@article{LiuMaierhoferRybaketal.2019, author = {Liu, Yi and Maierhofer, Tobias and Rybak, Katarzyna and Sklenar, Jan and Breakspear, Andy and Johnston, Matthew G. and Fliegmann, Judith and Huang, Shouguang and Roelfsema, M. Rob G. and Felix, Georg and Faulkner, Christine and Menke, Frank L.H. and Geiger, Dietmar and Hedrich, Rainer and Robatzek, Silke}, title = {Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.44474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202631}, pages = {e44474}, year = {2019}, abstract = {In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.}, language = {en} } @article{MammadovaBachBraun2019, author = {Mammadova-Bach, Elmina and Braun, Attila}, title = {Zinc homeostasis in platelet-related diseases}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms20215258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285554}, year = {2019}, abstract = {Zn\(^{2+}\) deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn\(^{2+}\)-deficient diets, accounting for 1-4\% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn\(^{2+}\) deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn\(^{2+}\) status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn\(^{2+}\) uptake in the gut using different nutritional supplementation of Zn\(^{2+}\) could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn\(^{2+}\) diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn\(^{2+}\) in hemostasis. Storage protein metallothionein maintains or releases Zn\(^{2+}\) in the cytoplasm, and the dynamic change of this cytoplasmic Zn\(^{2+}\) pool is regulated by the redox status of the cell. An increase of labile Zn\(^{2+}\) pool can be toxic for the cells, and therefore cytoplasmic Zn\(^{2+}\) levels are tightly regulated by several Zn\(^{2+}\) transporters located on the cell surface and also on the intracellular membrane of Zn\(^{2+}\) storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn\(^{2+}\) is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn\(^{2+}\) transport and the physiological role of Zn\(^{2+}\) store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn\(^{2+}\) to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn\(^{2+}\) homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.}, language = {en} } @article{HerzBrehm2019, author = {Herz, Michaela and Brehm, Klaus}, title = {Evidence for densovirus integrations into tapeworm genomes}, series = {Parasites \& Vectors}, volume = {12}, journal = {Parasites \& Vectors}, doi = {10.1186/s13071-019-3820-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202478}, pages = {560}, year = {2019}, abstract = {Background Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. Methods The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. Results We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. Conclusions Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes.}, language = {en} } @article{PaponovDindas Krol etal.2019, author = {Paponov, Ivan A. and Dindas , Julian and Kr{\´o}l , Elżbieta and Friz, Tatyana and Budnyk, Vadym and Teale, William and Paponov, Martina and Hedrich , Rainer and Palme, Klaus}, title = {Auxin-Induced plasma membrane depolarization is regulated by Auxin transport and not by AUXIN BINDING PROTEIN1}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01953}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195914}, year = {2019}, abstract = {Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.}, language = {en} } @article{RothDoerflerBaessleretal.2019, author = {Roth, Nicolas and Doerfler, Inken and B{\"a}ssler, Claus and Blaschke, Markus and Bussler, Heinz and Gossner, Martin M. and Heideroth, Antje and Thorn, Simon and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg}, title = {Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity}, series = {Diversity and Distributions}, volume = {25}, journal = {Diversity and Distributions}, number = {3}, doi = {10.1111/ddi.12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227061}, pages = {430-441}, year = {2019}, abstract = {Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests.}, language = {en} } @article{BluemelZinkKlopockietal.2019, author = {Bl{\"u}mel, Rabea and Zink, Miriam and Klopocki, Eva and Liedtke, Daniel}, title = {On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio)}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201428}, pages = {e0218286}, year = {2019}, abstract = {The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.}, language = {en} } @article{LiedtkeOrthMeissleretal.2019, author = {Liedtke, Daniel and Orth, Melanie and Meissler, Michelle and Geuer, Sinje and Knaup, Sabine and K{\"o}blitz, Isabell and Klopocki, Eva}, title = {ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-50055-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202141}, pages = {13383}, year = {2019}, abstract = {Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.}, language = {en} } @article{KimShustaDoran2019, author = {Kim, Brandon J. and Shusta, Eric V. and Doran, Kelly S.}, title = {Past and current perspectives in modeling bacteria and blood-brain barrier interactions}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1336}, doi = {10.3389/fmicb.2019.01336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201766}, year = {2019}, abstract = {The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.}, language = {en} } @article{StreinzerChakravortyNeumayeretal.2019, author = {Streinzer, Martin and Chakravorty, Jharna and Neumayer, Johann and Megu, Karsing and Narah, Jaya and Schmitt, Thomas and Bharti, Himender and Spaethe, Johannes and Brockmann, Axel}, title = {Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India}, series = {ZooKeys}, volume = {851}, journal = {ZooKeys}, doi = {10.3897/zookeys.851.32956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201937}, pages = {71-89}, year = {2019}, abstract = {The East Himalaya is one of the world's most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya.}, language = {en} } @article{PanzerBrychBatschaueretal.2019, author = {Panzer, Sabine and Brych, Annika and Batschauer, Alfred and Terpitz, Ulrich}, title = {Opsin 1 and Opsin 2 of the corn smut fungus ustilago maydis are green light-driven proton pumps}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.00735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201453}, pages = {735}, year = {2019}, abstract = {In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.}, language = {en} }