestet. SBPs sind modifi-zierte Peptide, die erh{\"o}hte Affinit{\"a}ten und Spezifit{\"a}ten aufweisen und mit ei-ner Gr{\"o}ße von ~ 2,5 nm wesentlich kleiner als Antik{\"o}rper sind. In dieser Arbeit best{\"a}tigte sich ein kleines hochspezifisches SPB, das an den Fluoreszenzfarb-stoff Tetra- methylrhodamin (TMR) gekoppelt ist, als effektiver Marker f{\"u}r das Ankerpro-tein Gephyrin. Gephyrin ist f{\"u}r die Lokalisation und Verankerung einiger post-synaptischer Rezeptoren zust{\"a}ndig, indem es sie mit dem Cytoskelett der Zelle verbindet. SIM-Messungen in prim{\"a}ren Neuronen zeigten eine bessere Clus-terrepr{\"a}sentation bei der F{\"a}rbung von Gephyrin mit SBPs, als mit Antik{\"o}rper-f{\"a}rbung. Zus{\"a}tzlich wurden Kolokalisationsanalysen von Gephyrin zusammen mit dem inhibito-rischen pr{\"a}synaptischen vesikul{\"a}ren GABA-Transporter VGAT durchgef{\"u}hrt. Eine weitere F{\"a}rbemethode stellte die bioorthogonale Click-F{\"a}rbung durch die Erweiterung des eukaryotischen genetischen Codes (engl. genetic code ex-pansion, GCE) dar. Dabei wurde eine unnat{\"u}rliche, nicht-kanonische Amino-s{\"a}ure (engl. non-canonical amino acid, ncAA) ins Zielprotein eingebaut und in Kombination mit der Click-Chemie ortsspezifisch mit organischen Tetrazin-Farbstoff-Konjugaten angef{\"a}rbt. Organische Fluorophore haben den Vorteil, dass sie mit einer Gr{\"o}ße von 0,5 - 2 nm sehr klein sind und damit die nat{\"u}rli-chen Funktionen der Proteine in der Zelle kaum beeinflussen. In dieser Arbeit wurde zum ersten Mal gezeigt, dass der tetramere postsynaptische NMDA-Rezeptor durch die Amber-Supres-sionsmethode bioorthogonal angef{\"a}rbt werden konnte. Aus sieben verschiede-nen Amber-Mutanten der NR1-Untereinheit stellte sich die Y392TAG-NR1-Mutante als diejenige mit der besten Proteinexpression, F{\"a}rbeeffizienz und rezeptorfunktionalit{\"a}t heraus. Dies konnte durch Fluoreszenzmikroskopie- und Whole-Cell Patch-Clamp-Experimenten gezeigt werden. Die bioorthogo-nale Click-F{\"a}rbung durch GCE eignete sich f{\"u}r die F{\"a}rbung des NMDA-Rezeptors in verschiedenen Zelllinien, mit unterschiedlichen Tetrazin-Farbstoff-Konjugaten und f{\"u}r Lebendzellexperimente. In dSTORM-Messungen erwies sich das Tetrazin-Cy5-Farbstoff-Konjugat als ideal aufgrund seiner Gr{\"o}-ße, Photostabilit{\"a}t, Helligkeit und seines geeigneten Blinkverhaltens, sodass eine homogene NMDA-Rezeptorverteilung auf der Zellmembran gezeigt wer-den konnte. NR1-Antik{\"o}rperf{\"a}rbungen wiesen dagegen starke Clusterbildun-gen auf. Die Ergebnisse konnten belegen, dass kleinere Farbstoffe eine deut-lich bessere Zug{\"a}nglichkeit zu ihrem Zielprotein haben und somit besser f{\"u}r die hochaufl{\"o}sende Fluoreszenzmikroskopie geeignet sind.}, subject = {hochaufl{\"o}sende Fluoreszenzmikroskopie}, language = {de} } @phdthesis{Njovu2019, author = {Njovu, Henry Kenneth}, title = {Patterns and drivers of herbivore diversity and invertebrate herbivory along elevational and land use gradients at Mt. Kilimanjaro, Tanzania}, doi = {10.25972/OPUS-17254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis elucidates patterns and drivers of invertebrate herbivory, herbivore diversity, and community-level biomass along elevational and land use gradients at Mt. Kilimanjaro, Tanzania. Chapter I provides background information on the response and predictor variables, study system, and the study design. First, I give an overview of the elevational patterns of species diversity/richness and herbivory published in the literature. The overview illuminates existing debates on elevational patterns of species diversity/richness and herbivory. In connection to these patterns, I also introduce several hypotheses and mechanisms put forward to explain macroecological patterns of species richness. Furthermore, I explain the main variables used to test hypotheses. Finally, I describe the study system and the study design used. Chapter II explores the patterns of invertebrate herbivory and their underlying drivers along extensive elevational and land use gradients on the southern slopes of Mt. Kilimanjaro. I recorded standing leaf herbivory from leaf chewers, leaf miners and gall-inducing insects on 55 study sites located in natural and anthropogenic habitats distributed from 866 to 3060 meters above sea level (m asl) on Mt. Kilimanjaro. Standing leaf herbivory was related to climatic variables [mean annual temperature - (MAT) and mean annual precipitation - (MAP)], net primary productivity (NPP) and plant functional traits (leaf traits) [specific leaf area (SLA), carbon to nitrogen ratio (CN), and nitrogen to phosphorous ratio (NP)]. Results revealed an unimodal pattern of total leaf herbivory along the elevation gradient in natural habitats. Findings also revealed differences in the levels and patterns of herbivory among feeding guilds and between anthropogenic and natural habitats. Changes in NP and CN ratios which were closely linked to NPP were the strongest predictors of leaf herbivory. Our study uncovers the role of leaf nutrient stoichiometry and its linkages to climate in explaining the variation in leaf herbivory along climatic gradients. Chapter III presents patterns and unravels direct and indirect effects of resource (food) abundance (NPP), resource (food) diversity [Functional Dispersion (FDis)], resource quality (SLA, NP, and CN rations), and climate variables (MAT and MAP) on species diversity of phytophagous beetles. Data were collected from 65 study sites located in natural and anthropogenic habitats distributed from 866 to 4550 m asl on the southern slopes of Mt. Kilimanjaro. Sweep net and beating methods were used to collect a total of 3,186 phytophagous beetles representing 21 families and 304 morphospecies. Two groups, weevils (Curculionidae) and leaf beetles (Chrysomelidae) were the largest and most diverse families represented with 898 and 1566 individuals, respectively. Results revealed complex (bimodal) and dissimilar patterns of Chao1-estimated species richness (hereafter referred to as species diversity) along elevation and land use gradients. Results from path analysis showed that temperature and climate-mediated changes in NPP had a significant positive direct and indirect effect on species diversity of phytophagous beetles, respectively. The results also revealed that the effect of NPP (via beetles abundance and diversity of food resources) on species diversity is stronger than that of temperature. Since we found that factors affecting species diversity were intimately linked to climate, I concluded that predicted climatic changes over the coming decades will likely alter the species diversity patterns which we observe today. Chapter IV presents patterns and unravels the direct and indirect effects of climate, NPP and anthropogenic disturbances on species richness and community-level biomass of wild large mammals which represent endothermic organisms and the most important group of vertebrate herbivores. Data were collected from 66 study sites located in natural and anthropogenic habitats distributed from 870 to 4550 m asl on the southern slopes of Mt. Kilimanjaro. Mammals were collected using camera traps and used path analysis to disentangle the direct and indirect effects of climatic variables, NPP, land use, land area, levels of habitat protection and occurrence of domesticated mammals on the patterns of richness and community-level biomass of wild mammals, respectively. Results showed unimodal patterns for species richness and community-level biomass of wild mammals along elevation gradients and that the patterns differed depending on the type of feeding guild. Findings from path analysis showed that net primary productivity and levels of habitat protection had a strong direct effect on species richness and community-level biomass of wild mammals whereas temperature had an insignificant direct effect. Findings show the importance of climate-mediated food resources in determining patterns of species richness of large mammals. While temperature is among key predictors of species richness in several ectotherms, its direct influence in determining species richness of wild mammals was insignificant. Findings show the sensitivity of wild mammals to anthropogenic influences and underscore the importance of protected areas in conserving biodiversity. In conclusion, despite a multitude of data sets on species diversity and ecosystem functions along broad climatic gradients, there is little mechanistic understanding of the underlying causes. Findings obtained in the three studies illustrate their contribution to the scientific debates on the mechanisms underlying patterns of herbivory and diversity along elevation gradients. Results present strong evidence that plant functional traits play a key role in determining invertebrate herbivory and species diversity along elevation gradients and that, their strong interdependence with climate and anthropogenic activities will shape these patterns in future. Additionally, findings from path analysis demonstrated that herbivore diversity, community-level biomass, and herbivory are strongly influenced by climate (either directly or indirectly). Therefore, the predicted climatic changes are expected to dictate ecological patterns, biotic interactions, and energy and nutrient fluxes in terrestrial ecosystems in the coming decades with stronger impacts probably occurring in natural ecosystems. Furthermore, findings demonstrated the significance of land use effects in shaping ecological patterns. As anthropogenic pressure is advancing towards more pristine higher elevations, I advocate conservation measures which are responsive to and incorporate human dimensions to curb the situation. Although our findings emanate from observational studies which have to take several confounding factors into account, we have managed to demonstrate global change responses in real ecosystems and fully established organisms with a wide range of interactions which are unlikely to be captured in artificial experiments. Nonetheless, I recommend additional experimental studies addressing the effect of top-down control by natural enemies on herbivore diversity and invertebrate herbivory in order to deepen our understanding of the mechanisms driving macroecological patterns along elevation gradients.  }, subject = {Species richness}, language = {en} } @phdthesis{Pahlavan2019, author = {Pahlavan, Pirasteh}, title = {Integrated Systems Biology Analysis; Exemplified on Potyvirus and Geminivirus interaction with \(Nicotiana\) \(benthamiana\)}, doi = {10.25972/OPUS-15341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153412}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus. Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV. Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls. Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability. Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens.}, language = {en} } @article{PanzerBrychBatschaueretal.2019, author = {Panzer, Sabine and Brych, Annika and Batschauer, Alfred and Terpitz, Ulrich}, title = {Opsin 1 and Opsin 2 of the corn smut fungus ustilago maydis are green light-driven proton pumps}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.00735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201453}, pages = {735}, year = {2019}, abstract = {In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.}, language = {en} } @article{PaponovDindas Krol etal.2019, author = {Paponov, Ivan A. and Dindas , Julian and Kr{\´o}l , Elżbieta and Friz, Tatyana and Budnyk, Vadym and Teale, William and Paponov, Martina and Hedrich , Rainer and Palme, Klaus}, title = {Auxin-Induced plasma membrane depolarization is regulated by Auxin transport and not by AUXIN BINDING PROTEIN1}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01953}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195914}, year = {2019}, abstract = {Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} } @article{PaulsHamaratTrufasuetal.2019, author = {Pauls, Dennis and Hamarat, Yasmin and Trufasu, Luisa and Schendzielorz, Tim M. and Gramlich, Gertrud and Kahnt, J{\"o}rg and Vanselow, Jens and Schlosser, Andreas and Wegener, Christian}, title = {Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate}, series = {European Journal of Neuroscience}, volume = {50}, journal = {European Journal of Neuroscience}, number = {9}, doi = {10.1111/ejn.14516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204863}, pages = {3502-3519}, year = {2019}, abstract = {Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE ), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD ) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila . We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD -encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila . dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.}, language = {en} } @phdthesis{PompergebMueller2019, author = {Pomper [geb. M{\"u}ller], Laura Dorothea}, title = {Unterschiede in Frontaler Kortex Oxygenierung in zweierlei Risikogruppen der Alzheimer Demenz}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die verbesserte medizinische Versorgung f{\"u}hrt zu einer zunehmenden Lebenserwartung unserer Gesellschaft. Damit steigt auch die sozio{\"o}konomische Relevanz neurodegenerativer Erkrankungen kontinuierlich. F{\"u}r die Alzheimer Demenz (AD), die dabei die h{\"a}ufigste Ursache darstellt, stehen bisher keine krankheitsmodifizierenden Behandlungsoptionen zur Verf{\"u}gung. Die lange pr{\"a}klinische Phase der Erkrankung birgt jedoch großes Potential f{\"u}r die Entwicklung neuer Behandlungsoptionen. Das Untersuchen von Risikogruppen ist f{\"u}r die Identifikation von Pr{\"a}diktoren einer sp{\"a}teren AD Manifestation von besonderem Interesse. In diesem Zusammenhang werden insbesondere das Vorliegen genetischer Risikokonstellationen, wie dem Apolipoprotein E (APOE) Ɛ4-Allel, sowie kognitiver Risikofaktoren, wie der „leichten kognitiven Beeintr{\"a}chtigung" (MCI), diskutiert. Die Identifikation pr{\"a}klinischer Aktivierungsunterschiede in relevanten Gehirnregionen von Risikogruppen kann als Basis f{\"u}r die Entwicklung neurofunktioneller Fr{\"u}herkennungs-Marker dienen. Der pr{\"a}frontale Kortex (PFC), welcher mit der Steuerung von Exekutivfunktionen assoziiert wird, hat sich in diesem Zusammenhang in bisherigen Studien als eine relevante Schl{\"u}sselregion manifestiert. Aufgrund der aufwendigen und kostenintensiven bildgebenden Untersuchungsmethoden, sind die genauen Prozesse jedoch noch unklar. Ziel der vorliegenden Arbeit war es daher, Unterschiede in der PFC Oxygenierung in zweierlei Risikogruppen der AD mit einer kosteng{\"u}nstigeren Bildgebungsmethode, der funktionellen Nahinfrarot Spektroskopie (fNIRS), zu untersuchen. Daf{\"u}r wurde in einem ersten Schritt, der Trailmaking Test (TMT), ein weitverbreiteter neuropsychologischer Test zur Erfassung exekutiver Funktionen, f{\"u}r fNIRS implementiert. Als Grundlage f{\"u}r die Untersuchung fr{\"u}hpathologischer Prozesse, wurden zun{\"a}chst gesunde Alterungsprozesse betrachtet. Der Vergleich von jungen und {\"a}lteren Probanden (n = 20 pro Gruppe) wies neben der Eignung der Testimplementierung f{\"u}r fNIRS auf eine spezifische bilaterale PFC Oxygenierung hin, welche bei jungen Probanden rechtshemisph{\"a}risch lateralisiert war. {\"A}ltere Probanden hingegen zeigten bei vergleichbaren Verhaltensdaten insgesamt mehr signifikante Kan{\"a}le sowie eine Abnahme der Lateralisierung. Dies kann als zus{\"a}tzlicher Bedarf an Ressourcen in gesunden Alterungsprozessen interpretiert werden. Im Rahmen der Hauptstudie wurden anschließend insgesamt 604 {\"a}ltere Probanden im Alter von 70 bis 76 Jahren untersucht. Zun{\"a}chst wurde die genetische Risikogruppe der Ɛ4-Allel-Tr{\"a}ger (n = 78) mit den neutralen Ɛ3-Allel-Tr{\"a}gern (n = 216) und den Tr{\"a}gern des als protektiv geltenden Ɛ2-Allels (n = 50) verglichen. Hierbei zeigte sich eine geringere Oxygenierung der Risikogruppe bei geringer Aufgabenschwierigkeit, w{\"a}hrend sich ein erh{\"o}hter Oxygenierungsanstieg im medialen PFC mit steigender Aufgabenschwierigkeit zeigte. Dies deutet auf einen erh{\"o}hten Bedarf an neuronalen Kontrollmechanismen der Risikogruppe zur Bew{\"a}ltigung der steigenden Aufgabenschwierigkeit hin. Die protektive Gruppe zeigte hingegen eine erh{\"o}hte Oxygenierung im ventralen PFC mit steigender Aufgabenschwierigkeit, was m{\"o}glicherweise auf einen pr{\"a}ventiven Effekt hindeuten k{\"o}nnte. Weiterf{\"u}hrend wurden MCI-Patienten mit gesunden Probanden (n = 57 pro Gruppe) hinsichtlich des kognitiven Risikofaktors verglichen. Hierbei zeigte sich ein punktuell reduzierter Oxygenierunganstieg der MCI Patienten mit steigender Aufgabenschwierigkeit vor allem im ventralen PFC bei ebenfalls stabiler Verhaltensleistung. Die gefundene Reduktion k{\"o}nnte ein Zeichen f{\"u}r eine aufgebrauchte kognitive Reserve sein, welche Einbußen auf Verhaltensebene voranzugehen scheint. Diese charakteristischen Unterschiede in den frontalen Oxygenierungsmustern von Risikogruppen (APOE, MCI) k{\"o}nnten als Biomarker zur Fr{\"u}herkennung von AD noch vor dem Auftreten kognitiver Einbußen dienen. Die fNIRS-Untersuchung w{\"a}hrend der Durchf{\"u}hrung des TMT hat sich in diesem Zusammenhang als potentielles Instrument zur Fr{\"u}hdiagnose der pr{\"a}klinischen Phase der AD als geeignet erwiesen. Die Ergebnisse werden unter Einbezug des wissenschaftlichen Kontexts interpretiert und Implikationen f{\"u}r weitere notwendige Studien sowie die klinische Anwendbarkeit diskutiert.}, subject = {Alzheimerkrankheit}, language = {de} } @article{PoppRamirezZavalaSchwanfelderetal.2019, author = {Popp, Christina and Ram{\´i}rez-Zavala, Bernardo and Schwanfelder, Sonja and Kr{\"u}ger, Ines and Morschh{\"a}user, Joachim}, title = {Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02740-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200901}, pages = {e02740-18}, year = {2019}, abstract = {The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans. Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.}, language = {en} } @phdthesis{Potabattula2019, author = {Potabattula, Ramya Sri Krishna}, title = {Male aging and obesity effects on sperm methylome and consequences for the next generation}, doi = {10.25972/OPUS-16548}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Besides a growing tendency for delayed parenthood, sedentary lifestyle coupled with overnutrition has dramatically increased worldwide over the last few decades. Epigenetic mechanisms can help us understand the epidemics and heritability of complex traits like obesity to a significant extent. Majority of the research till now has focused on determining the impact of maternal factors on health and disease risk in the offspring(s). This doctoral thesis is focused on deciphering the potential effects of male aging and obesity on sperm methylome, and consequences/transmission via germline to the next generation. In humans, this was assessed in a unique cohort of ~300 sperm samples, collected after in vitro fertilization/intracytoplasmic sperm injection, as well as in conceived fetal cord blood samples of the children. Furthermore, aging effect on sperm samples derived from a bovine cohort was analyzed. The study identified that human male aging significantly increased the DNA methylation levels of the promoter, the upstream core element, the 18S, and the 28S regions of ribosomal DNA (rDNA) in sperm. Prediction models were developed to anticipate an individual's age based on the methylation status of rDNA regions in his sperm. Hypermethylation of alpha satellite and LINE1 repeats in human sperm was also observed with aging. Epimutations, which are aberrantly methylated CpG sites, were significantly higher in sperm of older males compared to the younger ones. These effects on the male germline had a negative impact on embryo quality of the next generation. Consistent with these results, DNA methylation of rDNA regions, bovine alpha satellite, and testis satellite repeats displayed a significant positive correlation with aging sperm samples within the same individual and across different age-grouped bulls. A positive association between human male obesity/body mass index (BMI) and DNA methylation of the imprinted MEG3 gene and the obesity-related HIF3A gene was detected in sperm. These BMI-induced sperm DNA methylation signatures were transmitted to next generation fetal cord blood (FCB) samples in a gender-specific manner. Males, but not female offsprings exhibited a significant positive correlation between father's BMI and FCB DNA methylation in the two above-mentioned amplicons. Additionally, hypomethylation of IGF2 with increased paternal BMI was observed in female FCB samples. Parental allele-specific in-depth methylation analysis of imprinted genes using next generation sequencing technology also revealed significant correlations between paternal factors like age and BMI, and the corresponding father's allele DNA methylation in FCB samples. Deep bisulphite sequencing of imprinted genes in diploid somatic cord blood cells of offspring detected that the levels of DNA methylation signatures largely depended on the underlying genetic variant, i.e. sequence haplotypes. Allele-specific epimutations were observed in PEG1, PEG5, MEG3, H19, and IGF2 amplicons. For the former three genes, the non-imprinted unmethylated allele displayed more epimutations than the imprinted methylated allele. On the other hand, for the latter two genes, the imprinted allele exhibited higher epimutation rate than that of the non-imprinted allele. In summary, the present study proved that male aging and obesity impacts the DNA methylome of repetitive elements and imprinted genes respectively in sperm, and also has considerable consequences on the next generation. Nevertheless, longitudinal follow-up studies are highly encouraged to elucidate if these effects can influence the risk of developing abnormal phenotype in the offspring during adulthood.}, language = {en} } @article{Puetz2019, author = {P{\"u}tz, Stephanie M.}, title = {Mbt/PAK4 together with SRC modulates N-Cadherin adherens junctions in the developing Drosophila eye}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.038406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200898}, pages = {bio038406}, year = {2019}, abstract = {Tissue morphogenesis is accompanied by changes of adherens junctions (AJ). During Drosophila eye development, AJ reorganization includes the formation of isolated N-Cadherin AJ between photoreceptors R3/R4. Little is known about how these N-Cadherin AJ are established and maintained. This study focuses on the kinases Mbt/PAK4 and SRC, both known to alter E-Cadherin AJ across phyla. Drosophila p21-activated kinase Mbt and the non-receptor tyrosine kinases Src64 and Src42 regulate proper N-Cadherin AJ. N-Cadherin AJ elongation depends on SRC kinase activity. Cell culture experiments demonstrate binding of both Drosophila SRC isoforms to N-Cadherin and its subsequent tyrosine phosphorylation. In contrast, Mbt stabilizes but does not bind N-Cadherin in vitro. Mbt is required in R3/R4 for zipping the N-Cadherin AJ between these cells, independent of its kinase activity and Cdc42-binding. The mbt phenotype can be reverted by mutations in Src64 and Src42. Because Mbt neither directly binds to SRC proteins nor has a reproducible influence on their kinase activity, the conclusion is that Mbt and SRC signaling converge on N-Cadherin. N-Cadherin AJ formation during eye development requires a proper balance between the promoting effects of Mbt and the inhibiting influences of SRC kinases.}, language = {en} } @article{RaheemTawfikeAbdelmohsenetal.2019, author = {Raheem, Dotsha J. and Tawfike, Ahmed F. and Abdelmohsen, Usama R. and Edrada-Ebel, RuAngelie and Fitzsimmons-Thoss, Vera}, title = {Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (\(Hyacinthoides\) \(non-scripta\))}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-38940-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224935}, pages = {2547, 1-13}, year = {2019}, abstract = {Bulb, leaf, scape and flower samples of British bluebells (Hyacinthoides non-scripta) were collected regularly for one growth period. Methanolic extracts of freeze-dried and ground samples showed antitrypanosomal activity, giving more than 50\% inhibition, for 20 out of 41 samples. High-resolution mass spectrometry was used in the dereplication of the methanolic extracts of the different plant parts. The results revealed differences in the chemical profile with bulb samples being distinctly different from all aerial parts. High molecular weight metabolites were more abundant in the flowers, shoots and leaves compared to smaller molecular weight ones in the bulbs. The anti-trypanosomal activity of the extracts was linked to the accumulation of high molecular weight compounds, which were matched with saponin glycosides, while triterpenoids and steroids occurred in the inactive extracts. Dereplication studies were employed to identify the significant metabolites via chemotaxonomic filtration and considering their previously reported bioactivities. Molecular networking was implemented to look for similarities in fragmentation patterns between the isolated saponin glycoside at m/z 1445.64 [M + formic-H](-) equivalent to C64H104O33 and the putatively found active metabolite at m/z 1283.58 [M + formic-H](-) corresponding to scillanoside L-1. A combination of metabolomics and bioactivity-guided approaches resulted in the isolation of a norlanostane-type saponin glycoside with antitrypanosoma I activity of 98.9\% inhibition at 20 mu M.}, language = {en} } @article{RequierPailletLarocheetal.2019, author = {Requier, Fabrice and Paillet, Yoan and Laroche, Fabienne and Rutschmann, Benjamin and Zhang, Jie and Lombardi, Fabio and Svoboda, Miroslav and Steffan-Dewenter, Ingolf}, title = {Contribution of European forests to safeguard wild honeybee populations}, series = {Conservation Letters}, volume = {13}, journal = {Conservation Letters}, number = {2}, doi = {10.1111/conl.12693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204407}, pages = {e12693}, year = {2019}, abstract = {Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe.}, language = {en} } @article{ReuterJaeckelsKneitzetal.2019, author = {Reuter, Isabel and J{\"a}ckels, Jana and Kneitz, Susanne and Kuper, Jochen and Lesch, Klaus-Peter and Lillesaar, Christina}, title = {Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.040683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200749}, pages = {bio040683}, year = {2019}, abstract = {In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development.}, language = {en} } @article{RiesSanderDeoletal.2019, author = {Ries, Lena K. and Sander, Bodo and Deol, Kirandeep K. and Letzelter, Marie-Annick and Strieter, Eric Robert and Lorenz, Sonja}, title = {Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity}, series = {Journal of Biological Chemistry}, volume = {294}, journal = {Journal of Biological Chemistry}, number = {15}, doi = {10.1074/jbc.RA118.007014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226207}, pages = {6113-6129}, year = {2019}, abstract = {Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.}, language = {en} } @phdthesis{Romanov2019, author = {Romanov, Natalie}, title = {Characterizing Variation of Protein Complexes and Functional Modules on a Temporal Scale and across Individuals}, doi = {10.25972/OPUS-16813}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {A fundamental question in current biology concerns the translational mechanisms leading from genetic variability to phenotypes. Technologies have evolved to the extent that they can efficiently and economically determine an individual's genomic composition, while at the same time big data on clinical profiles and diagnostics have substantially accumulated. Genome-wide association studies linking genomic loci to certain traits, however, remain limited in their capacity to explain the cellular mechanisms that underlie the given association. For most associations, gene expression has been blamed; yet given that transcript and protein abundance oftentimes do not correlate, that finding does not necessarily decrypt the underlying mechanism. Thus, the integration of further information is crucial to establish a model that could prove more accurate in predicting genotypic effects on the human organism. In this work we describe the so-called proteotype as a feature of the cell that could provide a substantial link between genotype and phenotype. Rather than looking at the proteome as a set of independent molecules, we demonstrate a consistent modular architecture of the proteome that is driven by molecular cooperativity. Functional modules, especially protein complexes, can be further interrogated for differences between individuals and tackled as imprints of genetic and environmental variability. We also show that subtle stoichiometric changes of protein modules could have broader effects on the cellular system, such as the transport of specific molecular cargos. The presented work also delineates to what extent temporal events and processes influence the stoichiometry of protein complexes and functional modules. The re-wiring of the glycolytic pathway for example is illustrated as a potential cause for an increased Warburg effect during the ageing of the human bone marrow. On top of analyzing protein abundances we also interrogate proteome dynamics in terms of stability and solubility transitions during the short temporal progression of the cell cycle. One of our main observations in the thesis encompass the delineation of protein complexes into respective sub-complexes according to distinct stability patterns during the cell cycle. This has never been demonstrated before, and is functionally relevant for our understanding of the dis- and assembly of large protein modules. The insights presented in this work imply that the proteome is more than the sum of its parts, and primarily driven by variability in entire protein ensembles and their cooperative nature. Analyzing protein complexes and functional modules as molecular reflections of genetic and environmental variations could indeed prove to be a stepping stone in closing the gap between genotype and phenotype and customizing clinical treatments in the future.}, subject = {Proteotype}, language = {en} } @article{RothDoerflerBaessleretal.2019, author = {Roth, Nicolas and Doerfler, Inken and B{\"a}ssler, Claus and Blaschke, Markus and Bussler, Heinz and Gossner, Martin M. and Heideroth, Antje and Thorn, Simon and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg}, title = {Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity}, series = {Diversity and Distributions}, volume = {25}, journal = {Diversity and Distributions}, number = {3}, doi = {10.1111/ddi.12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227061}, pages = {430-441}, year = {2019}, abstract = {Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests.}, language = {en} } @phdthesis{RoesergebAssmus2019, author = {R{\"o}ser [geb. Aßmus], Benjamin}, title = {SPRED2 (Sprouty-related EVH1 domain containing 2) reguliert die Autophagie in Kardiomyozyten}, doi = {10.25972/OPUS-18270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182700}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Sprouty-related, EVH1 domain containing protein 2 (SPRED2) ist ein inhibitorisches, downstream von Ras wirkendes Protein des MAP-Kinase Signalwegs, welches entscheidenden Einfluss auf die Regulation von Proliferation, Expression von Proteinen und der zellul{\"a}ren Hom{\"o}ostase hat. Der kardiale Ph{\"a}notyp von SPRED2- defizienten M{\"a}usen zeigt nicht nur eine deutliche linksventrikul{\"a}re Hypertrophie, sondern auch eine erh{\"o}hte Fibrosierung des Herzgewebes. Zellul{\"a}r wird die SPRED2- Defizienz durch die Akkumulation von vesikul{\"a}ren Strukturen innerhalb der Zelle, sowie eine markant erh{\"o}hte Anzahl von Vesikeln entlang der longitudinalen Reihen der Mitochondrien gekennzeichnet. Ziel dieser Arbeit war es, den Charakter dieser vesikul{\"a}ren Strukturen n{\"a}her zu beleuchten und festzustellen, in welchem Zusammenhang die subzellul{\"a}r ver{\"a}nderte Architektur mit der Hypertrophie der SPRED2-defizienten Tiere steht. Um diese Fragestellung zu beantworten, wurde zun{\"a}chst nach einem vesikul{\"a}ren Degradationsmechanismus gesucht, der in SPRED2-/--Cardiomyocyten betroffen sein k{\"o}nnte. Die Macroautophagie, im folgenden Autophagie bezeichnet, ist ein solcher Degradationsmechanismus, bei dem selektiv langlebige Proteine und Zellorganellen abgebaut werden. Es konnten signifikante Ver{\"a}nderung der Protein-Level an Schl{\"u}sselpositionen der Autophagie identifiziert werden. Das Ubiquitin-aktivierende (E1) Enzym Homolog Atg7 sowie die Cystein-Protease Atg4B zeigen sich im SPRED2- KO deutlich reduziert. Ebenso Atg16L, das als essentieller Bestandteil des Atg5- Atg12-Atg16-Konjugationssystems bei der Konjugation von MAPLC3-II an das Phospholipid Phosphatidylethanolamin beteiligt ist. Die Autophagie-Rate als Verh{\"a}ltnis von konjugiertem zu unkonjugiertem MAPLC3 ist ebenfalls reduziert. Die Akkumulation der autophagischen Vesikel zeigt sich kongruent zu dem erh{\"o}hten Protein-Level der autophagischen Cargo-Rezeptoren SQSTM1 und NBR1, sowie des lysosomalen Markers CathepsinD. Außer der verringerten Autophagie-Rate zeigt sich in Einklang mit der Fibrosierung des Herzgewebes eine erh{\"o}ht aktive Caspase-3 als Marker f{\"u}r Apoptose. Um die mitochondriale Integrit{\"a}t n{\"a}her zu beleuchten, wurde die Menge an reaktiven Sauerstoffspezies (ROS) in Wildtyp und SPRED2-KO untersucht. Hierbei zeigte sich eine erh{\"o}hte Menge an ROS im KO, was ein Hinweis auf eine Beeintr{\"a}chtigung der Mitochondrien darstellt. Letztlich wurde die Hypothese {\"u}berpr{\"u}ft, ob ein gest{\"o}rter Transport der Vesikel durch eine Beeintr{\"a}chtigung der Motorproteine Dynein und Kinesin vorliegt. In der Tat zeigte sich die Aktivit{\"a}t der Dynein-ATPase verringert in der Abwesenheit von SPRED2. Diese Beobachtung wird durch die erh{\"o}hten Mengen des vSNARE-Proteins VTI1b unterst{\"u}tzt, was letztlich die Akkumulation der autophagischen Vesikel mit einer verringerten F{\"a}higkeit zur Membranfusion und dem ineffizienteren Transport der Vesikel in Einklang bringt. Da die gesamten Experimente in einem globalen SPRED2-KO System durchgef{\"u}hrt wurden, k{\"o}nnen eventuelle Auswirkungen der beeinflussten hormonellen Situation der SPRED2-KO Tiere auf den Herzph{\"a}notyp nicht final ausgeschlossen werden. Um die genaue Wirkung einer SPRED2-Defizienz auf das Herzgewebe und das Herz als Organ zu untersuchen, wurde im Rahmen dieser Arbeit eine SPRED2- defiziente knockout Mauslinie mit konditionalem Potential generiert, die eine gesteuerte Deletion von SPRED2 im Herzgewebe erlaubt.}, subject = {Spred-Proteine}, language = {de} } @phdthesis{Ruecker2019, author = {R{\"u}cker, Christoph}, title = {Development of a prevascularized bone implant}, doi = {10.25972/OPUS-17886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant's innate vasculature to the host's circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Sauer2019, author = {Sauer, Mark}, title = {Die microRNA-26 Familie kontrolliert {\"u}ber den REST-Komplex ein f{\"u}r die Neurogenese essentielles regulatorisches RNA Netzwerk}, doi = {10.25972/OPUS-18400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In einem sich entwickelnden multizellul{\"a}ren Organismus ist die r{\"a}umlich-zeitliche Regulation der Genexpression von entscheidender Bedeutung f{\"u}r die Bildung, Identit{\"a}t und Funktion von Zellen. Der REST (repressor element silencing transcription factor) Komplex spielt bei der neuronalen Differenzierung und bei der Aufrechterhaltung des neuronalen Status eine essentielle Rolle, indem er in nicht neuronalen Zellen und neuralen Vorl{\"a}ufern die Expression neuronaler Gene unterdr{\"u}ckt, in deren Promotorregion eine RE1 (repressor element 1) Erkennungssequenz vorhanden ist. W{\"a}hrend der neuronalen Differenzierung wird der REST-Komplex schrittweise inaktiviert, was zur Einleitung eines neuronalen Genexpression-Programms f{\"u}hrt. Es wird daher angenommen, dass die Inhibierung des REST-Komplexes ein essentieller Vorgang der Neurogenese ist. Wichtige Bestandteile f{\"u}r die transkriptionell repressive Funktion des REST-Komplexes sind kleine Phosphatasen (CTDSP = C-terminal domain small phosphatases), welche die Polymerase-II-Aktivit{\"a}t an Zielgenen inhibieren. Im Zebrafisch wurde gezeigt, dass ctdsp2 durch die miR-26b negativ reguliert wird. Alle miR-26 Familienmitglieder sind in Vertebraten evolution{\"a}r konserviert und in Introns von Ctdsp Genen kodiert. Sie sind in der Lage, die Expression ihres eigenen Wirtsgens mittels einer autoregulatorischen R{\"u}ckkopplungsschleife zu regulieren. Im Rahmen dieser Dissertation wurde als Modellsystem f{\"u}r die Neurogenese ein neurales Differenzierungssystem, welches auf murinen, embryonalen Stammzellen (ESCs) aufbaut, eingesetzt. Zur funktionellen Analyse der miR-26 Familie wurden mit Hilfe der CRISPR/Cas9-Methode verschiedene miR-26 Knockout (KO) ESC-Linien hergestellt. Hierbei wurden die Sequenzen der einzelnen Familienmitglieder und der gesamten miR-26 Familie im Genom von Wildtyp (Wt) ESCs deletiert. Diese miR-26-defizienten ESCLinien behielten ihre Pluripotenz und zeigten keinen Ph{\"a}notyp hinsichtlich Proliferation, Morphologie und Identit{\"a}t der Zellen w{\"a}hrend der Differenzierung bis zum neuralen Vorl{\"a}uferzellstadium (NPCs, engl.: neural progenitor cells). Jedoch f{\"u}hrte die Deletion sowohl der gesamten miR-26 Familie als auch einzelner Mitglieder bei der terminalen Differenzierung zu einem spezifischen Entwicklungsstillstand im NPC Stadium und infolgedessen zu einer starken Reduktion der Anzahl von Neuronen und Astroglia. Die Transkriptom-Analyse der differenzierten miR-26-KO ESCs mittels RNA-Seq zeigte, dass die Expression von Genen die mit der Neurogenese und der neuronalen Differenzierung, aber auch der Gliogenese assoziert sind, herunterreguliert war. Die Abwesenheit der miR-26 Familie f{\"u}hrte außerdem zu einer selektiven Reduzierung bestimmter miRNAs (REST-miRs), die einerseits die Expression von REST-Komplex Komponenten unterdr{\"u}cken k{\"o}nnen, und andererseits selbst unter dessen transkriptioneller Kontrolle stehen. Zu diesem REST-miR Netzwerk geh{\"o}ren einige miRNAs (miR-9, miR-124, miR-132 und miR-218), die wichtige Funktionen bei verschiedenen Prozessen der neuronalen Entwicklung haben. Weiterhin f{\"u}hrte der miR-26-KO zu einer Derepression der Proteinlevel von REST und CTDSP2 w{\"a}hrend der terminalen Differenzierung. Funktionelle Analysen mit miRNA mimics zeigten, dass erh{\"o}hte miR-26 Level zu einer Hochregulation von REST-miRs f{\"u}hren. Weitere Experimente, die darauf zielten, die Hierarchie des REST-miR Netwerks aufzukl{\"a}ren zeigten, dass die miR-26 Familie stromaufw{\"a}rts die REST-miR Expression reguliert. Zusammengefasst weisen die in dieser Arbeit gezeigten Daten darauf hin, dass die miR-26 Familie als Initiator der schrittweisen Inaktivierung des REST-Komplexes eine zentrale Rolle bei der Differenzierung von neuralen Vorl{\"a}uferzellen zu postmitotischen Neuronen spielt.}, language = {de} } @phdthesis{Sauer2019, author = {Sauer, Markus}, title = {DHX36 function in RNA G-quadruplex-mediated posttranscriptional gene regulation}, doi = {10.25972/OPUS-18395}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183954}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The expression of genetic information into proteins is a key aspect of life. The efficient and exact regulation of this process is essential for the cell to produce the correct amounts of these effector molecules to a given situation. For this purpose, eukaryotic cells have developed many different levels of transcriptional and posttranscriptional gene regulation. These mechanisms themselves heavily rely on interactions of proteins with associated nucleic acids. In the case of posttranscriptional gene regulation an orchestrated interplay between RNA-binding proteins, messenger RNAs (mRNA), and non-coding RNAs is compulsory to achieve this important function. A pivotal factor hereby are RNA secondary structures. One of the most stable and diverse representatives is the G-quadruplex structure (G4) implicated in many cellular mechanisms, such as mRNA processing and translation. In protein biosynthesis, G4s often act as obstacles but can also assist in this process. However, their presence has to be tightly regulated, a task which is often fulfilled by helicases. One of the best characterized G4-resolving factors is the DEAH-box protein DHX36. The in vitro function of this helicase is extensively described and individual reports aimed to address diverse cellular functions as well. Nevertheless, a comprehensive and systems-wide study on the function of this specific helicase was missing, so far. The here-presented doctoral thesis provides a detailed view on the global cellular function of DHX36. The binding sites of this helicase were defined in a transcriptome-wide manner, a consensus binding motif was deviated, and RNA targets as well as the effect this helicase exerts on them were examined. In human embryonic kidney cells, DHX36 is a mainly cytoplasmic protein preferentially binding to G-rich and G4-forming sequence motifs on more than 4,500 mRNAs. Loss of DHX36 leads to increased target mRNA levels whereas ribosome occupancy on and protein output of these transcripts are reduced. Furthermore, DHX36 knockout leads to higher RNA G4 levels and concomitant stress reactions in the cell. I hypothesize that, upon loss of this helicase, translationally-incompetent structured DHX36 target mRNAs, prone to localize in stress granules, accumulate in the cell. The cell reacts with basal stress to avoid cytotoxic effects produced by these mis-regulated and structured transcripts.}, subject = {RNS}, language = {en} } @article{SauerJuranekMarksetal.2019, author = {Sauer, Markus and Juranek, Stefan A. and Marks, James and De Magis, Alessio and Kazemier, Hinke G and Hilbig, Daniel and Benhalevy, Daniel and Wang, Xiantao and Hafner, Markus and Paeschke, Katrin}, title = {DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, number = {2421}, doi = {10.1038/s41467-019-10432-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227486}, pages = {1-15}, year = {2019}, abstract = {Translation efficiency can be affected by mRNA stability and secondary structures, including G-quadruplex structures (G4s). The highly conserved DEAH-box helicase DHX36/RHAU resolves G4s on DNA and RNA in vitro, however a systems-wide analysis of DHX36 targets and function is lacking. We map globally DHX36 binding to RNA in human cell lines and find it preferentially interacting with G-rich and G4-forming sequences on more than 4500 mRNAs. While DHX36 knockout (KO) results in a significant increase in target mRNA abundance, ribosome occupancy and protein output from these targets decrease, suggesting that they were rendered translationally incompetent. Considering that DHX36 targets, harboring G4s, preferentially localize in stress granules, and that DHX36 KO results in increased SG formation and protein kinase R (PKR/EIF2AK2) phosphorylation, we speculate that DHX36 is involved in resolution of rG4 induced cellular stress.}, language = {en} } @article{SchartlKneitzVolkoffetal.2019, author = {Schartl, Manfred and Kneitz, Susanne and Volkoff, Helene and Adolfi, Mateus and Schmidt, Cornelia and Fischer, Petra and Minx, Patrick and Tomlinson, Chad and Meyer, Axel and Warren, Wesley C.}, title = {The piranha genome provides molecular insight associated to its unique feeding behavior}, series = {Genome Biology and Evolution}, volume = {11}, journal = {Genome Biology and Evolution}, number = {8}, doi = {10.1093/gbe/evz139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202218}, pages = {2099-2106}, year = {2019}, abstract = {The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas' feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.}, language = {en} } @article{SchlegelPetersDooseetal.2019, author = {Schlegel, Jan and Peters, Simon and Doose, S{\"o}ren and Schubert-Unkmeir, Alexandra and Sauer, Markus}, title = {Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {194}, doi = {10.3389/fcell.2019.00194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201639}, year = {2019}, abstract = {Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.}, language = {en} } @article{SchmidtHaywardCoelhoetal.2019, author = {Schmidt, Thomas S. B. and Hayward, Matthew R. and Coelho, Luiis P. and Li, Simone S. and Costea, Paul I. and Voigt, Anita Y. and Wirbel, Jakob and Maistrenko, Oleksandr M. and Alves, Renato J. C. and Bergsten, Emma and de Beaufort, Carine and Sobhani, Iradj and Heintz-Buschart, Anna and Sunagawa, Shinichi and Zeller, Georg and Wilmes, Paul and Bork, Peer}, title = {Extensive transmission of microbes along the gastrointestinal tract}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.42693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228954}, pages = {e42693, 1-18}, year = {2019}, abstract = {The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.}, subject = {Barrier}, language = {en} } @phdthesis{SchmittgebWolf2019, author = {Schmitt [geb. Wolf], Karen}, title = {Studies on the role of platelet serotonin in platelet function, hemostasis, thrombosis and stroke}, doi = {10.25972/OPUS-13471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134711}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Platelet activation and aggregation are important processes in hemostasis resulting in reduction of blood loss upon vessel wall injury. However, platelet activation can lead to thrombotic events causing myocardial infarction and stroke. A more detailed understanding of the regulation of platelet activation and the subsequent formation of thrombi is essential to prevent thrombosis and ischemic stroke. Cations, platelet surface receptors, cytoskeletal rearrangements, activation of the coagulation cas-cade and intracellular signaling molecules are important in platelet activation and thrombus formation. One such important molecule is serotonin (5 hydroxytryptamin, 5 HT), an indolamine platelet agonist, biochemically derived from tryptophan. 5 HT is secreted from the enterochromaffin cells into the gastrointestinal tract (GI) and blood. Blood borne 5 HT has been proposed to regulate hemostasis by acting as a vaso-constrictor and by triggering platelet signaling through 5 HT2A receptor. Although platelets do not synthetize 5 HT, they take it up from the blood and store it in their dense granules which are secreted upon platelet activation. To identify the molecu-lar composite of the 5 HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke, 5 HT transporter knock out mice (5Htt / ) were analyzed in different in vitro and in vivo assays and in a model of is-chemic stroke. In 5Htt / platelets, 5 HT uptake from the blood was completely abol-ished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein (GP) VI and C type lectin-like receptor 2 (CLEC 2) were reduced. These observed in vitro defects in 5Htt / platelets could be normalized by the addition of exogenous 5 HT. Moreover, reduced 5 HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt / mice. Surprisingly, in the transient middle cerebral artery occlusion model (tMCAO) of ischemic stroke 5Htt / mice showed near-ly normal infarct volumes and a neurological outcome comparable to control mice. Although secreted platelet 5 HT does not appear to play a crucial role in the devel-opment of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and thus plays an important role in thrombus stabilization. To further investigate the role of cations, granules and their contents and regulation of integrin activation in the process of thrombus formation, genetically modified mice were analyzed in the different in vivo thrombosis models. Whereas Tph1 / mice (lacking the enzyme responsible for the production of 5 HT in the periphery), Trpm7KI (point mu-tation in the kinase domain of Trpm7 channel, lacking kinase activity) and Unc13d / /Nbeal2 / mice (lacking α granules and the release machinery of dense granules) showed a delayed thrombus formation in vivo, MagT1y/ mice (lacking a specific Mg2+ transporter) displayed a pro thrombotic phenotype in vivo. Trpm7fl/fl Pf4Cre (lacking the non specific Mg2+ channel) and RIAM / mice (lacking a potential linker protein in integrin "inside out" signaling) showed no alterations in thrombus formation upon injury of the vessel wall.}, subject = {Serotonin}, language = {en} } @phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @article{SchwedhelmZdziebloAppeltMenzeletal.2019, author = {Schwedhelm, Ivo and Zdzieblo, Daniela and Appelt-Menzel, Antje and Berger, Constantin and Schmitz, Tobias and Schuldt, Bernhard and Franke, Andre and M{\"u}ller, Franz-Josef and Pless, Ole and Schwarz, Thomas and Wiedemann, Philipp and Walles, Heike and Hansmann, Jan}, title = {Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48814-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202649}, pages = {12297}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.}, language = {en} } @phdthesis{Segerer2019, author = {Segerer, Gabriela}, title = {Characterization of cell biological and physiological functions of the phosphoglycolate phosphatase AUM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Mammalian haloacid dehalogenase (HAD)-type phosphatases are a large and ubiquitous family of at least 40 human members. Many of them have important physiological functions, such as the regulation of intermediary metabolism and the modulation of enzyme activities, yet they are also linked to diseases such as cardiovascular or metabolic disorders and cancer. Still, most of the mammalian HAD phosphatases remain functionally uncharacterized. This thesis reveals novel cell biological and physiological functions of the phosphoglycolate phosphatase PGP, also referred to as AUM. To this end, PGP was functionally characterized by performing analyses using purified recombinant proteins to investigate potential protein substrates of PGP, cell biological studies using the spermatogonial cell line GC1, primary mouse lung endothelial cells and lymphocytes, and a range of biochemical techniques to characterize Pgp-deficient mouse embryos. To characterize the cell biological functions of PGP, its role downstream of RTK- and integrin signaling in the regulation of cell migration was investigated. It was shown that PGP inactivation elevates integrin- and RTK-induced circular dorsal ruffle (CDR) formation, cell spreading and cell migration. Furthermore, PGP was identified as a negative regulator of directed lymphocyte migration upon integrin- and GPCR activation. The underlying mechanisms were analyzed further. It was demonstrated that PGP regulates CDR formation and cell migration in a PLC- and PKC-dependent manner, and that Src family kinase activities are required for the observed cellular effects. Upon integrin- and RTK activation, phosphorylation levels of tyrosine residues 1068 and 1173 of the EGF receptor were elevated and PLCγ1 was hyper-activated in PGP-deficient cells. Additionally, PGP-inactivated lymphocytes displayed elevated PKC activity, and PKC-mediated cytoskeletal remodeling was accelerated upon loss of PGP activity. Untargeted lipidomic analyses revealed that the membrane lipid phosphatidylserine (PS) was highly upregulated in PGP-depleted cells. These data are consistent with the hypothesis that the accumulation of PS in the plasma membrane leads to a pre-assembly of signaling molecules such as PLCγ1 or PKCs that couple the activation of integrins, EGF receptors and GPCRs to accelerated cytoskeletal remodeling. Thus, this thesis shows that PGP can affect cell spreading and cell migration by acting as a PG-directed phosphatase. To understand the physiological functions of PGP, conditionally PGP-inactivated mice were analyzed. Whole-body PGP inactivation led to an intrauterine growth defect with developmental delay after E8.5, resulting in a gradual deterioration and death of PgpDN/DN embryos between E9.5 and E11.5. However, embryonic lethality upon whole-body PGP inactivation was not caused by a primary defect of the (cardio-) vascular system. Rather, PGP inactivated embryos died during the intrauterine transition from hypoxic to normoxic conditions. Therefore, the potential impact of oxygen on PGP-dependent cell proliferation was investigated. Analyses of mouse embryonic fibroblasts (MEFs) generated from E8.5 embryos and GC1 cells cultured under normoxic and hypoxic conditions revealed that normoxia (~20\% O2) causes a proliferation defect in PGP-inactivated cells, which can be rescued under hypoxic (~1\% O2) conditions. Mechanistically, it was found that the activity of triosephosphate isomerase (TPI), an enzyme previously described to be inhibited by phosphoglycolate (PG) in vitro, was attenuated in PGP-inactivated cells and embryos. TPI constitutes a critical branch point between carbohydrate- and lipid metabolism because it catalyzes the isomerization of the glycolytic intermediates dihydroxyacetone phosphate (DHAP, a precursor of the glycerol backbone required for triglyceride biosynthesis) and glyceraldehyde 3'-phosphate (GADP). Attenuation of TPI activity, likely explains the observed elevation of glycerol 3-phosphate levels and the increased TG biosynthesis (lipogenesis). Analyses of ATP levels and oxygen consumption rates (OCR) showed that mitochondrial respiration rates and ATP production were elevated in PGP-deficient cells in a lipolysis-dependent manner. However under hypoxic conditions (which corrected the impaired proliferation of PGP-inactivated cells), OCR and ATP production was indistinguishable between PGP-deficient and PGP-proficient cells. We therefore propose that the inhibition of TPI activity by PG accumulation due to loss of PGP activity shifts cellular bioenergetics from a pro-proliferative, glycolytic metabolism to a lipogenetic/lipolytic metabolism. Taken together, PGP acts as a metabolic phosphatase involved in the regulation of cell migration, cell proliferation and cellular bioenergetics. This thesis constitutes the basis for further studies of the interfaces between these processes, and also suggests functions of PGP for glucose and lipid metabolism in the adult organism.}, subject = {Phosphoglykolatphosphatase}, language = {en} } @phdthesis{SoaresMachado2019, author = {Soares Machado, J{\´e}ssica}, title = {Dosimetry-based Assessment of Radiation-associated Cancer risk for \(^9\)\(^9\)\(^m\)Tc-MAG3 Scans in Infants and Optimization of Administered Activities for \(^6\)\(^8\)Ga-labelled Peptides in Children and Adolescents}, doi = {10.25972/OPUS-19264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In 2006, 0.18 Mio pediatric nuclear medicine diagnostic exams were performed worldwide. However, for most of the radiopharmaceuticals used data on biokinetics and, as a consequence on dosimetry, are missing or have not been made publicly available. Therefore, most of the dosimetry assessments presented today for diagnostic agents in children and adolescents rely on the biokinetics data of adults. Even for one of the most common nuclear medicine exams for this patient group, renal scintigraphy with 99mTc-MAG3 for assessing renal function measured data on biokinetics is available only from a study performed on four children of different ages. In particular, renal scans are among the most frequent exams performed on infants and toddlers. Due to the young age, this patient group can be classified as a risk group with a higher probability of developing stochastic radiation effects compared to adults. As there are only limited data on biokinetics and dosimetry in this patient group, the aim of this study is to reassess the dosimetry and the associated radiation risk for a larger number of infants undergoing 99mTc-MAG3 renal scans based on a retrospective analysis of existing patient data. Data were collected retrospectively from 34 patients younger than 20 months with normal (20 patients) and abnormal renal function (14 patients) undergoing 99mTc-MAG3 scans. The patient-specific organ activity was estimated based on a retrospective calibration which was performed based on a set of two 3D-printed infant kidneys (newborns: 8.6 ml; 1-year-old: 23.4 ml) filled with known activities. Both phantoms were scanned at different positions along the anteroposterior axis inside a water phantom, providing depth- and size-dependent attenuation correction factors for planar imaging. Time-activity curves were determined by drawing kidney, bladder, and whole body regions-of-interest for each patient, and subsequently applying the calibration factor for conversion of counts to activity. Patient-specific time-integrated activity coefficients were obtained by integrating the organ-specific time-activity curves. Absorbed and effective dose coefficients for each patient were assessed with OLINDA/EXM for the provided newborn and 1-year-old phantom. Based on absorbed dose values, the radiation risk estimation was performed individually for each of the 34 patients with the National Cancer Institute's Radiation Risk Assessment Tool. The patients' organ-specific mean absorbed dose coefficients for the patients with normal renal function were 0.04±0.03 mGy/MBq for the kidneys and 0.27±0.24 mGy/MBq for the bladder. This resulted in a mean effective dose coefficient of 0.02±0.02 mSv/MBq. Based on the dosimetry results, the evaluation of the excess lifetime risk (ELR) for the development of radiation-induced cancer showed that the group of newborns has an ELR of 16.8 per 100,000 persons, which is higher in comparison with the 1-year-old group with an ELR of 14.7 per 100,000 persons. With regard to the 14 patients with abnormal renal function, the mean values for the organ absorbed dose coefficients for the patients were: 0.40±0.34 mGy/MBq for the kidneys and 0.46±0.37 mGy/MBq for the bladder. The corresponding effective dose coefficients (mSv/MBq) was: 0.05±0.02 mSv/MBq. The mean ELR (per 100,000 persons) for developing cancer from radiation exposure for patients with abnormal renal function was 29.2±18.7 per 100,000 persons. As a result, the radiation-associated stochastic risk increases with the organ doses, taking age- and gender-specific influences into account. Overall, the lifetime radiation risk associated with the 99mTc-MAG3 scans is very low in comparison to the general population risk for developing cancer. Furthermore, due to the increasing demand for PET-scans in children and adolescents with 68Ga-labelled peptides, in this work published data sets for those compounds were analyzed to derive recommendations for the administered activities in children and adolescents. The recommendation for the activities to be administered were based on the weight-independent effective dose model, proposed by the EANM Pediatric Dosage Card for application in pediatric nuclear medicine. The aim was to derive recommendations on administered activities for obtaining age-independent effective doses. Consequently, the corresponding weight-dependent effective dose coefficients were rescaled according to the formalism of the EANM dosage card, to determine the radiopharmaceutical class of 68Ga-labeled peptides ("multiples"), and to calculate the baseline activities based on the biokinetics of these compounds and an upper limit of the administered activity of 185 MBq for an adult. Analogous to 18F-fluoride, a minimum activity of 14 MBq is recommended. As a result, for those pediatric nuclear medicine applications involving 68Ga-labeled peptides, new values for the EANM dosage card were proposed and implemented based on the results derived in this work. Overall, despite the low additional radiation-related cancer risk, all efforts should be undertaken to optimize administered activities in children and adolescents for obtaining sufficient diagnostic information with minimal associated radiation risk.}, subject = {Biokinetics}, language = {en} } @article{SrivastavaBencurovaGuptaetal.2019, author = {Srivastava, Mugdha and Bencurova, Elena and Gupta, Shishir K. and Weiss, Esther and L{\"o}ffler, J{\"u}rgen and Dandekar, Thomas}, title = {Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, doi = {10.3389/fcimb.2019.00168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201368}, pages = {168}, year = {2019}, abstract = {Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other.}, language = {en} } @article{SteuerCostaVanderAuweraGlocketal.2019, author = {Steuer Costa, Wagner and Van der Auwera, Petrus and Glock, Caspar and Liewald, Jana F. and Bach, Maximilian and Sch{\"u}ler, Christina and Wabnig, Sebastian and Oranth, Alexandra and Masurat, Florentin and Bringmann, Henrik and Schoofs, Liliane and Stelzer, Ernst H. K. and Fischer, Sabine C. and Gottschalk, Alexander}, title = {A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12098-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223273}, year = {2019}, abstract = {Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.}, language = {en} } @article{StreinzerChakravortyNeumayeretal.2019, author = {Streinzer, Martin and Chakravorty, Jharna and Neumayer, Johann and Megu, Karsing and Narah, Jaya and Schmitt, Thomas and Bharti, Himender and Spaethe, Johannes and Brockmann, Axel}, title = {Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India}, series = {ZooKeys}, volume = {851}, journal = {ZooKeys}, doi = {10.3897/zookeys.851.32956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201937}, pages = {71-89}, year = {2019}, abstract = {The East Himalaya is one of the world's most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya.}, language = {en} } @article{ThoelkenThammErbacheretal.2019, author = {Th{\"o}lken, Clemens and Thamm, Markus and Erbacher, Christoph and Lechner, Marcus}, title = {Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera)}, series = {BMC Genomics}, volume = {20}, journal = {BMC Genomics}, doi = {10.1186/s12864-018-5402-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241302}, year = {2019}, abstract = {Background The honeybee (Apis mellifera) represents a model organism for social insects displaying behavioral plasticity. This is reflected by an age-dependent task allocation. The most protruding tasks are performed by young nurse bees and older forager bees that take care of the brood inside the hive and collect food from outside the hive, respectively. The molecular mechanism leading to the transition from nurse bees to foragers is currently under intense research. Circular RNAs, however, were not considered in this context so far. As of today, this group of non-coding RNAs was only known to exist in two other insects, Drosophila melanogaster and Bombyx mori. Here we complement the state of circular RNA research with the first characterization in a social insect. Results We identified numerous circular RNAs in the brain of A. mellifera nurse bees and forager bees using RNA-Seq with exonuclease enrichment. Presence and circularity were verified for the most abundant representatives. Back-splicing in honeybee occurs further towards the end of transcripts and in transcripts with a high number of exons. The occurrence of circularized exons is correlated with length and CpG-content of their flanking introns. The latter coincides with increased DNA-methylation in the respective loci. For two prominent circular RNAs the abundance in worker bee brains was quantified in TaqMan assays. In line with previous findings of circular RNAs in Drosophila, circAmrsmep2 accumulates with increasing age of the insect. In contrast, the levels of circAmrad appear age-independent and correlate with the bee's task. Its parental gene is related to amnesia-resistant memory. Conclusions We provide the first characterization of circRNAs in a social insect. Many of the RNAs identified here show homologies to circular RNAs found in Drosophila and Bombyx, indicating that circular RNAs are a common feature among insects. We find that exon circularization is correlated to DNA-methylation at the flanking introns. The levels of circAmrad suggest a task-dependent abundance that is decoupled from age. Moreover, a GO term analysis shows an enrichment of task-related functions. We conclude that circular RNAs could be relevant for task allocation in honeybee and should be investigated further in this context.}, language = {en} } @phdthesis{Tiwarekar2019, author = {Tiwarekar, Vishakha Rakesh}, title = {The APOBEC3G-regulated host factors REDD1 and KDELR2 restrict measles virus replication}, doi = {10.25972/OPUS-17952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Measles is an extremely contagious vaccine-preventable disease responsible for more than 90000 deaths worldwide annually. The number of deaths has declined from 8 million in the pre-vaccination era to few thousands every year due to the highly efficacious vaccine. However, this effective vaccine is still unreachable in many developing countries due to lack of infrastructure, while in developed countries too many people refuse vaccination. Specific antiviral compounds are not yet available. In the current situation, only an extensive vaccination approach along with effective antivirals could help to have a measles-free future. To develop an effective antiviral, detailed knowledge of viral-host interaction is required. This study was undertaken to understand the interaction between MV and the innate host restriction factor APOBEC3G (A3G), which is well-known for its activity against human immunodeficiency virus (HIV). Restriction of MV replication was not attributed to the cytidine deaminase function of A3G, instead, we identified a novel role of A3G in regulating cellular gene functions. Among two of the A3G regulated host factors, we found that REDD1 reduced MV replication, whereas, KDELR2 hampered MV haemagglutinin (H) surface transport thereby affecting viral release. REDD1, a negative regulator of mTORC1 signalling impaired MV replication by inhibiting mTORC1. A3G regulated REDD1 expression was demonstrated to inversely correlate with MV replication. siRNA mediated silencing of A3G in primary human blood lymphocytes (PBL) reduced REDD1 levels and simultaneously increased MV titres. Also, direct depletion of REDD1 improved MV replication in PBL, indicating its role in A3G mediated restriction of MV. Based on these finding, a new role of rapamycin, a pharmacological inhibitor of mTORC1, was uncovered in successfully diminishing MV replication in Vero as well as in human PBL. The ER and Golgi resident receptor KDELR2 indirectly affected MV by competing with MV-H for cellular chaperones. Due to the sequestering of chaperones by KDELR2, they can no longer assist in MV-H folding and subsequent surface expression. Taken together, the two A3G-regulated host factors REDD1 and KDELR2 are mainly responsible for mediating its antiviral activity against MV.}, language = {en} } @phdthesis{TshitengeTshitenge2019, author = {Tshitenge Tshitenge, Dieudonn{\´e}}, title = {Isolation and Structural Elucidation of Novel Anti-Infective Naphthylisoquinoline Alkaloids from Ancistrocladus ealaensis, and Phytochemical Analysis of Two Congolese Medicinal Plants}, doi = {10.25972/OPUS-15417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Herein described are the isolation, structural elucidation, and biological evaluation of highly thrilling monomeric and dimeric new naphthylisoquinoline alkaloids from A. ealaensis. The separation, chiral resolution, and characterization of a series of stereoisomeric 2,3-dihydrobenzofuran neolignans are also reported. The analytical and phytochemical analysis on two Congolese antimalarial herbal drugs is part of the last chapter of the results. In this last case, major concerns on widely used Congolese herbal drugs are discussed.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{Turakhiya2019, author = {Turakhiya, Ankit}, title = {Functional characterization of the role of ZFAND1 in stress granule turnover}, doi = {10.25972/OPUS-16375}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163751}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Protein quality control systems are critical for cellular proteostasis and survival under stress conditions. The ubiquitin proteasome system (UPS) plays a pivotal role in proteostasis by eliminating misfolded and damaged proteins. However, exposure to the environmental toxin arsenite results in the accumulation of polyubiquitylated proteins, indicating an overload of the UPS. Arsenite stress induces the rapid formation of stress granules (SGs), which are cytoplasmic assemblies of mRNPs stalled in translation initiation. The mammalian proteins ZFAND2A/B (also known as AIRAP and AIRAPL, respectively) bind to the 26S proteasome, and ZFAND2A has been shown to adapt proteasome activity to arsenite stress. They belong to a small subfamily of AN1 type zinc finger containing proteins that also comprises the unexplored mammalian member ZFAND1 and its yeast homolog Cuz1. In this thesis, the cellular function of Cuz1 and ZFAND1 was investigated. Cuz1/ZFAND1 was found to interact with the ubiquitin-selective, chaperone-like ATPase Cdc48/p97 and with the 26S proteasome. The interaction between Cuz1/ZFAND1 and Cdc48/p97 requires a predicted ubiquitin-like domain of Cuz1/ZFAND1. In vivo, this interaction was strongly dependent on acute arsenite stress, suggesting that it is a part of the cellular arsenite stress response. Lack of Cuz1/ZFAND1 caused a defect in the clearance of arsenite induced SG clearance. ZFAND1 recruits both, the 26S proteasome and p97, to arsenite-induced SGs for their normal clearance. In the absence of ZFAND1, SGs lack the 26S proteasome and p97, accumulate defective ribosomal products and become aberrant. These aberrant SGs persist after arsenite removal and undergo degradation via autophagy. ZFAND1 depletion is epistatic to the expression of pathogenic mutant p97 with respect to SG clearance, suggesting that ZFAND1 function is relevant to the multisystem degenerative disorder, inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia and amyotrophic lateral sclerosis (IBMPFD/ALS).}, subject = {ubiquitin}, language = {en} } @article{VeyKapsnerFuchsetal.2019, author = {Vey, Johannes and Kapsner, Lorenz A. and Fuchs, Maximilian and Unberath, Philipp and Veronesi, Giulia and Kunz, Meik}, title = {A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers11101606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193240}, year = {2019}, abstract = {The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training.}, language = {en} } @article{VillalobosWieseImhoffetal.2019, author = {Villalobos, Alvaro S. and Wiese, Jutta and Imhoff, Johannes F. and Dorador, Cristina and Keller, Alexander and Hentschel, Ute}, title = {Systematic affiliation and genome analysis of Subtercola vilae DB165T with particular emphasis on cold adaptation of an isolate from a high-altitude cold volcano lake}, series = {Microorganisms}, volume = {7}, journal = {Microorganisms}, number = {4}, issn = {2076-2607}, doi = {10.3390/microorganisms7040107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197394}, year = {2019}, abstract = {Among the Microbacteriaceae the species of Subtercola and Agreia form closely associated clusters. Phylogenetic analysis demonstrated three major phylogenetic branches of these species. One of these branches contains the two psychrophilic species Subtercola frigoramans and Subtercola vilae, together with a larger number of isolates from various cold environments. Genomic evidence supports the separation of Agreia and Subtercola species. In order to gain insight into the ability of S. vilae to adapt to life in this extreme environment, we analyzed the genome with a particular focus on properties related to possible adaptation to a cold environment. General properties of the genome are presented, including carbon and energy metabolism, as well as secondary metabolite production. The repertoire of genes in the genome of S. vilae DB165\(^T\) linked to adaptations to the harsh conditions found in Llullaillaco Volcano Lake includes several mechanisms to transcribe proteins under low temperatures, such as a high number of tRNAs and cold shock proteins. In addition, S. vilae DB165\(^T\) is capable of producing a number of proteins to cope with oxidative stress, which is of particular relevance at low temperature environments, in which reactive oxygen species are more abundant. Most important, it obtains capacities to produce cryo-protectants, and to combat against ice crystal formation, it produces ice-binding proteins. Two new ice-binding proteins were identified which are unique to S. vilae DB165\(^T\). These results indicate that S. vilae has the capacity to employ different mechanisms to live under the extreme and cold conditions prevalent in Llullaillaco Volcano Lake.}, language = {en} }