@article{TesfamariamJakobWoeckeletal.2019, author = {Tesfamariam, Y. and Jakob, T. and W{\"o}ckel, A. and Adams, A. and Weigl, A. and Monsef, I. and Kuhr, K. and Skoetz, N.}, title = {Adjuvant bisphosphonates or RANK-ligand inhibitors for patients with breast cancer and bone metastases: A systematic review and network meta-analysis}, series = {Critical Reviews in Oncology / Hematology}, volume = {137}, journal = {Critical Reviews in Oncology / Hematology}, doi = {10.1016/j.critrevonc.2019.02.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240827}, pages = {1-8}, year = {2019}, abstract = {Bone-modifying agents like bisphosphonates and receptor activator of nuclear factor kappaβ ligand (RANK-L) inhibitors are used as supportive treatments in breast cancer patients with bone metastases to prevent skeletal-related events (SREs). Due to missing head-to-head comparisons, a network meta-analysis was performed to provide a hierarchy of these therapeutic options. Through a systematic literature search, 21 randomized controlled trials (RCTs) that fulfilled the inclusion criteria were identified. To prevent SREs, the ranking through P-scores showed denosumab (RR: 0.62; 95\%CI: 0.50-0.76), zoledronic acid (RR: 0.72; 95\%CI: 0.61-0.84) and pamidronate (RR: 0.76; 95\%CI: 0.67-0.85) to be significantly superior to placebo. Due to insufficient or heterogeneous data, overall survival, quality of life, pain response and adverse events were not able to be analyzed within the network. Although data were sparse on adverse events, the risk of significant adverse events appeared low. The results of this review can therefore be used to formulate clinical studies more precisely in order to standardise and focus on patient-relevant outcomes.}, language = {en} } @article{BrinkerHeklerHauschildetal.2019, author = {Brinker, Titus J. and Hekler, Achim and Hauschild, Axel and Berking, Carola and Schilling, Bastian and Enk, Alexander H. and Haferkamp, Sebastian and Karoglan, Ante and von Kalle, Christof and Weichenthal, Michael and Sattler, Elke and Schadendorf, Dirk and Gaiser, Maria R. and Klode, Joachim and Utikal, Jochen S.}, title = {Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark}, series = {European Journal of Cancer}, volume = {111}, journal = {European Journal of Cancer}, doi = {10.1016/j.ejca.2018.12.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220569}, pages = {30-37}, year = {2019}, abstract = {Background Several recent publications have demonstrated the use of convolutional neural networks to classify images of melanoma at par with board-certified dermatologists. However, the non-availability of a public human benchmark restricts the comparability of the performance of these algorithms and thereby the technical progress in this field. Methods An electronic questionnaire was sent to dermatologists at 12 German university hospitals. Each questionnaire comprised 100 dermoscopic and 100 clinical images (80 nevi images and 20 biopsy-verified melanoma images, each), all open-source. The questionnaire recorded factors such as the years of experience in dermatology, performed skin checks, age, sex and the rank within the university hospital or the status as resident physician. For each image, the dermatologists were asked to provide a management decision (treat/biopsy lesion or reassure the patient). Main outcome measures were sensitivity, specificity and the receiver operating characteristics (ROC). Results Total 157 dermatologists assessed all 100 dermoscopic images with an overall sensitivity of 74.1\%, specificity of 60.0\% and an ROC of 0.67 (range = 0.538-0.769); 145 dermatologists assessed all 100 clinical images with an overall sensitivity of 89.4\%, specificity of 64.4\% and an ROC of 0.769 (range = 0.613-0.9). Results between test-sets were significantly different (P < 0.05) confirming the need for a standardised benchmark. Conclusions We present the first public melanoma classification benchmark for both non-dermoscopic and dermoscopic images for comparing artificial intelligence algorithms with diagnostic performance of 145 or 157 dermatologists. Melanoma Classification Benchmark should be considered as a reference standard for white-skinned Western populations in the field of binary algorithmic melanoma classification.}, language = {en} } @article{BrinkerHeklerEnketal.2019, author = {Brinker, Titus J. and Hekler, Achim and Enk, Alexander H. and Berking, Carola and Haferkamp, Sebastian and Hauschild, Axel and Weichenthal, Michael and Klode, Joachim and Schadendorf, Dirk and Holland-Letz, Tim and von Kalle, Christof and Fr{\"o}hling, Stefan and Schilling, Bastian and Utikal, Jochen S.}, title = {Deep neural networks are superior to dermatologists in melanoma image classification}, series = {European Journal of Cancer}, volume = {119}, journal = {European Journal of Cancer}, doi = {10.1016/j.ejca.2019.05.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220539}, pages = {11-17}, year = {2019}, abstract = {Background Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level precision. However, a statistically significant improvement compared with dermatologist classification has not been reported to date. Methods For this comparative study, 4204 biopsy-proven images of melanoma and nevi (1:1) were used for the training of a convolutional neural network (CNN). New techniques of deep learning were integrated. For the experiment, an additional 804 biopsy-proven dermoscopic images of melanoma and nevi (1:1) were randomly presented to dermatologists of nine German university hospitals, who evaluated the quality of each image and stated their recommended treatment (19,296 recommendations in total). Three McNemar's tests comparing the results of the CNN's test runs in terms of sensitivity, specificity and overall correctness were predefined as the main outcomes. Findings The respective sensitivity and specificity of lesion classification by the dermatologists were 67.2\% (95\% confidence interval [CI]: 62.6\%-71.7\%) and 62.2\% (95\% CI: 57.6\%-66.9\%). In comparison, the trained CNN achieved a higher sensitivity of 82.3\% (95\% CI: 78.3\%-85.7\%) and a higher specificity of 77.9\% (95\% CI: 73.8\%-81.8\%). The three McNemar's tests in 2 × 2 tables all reached a significance level of p < 0.001. This significance level was sustained for both subgroups. Interpretation For the first time, automated dermoscopic melanoma image classification was shown to be significantly superior to both junior and board-certified dermatologists (p < 0.001).}, language = {en} } @phdthesis{Zuber2024, author = {Zuber, Jonas Maximilian}, title = {Evaluation von Sedierungen und Allgemeinan{\"a}sthesien zur Durchf{\"u}hrung bildgebender Verfahren bei S{\"a}uglingen bis zum 6. Lebensmonat}, doi = {10.25972/OPUS-36111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361111}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Vorliegende Untersuchung am Universit{\"a}tsklinikum W{\"u}rzburg sowie die Befragung von An{\"a}sthesisten/An{\"a}sthesistinnen im Raum der 3 DACH-L{\"a}nder zeigen, dass bildgebende Verfahren bei S{\"a}uglingen mit einer niedrigen Rate an Komplikationen, zumeist in medikament{\"o}ser Sedierung mit Propofol, durchgef{\"u}hrt werden. Wie international {\"u}blich ist im S{\"a}uglingsalter die Magnetresonanztomographie das bildgebende Verfahren der Wahl und wird, mit {\"u}berzeugender H{\"a}ufigkeit, erfolgreich durchgef{\"u}hrt. Die Untersuchung am Universit{\"a}tsklinikum W{\"u}rzburg legt nahe, dass m{\"a}nnliche S{\"a}uglinge h{\"a}ufiger eine Bildgebung ben{\"o}tigen und h{\"a}ufiger h{\"o}heren ASA-Kategorie zugeschrieben werden. Dabei scheinen sie auch h{\"a}ufiger Komplikationen zu erleben und bed{\"u}rfen daher besonderer Aufmerksamkeit. Eine eventuelle Alternative zur Sedierung kann dabei die „feed-and-sleep" Methode darstellen. In unserer Umfrage konnten wir erheben, dass diese Methode bisher wenig verbreitet ist, obwohl in diesem Zusammenhang eventuell Abl{\"a}ufe und Prozesszeiten strukturiert und optimiert werden k{\"o}nnen, da beispielsweise die Nach{\"u}berwachung entf{\"a}llt. Vorstellbar w{\"a}re beispielsweise, mehrere S{\"a}uglinge zum gleichen Zeitpunkt ins MRT zu bestellen, um gegebenenfalls den am fr{\"u}hesten eingeschlafenen S{\"a}ugling vorzuziehen. Diese Methode sollte zuk{\"u}nftig Einzug in die wissenschaftliche Untersuchung von bildgebenden Verfahren bei S{\"a}uglingen finden. Die Umfrage im deutschsprachigen Raum zeigt eine Leitlinien-gerechte Betreuung von S{\"a}uglingen f{\"u}r bildgebende Verfahren, die mit einer hohen Qualit{\"a}t, und zumeist erfolgreich von erfahrenen An{\"a}sthesisten/An{\"a}sthesistinnen durchgef{\"u}hrt wird. Eventuelle Verbesserungen k{\"o}nnen im Bereich der Ausbildung nachfolgender {\"A}rztinnen/{\"A}rzte und in der h{\"a}ufigeren Verwendung der „feed-and-sleep" Methode liegen, die vielen Kollegen/Kolleginnen bekannt ist, aber nur selten durchgef{\"u}hrt wird. Ziel ist eine qualitativ hochwertige, schnellstm{\"o}glich durchgef{\"u}hrte Bildgebung, die ohne oder mit der niedrigst m{\"o}glichen Dosierung eines sedierenden Medikamentes zu erreichen ist.}, subject = {Sedierung}, language = {de} } @phdthesis{Dalkmann2024, author = {Dalkmann, Theresa}, title = {Evaluierung prognostischer und pr{\"a}diktiver Biomarker beim neoadjuvant vorbehandelten Rektumkarzinom}, doi = {10.25972/OPUS-36336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Fragestellung. Osteopontin (OPN) kann im Blut nachgewiesen werden und wird bei vielen Tumorentit{\"a}ten exprimiert, wie auch der Tyrosinkinaserezeptor c-Met und sein Ligand, das Zytokin Hepatocyte Growth Factor (HGF). In der vorliegenden Arbeit untersuchten wir die prognostische und pr{\"a}diktive Wertigkeit der Plasmakonzentrationen von OPN, c-Met und HGF bei Patienten mit lokal fortgeschrittenem Rektumkarzinom (LARC). Methodik. Das Plasma von 63 Patienten mit LARC wurde untersucht. Die Blutentnahmen (EDTA-Plasma) erfolgten vor Therapiebeginn sowie im Verlauf. Die Plasmaspiegel von OPN, c-Met und HGF wurden mittels Enzyme-Linked Immunosorbent Assay analysiert. Die Konzentrationen wurden auf eine Korrelation mit den klinischen Parametern untersucht. Ergebnisse. 68 Patienten wurden neoadjuvant mit einer Radiochemotherapie behandelt, 63 Blutproben wurden untersucht. Initial befanden sich nach UICC 14 Patienten in Stadium II, 47 in Stadium III und 7 in Stadium IV. Das mediane Follow-Up betrug 29,87 Monate. 20 der 68 Patienten (29,4 \%) verstarben, 19 entwickelten Fernmetastasen. OPN korrelierte signifikant mit dem {\"U}berleben (p=0,001). OPN-Werte korrelierten mit dem pT-Stadium (R:0,445 p=0,018) und dem pUICC-Stadium (R:0,412 p=0,018), sowie mit dem Auftreten von Fernmetastasen (R:0,271 p=0,031). Eine Korrelation zwischen OPN und dem Therapieansprechen konnte gezeigt werden: pathologisch komplette Remission (pCR) (R:0,379 p=0,001), NAR-Score (R:0,373 p=0,015), TRG (R:0,380 p=0,020). Die logistische Regressionsanalyse ergab eine Pr{\"a}diktivit{\"a}t OPNs f{\"u}r pCR (OR:0,990 p=0,009), NAR-Score (OR:1,008 p=0,007), TRG (OR:0,459 p=0,008). C-Met und HGF korrelierten nicht mit dem {\"U}berleben. F{\"u}r c-Met und HGF ergab sich keine Korrelation zu initialen klinischen Daten und Therapieansprechen. Die logistische Regression ergab keinen pr{\"a}diktiven Wert. Schlussfolgerung. Die Plasmakonzentration von OPN besitzt prognostische und pr{\"a}diktive Wertigkeit beim LARC. Die Konzentrationen von c-Met und HGF sind nicht prognostisch f{\"u}r das {\"U}berleben oder pr{\"a}diktiv f{\"u}r das Therapieansprechen.}, subject = {Biomarker}, language = {de} } @phdthesis{Junghanns2024, author = {Junghanns, Lara Madeleine}, title = {Resistenzmechanismen gegen Amphotericin B in humanpathogenen Hefepilzen}, doi = {10.25972/OPUS-36986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369861}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die 2009 erstmals entdeckte Spezies C. auris erlangte binnen k{\"u}rzester Zeit zunehmend weltweite Aufmerksamkeit. Vor allem die Tendenz der Multiresistenzentwicklung und das rasche Ausl{\"o}sen von nosokomialen Infektionen erschweren den Umgang und die Therapie von C. auris Infektionen im Vergleich zu anderen Candida Spezien. Diese Dissertationsarbeit umfasst eine systematische Resistenzanalyse der im NRZMyk vorhandenen Stammsammlung aus C. auris und C. parapsilosis Isolaten, um Aufschluss {\"u}ber den Wirkmechanismus von Amphotericin B in Hefepilzen zu erlangen. Anhand der zun{\"a}chst durchgef{\"u}hrten Amphotericin B-Resistenztestungen kristallisierten sich CAU37 und CAU43 mit MHK-Werten bis zu 12 µg/ml als stark Amphotericin B-resistente Isolate heraus. Die Analyse der Sequenzierungsergebnisse zeigte bei beiden St{\"a}mmen eine Mutation im ERG4 Gen an Position 576, welche nicht eindeutig als alleinige Ursache f{\"u}r die verminderte Amphotericin B-Empfindlichkeit festgelegt werden konnte. Dennoch wurde im Rahmen eines Survival Assays bei beiden Amphotericin B-resistenten Isolaten anf{\"a}nglich eine konzentrationsabh{\"a}ngige Aktivit{\"a}t gegen{\"u}ber Amphotericin B festgestellt, bevor ein Nachwachsen der Kulturen beobachtet wurde. Somit wurde die Vermutung aufgestellt, dass lediglich ein Teil der aufgebrachten Candida-Zellen abget{\"o}tet wird und dies in einer Vermehrung der {\"u}berlebenden Zellen resultiert. Des Weiteren konnte im Rahmen von Resistenztestungen mit dem Sphingolipidinhibitor Myriocin nachgewiesen werden, dass vor allem in Amphotericin B-resistenten Isolaten eine deutliche Wirkungsverst{\"a}rkung des Polyens hervorgerufen wird. Diese Sensitivit{\"a}tssteigerung ist allgemein bei allen C. auris Isolaten zu beobachten, f{\"a}llt bei resistenten St{\"a}mmen jedoch deutlich st{\"a}rker aus. Hierdurch kam die Annahme auf, dass Amphotericin B-Resistenzen auch in m{\"o}glichen Ver{\"a}nderungen des Sphingolipid-Haushaltes begr{\"u}ndet sein k{\"o}nnten. Dar{\"u}ber hinaus scheint Myriocin keinen Einfluss auf Fluconazol-resistente oder FKS-mutierte Echinocandin-resistente C. auris St{\"a}mme zu haben. Das ebenfalls untersuchte und von Myriocin abgeleitete Medikament Fingolimod hatte jedoch ebenfalls keinen wirkungsverst{\"a}rkenden Effekt. Allerdings reagierte ein Großteil der C. auris Isolate (57,6 \%) sensitiv gegen{\"u}ber dem neusten medizinisch bekannten Triazol Isavuconazol und es konnte erstmalig ein ECV-Wert von 0,03125 µg/ml festgelegt werden. Ein valider Vergleich von C. auris zu C. parapsilosis war aufgrund der mangelnden Anzahl an C. parapsilosis Isolaten jedoch nicht m{\"o}glich}, subject = {Candida}, language = {de} } @article{JeanclosAlbersenRamosetal.2019, author = {Jeanclos, Elisabeth and Albersen, Monique and Ramos, R{\´u}ben J. J. and Raab, Annette and Wilhelm, Christian and Hommers, Leif and Lesch, Klaus-Peter and Verhoeven-Duif, Nanda M. and Gohla, Antje}, title = {Improved cognition, mild anxiety-like behavior and decreased motor performance in pyridoxal phosphatase-deficient mice}, series = {BBA - Molecular Basis of Disease}, volume = {1865}, journal = {BBA - Molecular Basis of Disease}, doi = {10.1016/j.bbadis.2018.08.018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323396}, pages = {193-205}, year = {2019}, abstract = {Pyridoxal 5′-phosphate (PLP) is an essential cofactor in the catalysis of ~140 different enzymatic reactions. A pharmacological elevation of cellular PLP concentrations is of interest in neuropsychiatric diseases, but whole-body consequences of higher intracellular PLP levels are unknown. To address this question, we have generated mice allowing a conditional ablation of the PLP phosphatase PDXP. Ubiquitous PDXP deletion increased PLP levels in brain, skeletal muscle and red blood cells up to 3-fold compared to control mice, demonstrating that PDXP acts as a major regulator of cellular PLP concentrations in vivo. Neurotransmitter analysis revealed that the concentrations of dopamine, serotonin, epinephrine and glutamate were unchanged in the brains of PDXP knockout mice. However, the levels of γ-aminobutyric acid (GABA) increased by ~20\%, demonstrating that elevated PLP levels can drive additional GABA production. Behavioral phenotyping of PDXP knockout mice revealed improved spatial learning and memory, and a mild anxiety-like behavior. Consistent with elevated GABA levels in the brain, PDXP loss in neural cells decreased performance in motor tests, whereas PDXP-deficiency in skeletal muscle increased grip strength. Our findings suggest that PDXP is involved in the fine-tuning of GABA biosynthesis. Pharmacological inhibition of PDXP might correct the excitatory/inhibitory imbalance in some neuropsychiatric diseases.}, language = {en} } @article{MuellerCosentinoFoerstneretal.2018, author = {M{\"u}ller, Laura S. M. and Cosentino, Ra{\´u}l O. and F{\"o}rstner, Konrad U. and Guizetti, Julien and Wedel, Carolin and Kaplan, Noam and Janzen, Christian J. and Arampatzi, Panagiota and Vogel, J{\"o}rg and Steinbiss, Sascha and Otto, Thomas D. and Saliba, Antoine-Emmanuel and Sebra, Robert P. and Siegel, T. Nicolai}, title = {Genome organization and DNA accessibility control antigenic variation in trypanosomes}, series = {Nature}, volume = {563}, journal = {Nature}, doi = {10.1038/s41586-018-0619-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224265}, pages = {121-125}, year = {2018}, abstract = {Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.}, language = {en} } @article{MunzRichterLoosetal.2018, author = {Munz, Matthias and Richter, Gesa M. and Loos, Bruno G. and Jepsen, S{\o}ren and Divaris, Kimon and Offenbacher, Steven and Teumer, Alexander and Holtfreter, Birte and Kocher, Thomas and Bruckmann, Corinna and Jockel-Schneider, Yvonne and Graetz, Christian and Munoz, Loreto and Bhandari, Anita and Tennstedt, Stephanie and Staufenbiel, Ingmar and van der Velde, Nathalie and Uitterlinden, Andr{\´e} G. and de Groot, Lisette C. P. G. M. and Wellmann, J{\"u}rgen and Berger, Klaus and Krone, Bastian and Hoffmann, Per and Laudes, Matthias and Lieb, Wolfgang and Andre, Franke and Dommisch, Henrik and Erdmann, Jeanette and Schaefer, Arne S.}, title = {Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-31980-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231647}, year = {2018}, abstract = {Evidence for a shared genetic basis of association between coronary artery disease (CAD) and periodontitis (PD) exists. To explore the joint genetic basis, we performed a GWAS meta-analysis. In the discovery stage, we used a German aggressive periodontitis sample (AgP-Ger; 680 cases vs 3,973 controls) and the CARDIoGRAMplusC4D CAD meta-analysis dataset (60,801 cases vs 123,504 controls). Two SNPs at the known CAD risk loci ADAMTS7 (rs11634042) and VAMP8 (rs1561198) passed the pre-assigned selection criteria (PAgP-Ger < 0.05; PCAD < 5 × 10-8; concordant effect direction) and were replicated in an independent GWAS meta-analysis dataset of PD (4,415 cases vs 5,935 controls). SNP rs1561198 showed significant association (PD[Replication]: P = 0.008 OR = 1.09, 95\% CI = [1.02-1.16]; PD [Discovery + Replication]: P = 0.0002, OR = 1.11, 95\% CI = [1.05-1.17]). For the associated haplotype block, allele specific cis-effects on VAMP8 expression were reported. Our data adds to the shared genetic basis of CAD and PD and indicate that the observed association of the two disease conditions cannot be solely explained by shared environmental risk factors. We conclude that the molecular pathway shared by CAD and PD involves VAMP8 function, which has a role in membrane vesicular trafficking, and is manipulated by pathogens to corrupt host immune defense.}, language = {en} } @phdthesis{PaetzelgebDitter2024, author = {P{\"a}tzel [geb. Ditter], Katharina Sabine}, title = {Molekulare Charakterisierung eines Mitgliedes der TNF-Rezeptor-Superfamilie des Fuchsbandwurmes \(Echinococcus\) \(multilocularis\)}, doi = {10.25972/OPUS-36939}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die alveol{\"a}re Echinokokkose (AE), die durch den Fuchsbandwurm Echinococcus multilocularis verursacht wird, ist eine seltene jedoch schwere und oft t{\"o}dlich verlaufende Erkrankung. Aufgrund der sp{\"a}ten Diagnosestellung sind kurative Behandlungsmethoden h{\"a}ufig nicht durchf{\"u}hrbar und als einzige Behandlungsm{\"o}glichkeit bleibt eine lebenslange und nebenwirkungsreiche Therapie mit Benzimidazolen. Verbesserte Therapieoptionen durch die Entwicklung neuer Medikamente sind dringend notwendig. Hierf{\"u}r kann es hilfreich sein die Biologie des Fuchsbandwurmes und die Kommunikationswege zwischen Parasit und Wirt zu verstehen. Bereits in vorherigen Arbeiten als auch in dieser Arbeit erwiesen sich evolutionsgeschichtlich konservierte Signalwege als Kommunikationsweg zwischen dem Fuchsbandwurm und seinem Wirt von zentraler Rolle. Die Entschl{\"u}sselung des Echinococcus-Genoms gab Hinweise darauf, dass ein Mitglied der Tumornekrosefaktor-Rezeptor-Superfamilie, jedoch kein endogener TNF α {\"a}hnlicher Ligand im Genom kodiert wird. Ein Mitglied der TNFR-Superfamilie des Fuchsbandwurmes (EmTNFR) wurde in dieser Arbeit als membranst{\"a}ndiger Rezeptor mit einer intrazellul{\"a}ren Todesdom{\"a}ne (DD) und hoher {\"A}hnlichkeit zum humanen Typ 16 der TNF-Rezeptor-Superfamilie, auch 〖p75〗^NTR genannt, charakterisiert. Sowohl in bioinformatischen als auch in Sequenzanalysen wurden drei alternative Splicing-Formen von emtnfr (emtnfr, emtnfr-v2 und emtnfr-v3) nachgewiesen. emtnfr-v2 entsteht durch Alternatives Splicing und kodiert ein Protein, das keine intrazellul{\"a}re Todesdom{\"a}ne besitzt. emtnfr-v3 verwendet einen alternativen Transkriptionstart und wird von den letzten 3 Exons von emtnfr kodiert. emtnfr-v3, kodiert ein Protein ohne extrazellul{\"a}re Region, aber mit intrazellul{\"a}rer Todesdom{\"a}ne. Ein l{\"o}slicher TNF-Rezeptor konnte auf Proteinebene nicht nachgewiesen werden. Aufgrund von phylogenetischen Analysen und der Rezeptor-Struktur ist zu vermuten, dass EmTNFR ein p75NTR Homolog ist und damit der urspr{\"u}nglichen Form der TNF-Rezeptoren entspricht. Mitglieder eines intrazellul{\"a}ren TNF-Signalweges wurden in bioinformatischen Analysen beim Fuchsbandwurm E. multilocularis identifiziert. Expressionsuntersuchungen zeigten sowohl in Trankriptomdaten als auch auf Proteinebene eine starke Expression von EmTNFR in Prim{\"a}rzellen und im Metazestoden (MZ), dem pathogenen Stadium f{\"u}r den Zwischenwirt. Echinococcus-Stammzellkulturen zeigten nach RNA-Interferenz-basiertem Knockdown des EmTNFR-kodierenden Gens deutliche Entwicklungsdefekte. Des Weiteren zeigten Echinococcus-Stammzellkulturen nach einer Behandlung mit TNF-α, einem potentiellen Liganden des TNF-Rezeptors und einem zentralen Zytokin in der Immunabwehr des Zwischenwirtes, Entwicklungsfortschritte, wie eine verbesserte Bildung von MZ aus Stammzellen. Zus{\"a}tzlich wurde in whole-mount in situ Hybridisierungs-Versuchen eine ubiquit{\"a}re Expression von emtnfr in der Germinalschicht des MZ sowie eine Spezifit{\"a}t von emtnfr f{\"u}r den MZ, welcher urs{\"a}chlich f{\"u}r die AE ist, nachgewiesen. Somit scheinen sowohl EmTNFR als auch TNF-α eine wichtige Funktion bei der Entwicklung und Etablierung des Fuchsbandwurmes w{\"a}hrend der fr{\"u}hen Phase der Infektion des Zwischenwirtes zu haben. TNF-α k{\"o}nnte ein weiterer Faktor f{\"u}r den ausgepr{\"a}gten Organtropismus des Parasiten zur Leber sein, denn dort bestehen durch Kupfferzellen produzierte hohe lokale Konzentration von TNF-α. Zusammenfassend deuten die hier erarbeiteten Daten darauf hin, dass EmTNFR {\"u}ber die Bindung von Wirts-TNF-α bei der fr{\"u}hen Entwicklung des Echincoccus-Metazestoden eine Rolle spielt.}, subject = {Fuchsbandwurm}, language = {de} } @phdthesis{Reissland2024, author = {Reissland, Michaela}, title = {USP10 is a \(de\) \(novo\) tumour-specific regulator of β-Catenin and contributes to cancer stem cell maintenance and tumour progression}, doi = {10.25972/OPUS-31957}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Colorectal Cancer (CRC) is the third most common cancer in the US. The majority of CRC cases are due to deregulated WNT-signalling pathway. These alterations are mainly caused by mutations in the tumour suppressor gene APC or in CTNNB1, encoding the key effector protein of this pathway, β-Catenin. In canonical WNT-signalling, β-Catenin activates the transcription of several target genes, encoding for proteins involved in proliferation, such as MYC, JUN and NOTCH. Being such a critical regulator of these proto-oncogenes, the stability of β-Catenin is tightly regulated by the Ubiquitin-Proteasome System. Several E3 ligases that ubiquitylate and degrade β-Catenin have been described in the past, but the antagonists, the deubiquitylases, are still unknown. By performing an unbiased siRNA screen, the deubiquitylase USP10 was identified as a de novo positive regulator of β-Catenin stability in CRC derived cells. USP10 has previously been shown in the literature to regulate both mutant and wild type TP53 stability, to deubiquitylate NOTCH1 in endothelial cells and to be involved in the regulation of AMPKα signalling. Overall, however, its role in colorectal tumorigenesis remains controversial. By analysing publicly available protein and gene expression data from colorectal cancer patients, we have shown that USP10 is strongly upregulated or amplified upon transformation and that its expression correlates positively with CTNNB1 expression. In contrast, basal USP10 levels were found in non-transformed tissues, but surprisingly USP10 is upregulated in intestinal stem cells. Endogenous interaction studies in CRC-derived cell lines, with different extend of APCtruncation, revealed an APC-dependent mode of action for both proteins. Furthermore, by utilising CRISPR/Cas9, shRNA-mediated knock-down and overexpression of USP10, we could demonstrate a regulation of β-Catenin stability by USP10 in CRC cell lines. It is widely excepted that 2D cell culture systems do not reflect complexity, architecture and heterogeneity and are therefore not suitable to answer complex biological questions. To overcome this, we established the isolation, cultivation and genetically modification of murine intestinal organoids and utilised this system to study Usp10s role ex vivo. By performing RNA sequencing, dependent on different Usp10 levels, we were able to recapitulate the previous findings and demonstrated Usp10 as important regulator of β-dependent regulation of stem cell homeostasis. Since genetic depletion of USP10 resulted in down-regulation of β-Catenin-dependent transcription, therapeutic intervention of USP10 in colorectal cancer was also investigated. Commercial and newly developed inhibitors were tested for their efficacy against USP10, but failed to significantly inhibit USP10 activity in colorectal cancer cells. To validate the findings from this work also in vivo, development of a novel mouse model for colorectal cancer has begun. By combining CRISPR/Cas9 and classical genetic engineering with viral injection strategies, WT and genetically modified mice could be transformed and, at least in some animals, intestinal lesions were detectable at the microscopic level. The inhibition of USP10, which we could describe as a de novo tumour-specific regulator of β-Catenin, could become a new therapeutic strategy for colorectal cancer patients.}, subject = {Biomedizin}, language = {en} } @article{MorimotoShimadaSugimotoOtowaetal.2018, author = {Morimoto, Yoshiro and Shimada-Sugimoto, Mihoko and Otowa, Takeshi and Yoshida, Shintaro and Kinoshita, Akira and Mishima, Hiroyuki and Yamaguchi, Naohiro and Mori, Takatoshi and Imamura, Akira and Ozawa, Hiroki and Kurotaki, Naohiro and Ziegler, Christiane and Domschke, Katharina and Deckert, J{\"u}rgen and Umekage, Tadashi and Tochigi, Mamoru and Kaiya, Hisanobu and Okazaki, Yuji and Tokunaga, Katsushi and Sasaki, Tsukasa and Yoshiura, Koh-ichiro and Ono, Shinji}, title = {Whole-exome sequencing and gene-based rare variant association tests suggest that PLA2G4E might be a risk gene for panic disorder}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-017-0088-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224192}, year = {2018}, abstract = {Panic disorder (PD) is characterized by recurrent and unexpected panic attacks, subsequent anticipatory anxiety, and phobic avoidance. Recent epidemiological and genetic studies have revealed that genetic factors contribute to the pathogenesis of PD. We performed whole-exome sequencing on one Japanese family, including multiple patients with panic disorder, which identified seven rare protein-altering variants. We then screened these genes in a Japanese PD case-control group (384 sporadic PD patients and 571 controls), resulting in the detection of three novel single nucleotide variants as potential candidates for PD (chr15: 42631993, T>C in GANC; chr15: 42342861, G>T in PLA2G4E; chr20: 3641457, G>C in GFRA4). Statistical analyses of these three genes showed that PLA2G4E yielded the lowest p value in gene-based rare variant association tests by Efficient and Parallelizable Association Container Toolbox algorithms; however, the p value did not reach the significance threshold in the Japanese. Likewise, in a German case-control study (96 sporadic PD patients and 96 controls), PLA2G4E showed the lowest p value but again did not reach the significance threshold. In conclusion, we failed to find any significant variants or genes responsible for the development of PD. Nonetheless, our results still leave open the possibility that rare protein-altering variants in PLA2G4E contribute to the risk of PD, considering the function of this gene.}, language = {en} } @article{NerreterLetschertGoetzetal.2019, author = {Nerreter, Thomas and Letschert, Sebastian and G{\"o}tz, Ralph and Doose, S{\"o}ren and Danhof, Sophia and Einsele, Hermann and Sauer, Markus and Hudecek, Michael}, title = {Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10948-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232258}, year = {2019}, abstract = {Immunotherapy with chimeric antigen receptor-engineered T-cells (CAR-T) is under investigation in multiple myeloma. There are reports of myeloma remission after CD19 CAR-T therapy, although CD19 is hardly detectable on myeloma cells by flow cytometry (FC). We apply single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM), and demonstrate CD19 expression on a fraction of myeloma cells (10.3-80\%) in 10 out of 14 patients (density: 13-5,000 molecules per cell). In contrast, FC detects CD19 in only 2 of these 10 patients, on a smaller fraction of cells. Treatment with CD19 CAR-T in vitro results in elimination of CD19-positive myeloma cells, including those with <100 CD19 molecules per cell. Similar data are obtained by dSTORM analyses of CD20 expression on myeloma cells and CD20 CAR-T. These data establish a sensitivity threshold for CAR-T and illustrate how super-resolution microscopy can guide patient selection in immunotherapy to exploit ultra-low density antigens.}, language = {en} } @article{OdinChaudhuriVolkmannetal.2018, author = {Odin, Per and Chaudhuri, K. Ray and Volkmann, Jens and Antonini, Angelo and Storch, Alexander and Dietrichs, Espen and Pirtošek, Zvezdan and Henriksen, Tove and Horne, Malcolm and Devos, David and Bergquist, Filip}, title = {Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0051-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234435}, year = {2018}, abstract = {Motor aspects of Parkinson's disease, such as fluctuations and dyskinesia, can be reliably evaluated using a variety of "wearable" technologies, but practical guidance on objective measurement (OM) and the optimum use of these devices is lacking. Therefore, as a first step, a panel of movement disorder specialists met to provide guidance on how OM could be assessed and incorporated into clinical guidelines. A key aspect of the incorporation of OM into the management of Parkinson's disease (PD) is defining cutoff values that separate "controlled" from "uncontrolled" symptoms that can be modified by therapy and that relate to an outcome that is relevant to the person with PD (such as quality of life). Defining cutoffs by consensus, which can be subsequently tested and refined, is the first step to optimizing OM in the management of PD. OM should be used by all clinicians that treat people with PD but the least experienced may find the most value, but this requires guidance from experts to allow non-experts to apply guidelines. While evidence is gained for devices that produce OM, expert opinion is needed to supplement the evidence base.}, language = {en} } @article{ScholzCosgareaSuesskindetal.2018, author = {Scholz, S. L. and Cosgarea, I. and S{\"u}ßkind, D. and Murali, R. and M{\"o}ller, I. and Reis, H. and Leonardelli, S. and Schilling, B. and Schimming, T. and Hadaschik, E. and Franklin, C. and Paschen, A. and Sucker, A. and Steuhl, K. P. and Schadendorf, D. and Westekemper, H. and Griewank, K. G.}, title = {NF1 mutations in conjunctival melanoma}, series = {British Journal of Cancer}, volume = {118}, journal = {British Journal of Cancer}, doi = {10.1038/s41416-018-0046-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233329}, pages = {1243-1247}, year = {2018}, abstract = {Background Conjunctival melanoma is a potentially deadly eye tumour. Despite effective local therapies, tumour recurrence and metastasis remain frequent. The genetics of conjunctival melanomas remain incompletely understood. Methods A large cohort of 63 conjunctival melanomas was screened for gene mutations known to be important in other melanoma subtypes by targeted next-generation sequencing. Mutation status was correlated with patient prognosis. Results Frequent mutations in genes activating the MAP kinase pathway were identified. NF1 mutations were most frequent (n = 21, 33\%). Recurrent activating mutations were also identified in BRAF (n = 16, 25\%) and RAS genes (n = 12, 19\%; 11 NRAS and 1 KRAS). Conclusions Similar to cutaneous melanomas, conjunctival melanomas can be grouped genetically into four groups: BRAF-mutated, RAS-mutated, NF1-mutated and triple wild-type melanomas. This genetic classification may be useful for assessment of therapeutic options for patients with metastatic conjunctival melanoma}, language = {en} } @article{BruchhagenJarickMewisetal.2018, author = {Bruchhagen, Christin and Jarick, Marcel and Mewis, Carolin and Hertlein, Tobias and Niemann, Silke and Ohlsen, Knut and Peters, Georg and Planz, Oliver and Ludwig, Stephan and Ehrhardt, Christina}, title = {Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-27445-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221648}, year = {2018}, abstract = {Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system.}, language = {en} } @article{CastilhoHochleitnerWilsonetal.2018, author = {Castilho, Miguel and Hochleitner, Gernot and Wilson, Wouter and van Rietbergen, Bert and Dalton, Paul D. and Groll, J{\"u}rgen and Malda, Jos and Ito, Keita}, title = {Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-19502-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222280}, year = {2018}, abstract = {Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions.}, language = {en} } @article{AlZabenMedyukhinaDietrichetal.2019, author = {Al-Zaben, Naim and Medyukhina, Anna and Dietrich, Stefanie and Marolda, Alessandra and H{\"u}nniger, Kerstin and Kurzai, Oliver and Figge, Marc Thilo}, title = {Automated tracking of label-free cells with enhanced recognition of whole tracks}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-39725-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221093}, year = {2019}, abstract = {Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease.}, language = {en} } @article{deJongDinizSalomaetal.2018, author = {de Jong, Simone and Diniz, Mateus Jose Abdalla and Saloma, Andiara and Gadelha, Ary and Santoro, Marcos L. and Ota, Vanessa K. and Noto, Cristiano and Curtis, Charles and Newhouse, Stephen J. and Patel, Hamel and Hall, Lynsey S. and O'Reilly, Paul F. and Belangero, Sintia I. and Bressan, Rodrigo A. and Breen, Gerome}, title = {Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, organization = {Major Depressive Disorder and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium}, doi = {10.1038/s42003-018-0155-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223622}, year = {2018}, abstract = {Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30\% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.}, language = {en} } @article{DekkerDiekstraPulitetal.2019, author = {Dekker, Annelot M. and Diekstra, Frank P. and Pulit, Sara L. and Tazelaar, Gijs H. P. and van der Spek, Rick A. and van Rheenen, Wouter and van Eijk, Kristel R. and Calvo, Andrea and Brunetti, Maura and Van Damme, Philip and Robberecht, Wim and Hardiman, Orla and McLaughlin, Russell and Chi{\`o}, Adriano and Sendtner, Michael and Ludolph, Albert C. and Weishaupt, Jochen H. and Pardina, Jesus S. Mora and van den Berg, Leonard H. and Veldink, Jan H.}, title = {Exome array analysis of rare and low frequency variants in amyotrophic lateral sclerosis}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-42091-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223686}, year = {2019}, abstract = {Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects 1 in ~350 individuals. Genetic association studies have established ALS as a multifactorial disease with heritability estimated at ~61\%, and recent studies show a prominent role for rare variation in its genetic architecture. To identify rare variants associated with disease onset we performed exome array genotyping in 4,244 cases and 3,106 controls from European cohorts. In this largest exome-wide study of rare variants in ALS to date, we performed single-variant association testing, gene-based burden, and exome-wide individual set-unique burden (ISUB) testing to identify single or aggregated rare variation that modifies disease risk. In single-variant testing no variants reached exome-wide significance, likely due to limited statistical power. Gene-based burden testing of rare non-synonymous and loss-of-function variants showed NEK1 as the top associated gene. ISUB analysis did not show an increased exome-wide burden of deleterious variants in patients, possibly suggesting a more region-specific role for rare variation. Complete summary statistics are released publicly. This study did not implicate new risk loci, emphasizing the immediate need for future large-scale collaborations in ALS that will expand available sample sizes, increase genome coverage, and improve our ability to detect rare variants associated to ALS.}, language = {en} } @article{DiehlSchmidLicataGoldhardtetal.2019, author = {Diehl-Schmid, Janine and Licata, Abigail and Goldhardt, Oliver and F{\"o}rstl, Hans and Yakushew, Igor and Otto, Markus and Anderl-Straub, Sarah and Beer, Ambros and Ludolph, Albert Christian and Landwehrmeyer, Georg Bernhard and Levin, Johannes and Danek, Adrian and Fliessbach, Klaus and Spottke, Annika and Fassbender, Klaus and Lyros, Epameinondas and Prudlo, Johannes and Krause, Bernd Joachim and Volk, Alexander and Edbauer, Dieter and Schroeter, Matthias Leopold and Drzezga, Alexander and Kornhuber, Johannes and Lauer, Martin and Grimmer, Timo}, title = {FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, organization = {FTLDc Study Group}, doi = {10.1038/s41398-019-0381-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225308}, year = {2019}, abstract = {C9ORF72 mutations are the most common cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). MRI studies have investigated structural changes in C9ORF72-associated FTLD (C9FTLD) and provided first insights about a prominent involvement of the thalamus and the cerebellum. Our multicenter, 18F-fluorodeoxyglucose positron-emission tomography study of 22 mutation carriers with FTLD, 22 matched non-carriers with FTLD, and 23 cognitively healthy controls provided valuable insights into functional changes in C9FTLD: compared to non-carriers, mutation carriers showed a significant reduction of glucose metabolism in both thalami, underscoring the key role of the thalamus in C9FTLD. Thalamic metabolism did not correlate with disease severity, duration of disease, or the presence of psychotic symptoms. Against our expectations we could not demonstrate a cerebellar hypometabolism in carriers or non-carriers. Future imaging and neuropathological studies in large patient cohorts are required to further elucidate the central role of the thalamus in C9FTLD.}, language = {en} } @article{DietrichKrugKrastletal.2019, author = {Dietrich, Thomas and Krug, Ralf and Krastl, Gabriel and Tomson, Philip L.}, title = {Restoring the unrestorable! Developing coronal tooth tissue with a minimally invasive surgical extrusion technique}, series = {British Dental Journal}, volume = {226}, journal = {British Dental Journal}, doi = {10.1038/s41415-019-0268-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225333}, pages = {789-793}, year = {2019}, abstract = {Surgical extrusion is a recognised treatment option for teeth that have insufficient coronal tooth structure remaining due to deep caries, resorption or traumatic injury. However, the technique has not been widely adopted, arguably because extraction of a severely compromised tooth may be difficult to achieve in a gentle and predictable way. In this paper, we present our novel approach to surgical extrusion and subsequent management of teeth using a vertical extraction system (Benex), which has become the method of choice in the authors' practice for many teeth that would otherwise be deemed unrestorable. We describe the clinical procedure in detail and discuss the advantages and disadvantages compared to alternative approaches, including surgical crown lengthening and orthodontic extrusion.}, language = {en} } @article{HauerPoppSchoelleretal.2018, author = {Hauer, Nadine N. and Popp, Bernt and Schoeller, Eva and Schuhmann, Sarah and Heath, Karen E. and Hisado-Oliva, Alfonso and Klinger, Patricia and Kraus, Cornelia and Trautmann, Udo and Zenker, Martin and Zweier, Christiane and Wiesener, Antje and Jamra, Rami Abou and Kunstmann, Erdmute and Wieczorek, Dagmar and Uebe, Steffen and Ferrazzi, Fulvia and B{\"u}ttner, Christian and Ekici, Arif B. and Rauch, Anita and Sticht, Heinrich and D{\"o}rr, Helmuth-G{\"u}nther and Reis, Andr{\´e} and Thiel, Christian T.}, title = {Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature}, series = {Genetics in Medicine}, volume = {20}, journal = {Genetics in Medicine}, doi = {10.1038/gim.2017.159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227888}, pages = {630-638}, year = {2018}, abstract = {Purpose Short stature is a common condition of great concern to patients and their families. Mostly genetic in origin, the underlying cause often remains elusive due to clinical and genetic heterogeneity. Methods We systematically phenotyped 565 patients where common nongenetic causes of short stature were excluded, selected 200 representative patients for whole-exome sequencing, and analyzed the identified variants for pathogenicity and the affected genes regarding their functional relevance for growth. Results By standard targeted diagnostic and phenotype assessment, we identified a known disease cause in only 13.6\% of the 565 patients. Whole-exome sequencing in 200 patients identified additional mutations in known short-stature genes in 16.5\% of these patients who manifested only part of the symptomatology. In 15.5\% of the 200 patients our findings were of significant clinical relevance. Heterozygous carriers of recessive skeletal dysplasia alleles represented 3.5\% of the cases. Conclusion A combined approach of systematic phenotyping, targeted genetic testing, and whole-exome sequencing allows the identification of the underlying cause of short stature in at least 33\% of cases, enabling physicians to improve diagnosis, treatment, and genetic counseling. Exome sequencing significantly increases the diagnostic yield and consequently care in patients with short stature.}, language = {en} } @article{LudwigDelforgeFaconetal.2018, author = {Ludwig, Heinz and Delforge, Michel and Facon, Thierry and Einsele, Hermann and Gay, Francesca and Moreau, Philippe and Avet-Loiseau, Herv{\´e} and Boccadoro, Mario and Hajek, Roman and Mohty, Mohamad and Cavo, Michele and Dimopoulos, Meletios A and San-Miguel, Jes{\´u}s F and Terpos, Evangelos and Zweegman, Sonja and Garderet, Laurent and Mateos, Mar{\´i}a-Victoria and Cook, Gordon and Leleu, Xavier and Goldschmidt, Hartmut and Jackson, Graham and Kaiser, Martin and Weisel, Katja and van de Donk, Niels W. C. J. and Waage, Anders and Beksac, Meral and Mellqvist, Ulf H. and Engelhardt, Monika and Caers, Jo and Driessen, Christoph and Blad{\´e}, Joan and Sonneveld, Pieter}, title = {Prevention and management of adverse events of novel agents in multiple myeloma: a consensus of the European Myeloma Network}, series = {Leukemia}, volume = {32}, journal = {Leukemia}, doi = {10.1038/s41375-018-0040-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237338}, pages = {1542-1560}, year = {2018}, abstract = {During the last few years, several new drugs have been introduced for treatment of patients with multiple myeloma, which have significantly improved the treatment outcome. All of these novel substances differ at least in part in their mode of action from similar drugs of the same drug class, or are representatives of new drug classes, and as such present with very specific side effect profiles. In this review, we summarize these adverse events, provide information on their prevention, and give practical guidance for monitoring of patients and for management of adverse events.}, language = {en} } @phdthesis{Machwart2024, author = {Machwart, Khaled}, title = {Modulatorischer Einfluss von Levosimendan bei dem Isch{\"a}mie-Reperfusionsschaden auf die myokardiale Mitochondrienfunktion}, doi = {10.25972/OPUS-36102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361021}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die vorliegende Studie untersuchte den Effekt von Levosimendan auf die mitochondriale Funktionen im Herzmuskel, insbesondere im Zusammenhang mit dem Isch{\"a}mie/Reperfusions-Schaden. Methoden: In der Studie wurde ein retrogrades Langendorff-Modell verwendet, um die Auswirkungen von Levosimendan, dem Isch{\"a}mie/Reperfusions-Schaden sowie deren Kombination auf die mitochondrialen Funktionen im Herzmuskel zu untersuchen. Dazu wurden vier verschiedene Gruppen von Rattenherzen entsprechend den experimentellen Bedingungen perfundiert, und ihre Funktionen wurden analysiert. Ergebnisse: Der Isch{\"a}mie/Reperfusions-Schaden beeintr{\"a}chtigte die myokardiale Ventrikelfunktion. Zus{\"a}tzlich wurde eine Hypopolarisation des mithochondrialen Membranpotentials in den mit Levosimendan oder Isch{\"a}mie behandelten Gruppen festgestellt. Die ATP-Synthese in den Gruppen mit Levosimendan und Isch{\"a}mie war reduziert. Schlussfolgerung: Levosimendan zeigt signifikante Einfl{\"u}sse auf die Atmungsfunktion der mitochondrialen Komplexe IV und V sowie auf das Membranpotential. Diese Ph{\"a}nomene k{\"o}nnten einem mito-K+ ATP-abh{\"a}ngigen Mechanismus zugrunde liegen. Obwohl Levosimendan w{\"a}hrend des Isch{\"a}mie/Reperfusionsschadens eine protektive Wirkung hinsichtlich einer Ca2+- {\"U}berlastung aufweist, bleibt der kumulative Einfluss der beeintr{\"a}chtigten ATP-Generierung auf die gesamte Myokardfunktion zu kl{\"a}ren.}, subject = {Isch{\"a}mie}, language = {de} } @article{PrustyGulveGovindetal.2018, author = {Prusty, Bhupesh K. and Gulve, Nitish and Govind, Sheila and Krueger, Gerhard R. F. and Feichtinger, Julia and Larcombe, Lee and Aspinall, Richard and Ablashi, Dharam V. and Toro, Carla T.}, title = {Active HHV-6 Infection of Cerebellar Purkinje Cells in Mood Disorders}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369222}, year = {2018}, abstract = {Early-life infections and associated neuroinflammation is incriminated in the pathogenesis of various mood disorders. Infection with human roseoloviruses, HHV-6A and HHV-6B, allows viral latency in the central nervous system and other tissues, which can later be activated causing cognitive and behavioral disturbances. Hence, this study was designed to evaluate possible association of HHV-6A and HHV-6B activation with three different groups of psychiatric patients. DNA qPCR, immunofluorescence and FISH studies were carried out in post-mortem posterior cerebellum from 50 cases each of bipolar disorder (BPD), schizophrenia, 15 major depressive disorder (MDD) and 50 appropriate control samples obtained from two well-known brain collections (Stanley Medical Research Institute). HHV-6A and HHV-6B late proteins (indicating active infection) and viral DNA were detected more frequently (p < 0.001 for each virus) in human cerebellum in MDD and BPD relative to controls. These roseolovirus proteins and DNA were found less frequently in schizophrenia cases. Active HHV-6A and HHV-6B infection in cerebellar Purkinje cells were detected frequently in BPD and MDD cases. Furthermore, we found a significant association of HHV-6A infection with reduced Purkinje cell size, suggesting virus-mediated abnormal Purkinje cell function in these disorders. Finally, gene expression analysis of cerebellar tissue revealed changes in pathways reflecting an inflammatory response possibly to HHV-6A infection. Our results provide molecular evidence to support a role for active HHV-6A and HHV-6B infection in BPD and MDD.}, language = {en} } @article{TichaMoosWajantetal.2018, author = {Ticha, Olga and Moos, Lukas and Wajant, Harald and Bekeredjian-Ding, Isabelle}, title = {Expression of Tumor Necrosis Factor Receptor 2 Characterizes TLR9-Driven Formation of Interleukin-10-Producing B Cells}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2017.01951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241323}, year = {2018}, abstract = {B cell-derived interleukin-10 (IL-10) production has been described as a hallmark for regulatory function in B lymphocytes. However, there is an ongoing debate on the origin of IL-10-secreting B cells and lack of specific surface markers has turned into an important obstacle for studying human B regulatory cells. In this study, we propose that tumor necrosis factor receptor 2 (TNFR2) expression can be used for enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies differentiation of peripheral blood B cells into plasma blasts. We further show that CpG ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that TNFR2+ and TNFR2- fractions correspond to IL-10+ and IL-10- fractions, respectively. Furthermore, CpG-induced TNFR2+ B cells were predominantly found in the IgM+ CD27+ B cell subset and spontaneously released immunoglobulin. Finally, our data corroborate the functional impact of TNFR2 by demonstrating that stimulation with a TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along with the potential to exploit this finding for sorting and isolation of this currently ill-defined B cell subset.}, language = {en} } @article{KlotzHigginsSchaubmaretal.2019, author = {Klotz, Peter and Higgins, Paul G. and Schaubmar, Andreas R. and Failing, Klaus and Leidner, Ursula and Seifert, Harald and Scheufen, Sandra and Semmler, Torsten and Ewers, Christa}, title = {Seasonal Occurrence and Carbapenem Susceptibility of Bovine Acinetobacter baumannii in Germany}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.00272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325927}, year = {2019}, abstract = {Acinetobacter baumannii is one of the leading causes of nosocomial infections in humans. To investigate its prevalence, distribution of sequence types (STs), and antimicrobial resistance in cattle, we sampled 422 cattle, including 280 dairy cows, 59 beef cattle, and 83 calves over a 14-month period. Metadata, such as the previous use of antimicrobial agents and feeding, were collected to identify putative determining factors. Bacterial isolates were identified via MALDI-TOF/MS and PCR, antimicrobial susceptibility was evaluated via VITEK2 and antibiotic gradient tests, resistance genes were identified by PCR. Overall, 15.6\% of the cattle harbored A. baumannii, predominantly in the nose (60.3\% of the A. baumannii isolates). It was more frequent in dairy cows (21.1\%) than in beef cattle (6.8\%) and calves (2.4\%). A seasonal occurrence was shown with a peak between May and August. The rate of occurrence of A. baumannii was correlated with a history of use of 3rd generation cephalosporins in the last 6 months prior to sampling Multilocus sequence typing (Pasteur scheme) revealed 83 STs among 126 unique isolates. Nine of the bovine STs have previously been implicated in human infections. Besides known intrinsic resistance of the species, the isolates did not show additional resistance to the antimicrobial substances tested, including carbapenems. Our data suggest that cattle are not a reservoir for nosocomial A. baumannii but carry a highly diverse population of this species. Nevertheless, some STs seem to be able to colonize both cattle and humans.}, language = {en} } @article{SchroeterPawelkeBiseniusetal.2018, author = {Schroeter, Matthias L. and Pawelke, Sarah and Bisenius, Sandrine and Kynast, Jana and Schuemberg, Katharina and Polyakova, Maryna and Anderl-Straub, Sarah and Danek, Adrian and Fassbender, Klaus and Jahn, Holger and Jessen, Frank and Kornhuber, Johannes and Lauer, Martin and Prudlo, Johannes and Schneider, Anja and Uttner, Ingo and Th{\"o}ne-Otto, Angelika and Otto, Markus and Diehl-Schmid, Janine}, title = {A Modified Reading the Mind in the Eyes Test Predicts Behavioral Variant Frontotemporal Dementia Better Than Executive Function Tests}, series = {Frontiers in Aging Neuroscience}, volume = {10}, journal = {Frontiers in Aging Neuroscience}, organization = {FTLD Study Group Germany}, doi = {10.3389/fnagi.2018.00011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234254}, year = {2018}, abstract = {Behavioral variant frontotemporal dementia (bvFTD) is characterized by deep alterations in behavior and personality. Although revised diagnostic criteria agree for executive dysfunction as most characteristic, impairments in social cognition are also suggested. The study aimed at identifying those neuropsychological and behavioral parameters best discriminating between bvFTD and healthy controls. Eighty six patients were diagnosed with possible or probable bvFTD according to Rascovsky et al. (2011) and compared with 43 healthy age-matched controls. Neuropsychological performance was assessed with a modified Reading the Mind in the Eyes Test (RMET), Stroop task, Trail Making Test (TMT), Hamasch-Five-Point Test (H5PT), and semantic and phonemic verbal fluency tasks. Behavior was assessed with the Apathy Evaluation Scale, Frontal Systems Behavioral Scale, and Bayer Activities of Daily Living Scale. Each test's discriminatory power was investigated by Receiver Operating Characteristic curves calculating the area under the curve (AUC). bvFTD patients performed significantly worse than healthy controls in all neuropsychological tests. Discriminatory power (AUC) was highest in behavioral questionnaires, high in verbal fluency tasks and the RMET, and lower in executive function tests such as the Stroop task, TMT and H5PT. As fluency tasks depend on several cognitive functions, not only executive functions, results suggest that the RMET discriminated better between bvFTD and control subjects than other executive tests. Social cognition should be incorporated into diagnostic criteria for bvFTD in the future, such as in the International Classification of Diseases (ICD)-11, as already suggested in the Diagnostic and Statistical Manual for Mental Disorders (DSM)-5.}, language = {en} } @article{LangFuellsackWajant2018, author = {Lang, Isabell and F{\"u}llsack, Simone and Wajant, Harald}, title = {Lack of Evidence for a Direct Interaction of Progranulin and Tumor Necrosis Factor Receptor-1 and Tumor Necrosis Factor Receptor-2 From Cellular Binding Studies}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2018.00793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236373}, year = {2018}, abstract = {Progranulin (PGRN) is a secreted anti-inflammatory protein which can be processed by neutrophil proteases to various granulins. It has been reported that at least a significant portion of the anti-inflammatory effects of PGRN is due to direct high affinity binding to tumor necrosis factor receptor-1 (TNFR1) and TNFR2 and inhibition of tumor necrosis factor (TNF)-induced TNFR1/2 signaling. Two studies failed to reproduce the interaction of TNFR1 and TNFR2 with PGRN, but follow up reports speculated that this was due to varying experimental circumstances and/or the use of PGRN from different sources. However, even under consideration of these speculations, there is still a striking discrepancy in the literature between the concentrations of PGRN needed to inhibit TNF signaling and the concentrations required to block TNF binding to TNFR1 and TNFR2. While signaling events induced by 0.2-2 nM of TNF have been efficiently inhibited by low, near to equimolar concentrations (0.5-2.5 nM) of PGRN in various studies, the reported inhibitory effects of PGRN on TNF-binding to TNFR1/2 required a huge excess of PGRN (100-1,000-fold). Therefore, we investigated the effect of PGRN on TNF binding to TNFR1 and TNFR2 in highly sensitive cellular binding studies. Unlabeled TNF inhibited >95\% of the specific binding of a Gaussia princeps luciferase (GpL) fusion protein of TNF to TNFR1 and TNFR2 and blocked binding of soluble GpL fusion proteins of TNFR1 and TNFR2 to membrane TNF expressing cells to >95\%, too. Purified PGRN, however, showed in both assays no effect on TNF-TNFR1/2 interaction even when applied in huge excess. To rule out that tags and purification- or storage-related effects compromise the potential ability of PGRN to bind TNF receptors, we directly co-expressed PGRN, and as control TNF, in TNFR1- and TNFR2-expressing cells and looked for binding of GpL-TNF. While expression of TNF strongly inhibited binding of GpL-TNF to TNFR1/2, co-expression of PGRN had not effect on the ability of the TNFR1/2-expressing cells to bind TNF.}, language = {en} } @article{WeissZieglerFliesseretal.2018, author = {Weiss, Esther and Ziegler, Sabrina and Fliesser, Mirjam and Schmitt, Anna-Lena and H{\"u}nniger, Kerstin and Kurzai, Oliver and Morton, Charles-Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {First Insights in NK—DC Cross-Talk and the Importance of Soluble Factors During Infection With Aspergillus fumigatus}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, doi = {10.3389/fcimb.2018.00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233565}, year = {2018}, abstract = {Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen Aspergillus fumigatus that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with A. fumigatus, we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type. Interestingly, DCs recognized a broader spectrum of fungal components and thereby initiated NK cell activation when those did not recognize fungal structures. These experiments highlighted the supportive function of DCs in NK cell activation. Furthermore, we focused on soluble DC mediated NK cell activation and showed that DCs stimulated with the TLR2/Dectin-1 ligand zymosan could maximally stimulate the expression of CD69 on NK cells. Thus, we investigated the influence of both receptors for zymosan, Dectin-1 and TLR2, which are highly expressed on DCs but show only minimal expression on NK cells. Specific focus was laid on the question whether Dectin-1 or TLR2 signaling in DCs is important for the secretion of soluble factors leading to NK cell activation. Our results show that Dectin-1 and TLR2 are negligible for NK cell activation. We conclude that besides Dectin-1 and TLR2 other receptors on DCs are able to compensate for the missing signal.}, language = {en} } @article{SchurigHaeuslerGrittneretal.2019, author = {Schurig, Johannes and Haeusler, Karl Georg and Grittner, Ulrike and Nolte, Christian H. and Fiebach, Jochen B. and Audebert, Heinrich J. and Endres, Matthias and Rocco, Andrea}, title = {Frequency of Hemorrhage on Follow Up Imaging in Stroke Patients Treated With rt-PA Depending on Clinical Course}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, doi = {10.3389/fneur.2019.00368}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234947}, year = {2019}, abstract = {Background: According to current guidelines, stroke patients treated with rt-PA should undergo brain imaging to exclude intracerebral bleeding 24 h after thrombolysis, before the start of medical secondary prevention. However, the usefulness of routine follow-up imaging with regard to changes in therapeutic management in patients without neurological deterioration is unclear. We hypothesized that follow up brain imaging solely to exclude bleeding in patients who clinically improved after rt-PA application may not be necessary. Methods: Retrospective single-center analysis including stroke patients treated with rt-PA. Records were reviewed for hemorrhagic transformation one day after systemic thrombolysis and brain imaging-based changes in therapeutic management. Twenty-four hour after thrombolysis patients were divided into four groups: (1) increased NIHSS score; (2) unchanged NIHSS score; (3) improved NIHSS score and; (4) NIHSS score = 0. Results: Out of 188 patients (mean age 73 years, 100 female) receiving rt-PA, 32 (17\%) had imaging-proven hemorrhagic transformation including 11 (6\%) patients with parenchymal hemorrhage. Patients in group (1, 2) more often had hypertension (p = 0.015) and more often had parenchymal hemorrhage (9 vs. 4\%; p < 0.206) compared to group (3, 4) and imaging-based changes in therapeutic management were more frequent (19\% vs. 6\%; p = 0.007). Patients of group (3, 4) had no changes in therapeutic management in 94\% of the cases. Patients in group (4) had no hemorrhagic transformation in routine follow-up brain imaging. Conclusions: Frequency of hemorrhagic transformation in Routine follow-up brain imaging and consecutive changes in therapeutic management were different depending on clinical course measured by NHISS score.}, language = {en} } @phdthesis{CruzdeCasas2024, author = {Cruz de Casas, Paulina}, title = {Sphingolipids as modulators of T cell function}, doi = {10.25972/OPUS-35969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359698}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The immune system is responsible for the preservation of homeostasis whenever a given organism is exposed to distinct kinds of perturbations. Given the complexity of certain organisms like mammals, and the diverse types of challenges that they encounter (e.g. infection or disease), the immune system evolved to harbor a great variety of distinct immune cell populations with specialized functions. For instance, the family of T cells is sub-divided into conventional (Tconv) and unconventional T cells (UTCs). Tconv form part of the adaptive arm of the immune system and are comprised of αβ CD4+ or CD8+ cells that differentiate from na{\"i}ve to effector and memory populations upon activation and are essential during infection and cancer. Furthermore, UTCs, which include γδ T cells, NKT and MAIT, are involved in innate and adaptive immune responses, due to their dual mode of activation, through cytokines (innate-like) or TCR (adaptive), and function. Despite our understanding of the basic functions of T cells in several contexts, a great number of open questions related to their basic biology remain. For instance, the mechanism behind the differentiation of na{\"i}ve CD4+ and CD8+ T cells into effector and memory populations is not fully understood. Moreover, the exact function and relevance of distinct UTC subpopulations in a physiological context have not been fully clarified. Here, we investigated the factors mediating na{\"i}ve CD8+ T cell differentiation into effector and memory cells. By using flow cytometry, mass spectrometry, enzymatic assays, and transgenic mouse models, we found that the membrane bound enzyme sphingomyelin-phosphodiesterase acid-like 3b (Smpdl3b) is crucial for the maintenance of memory CD8+ T cells. Our data show that the absence of Smpdl3b leads to diminished CD8+ T cell memory, and a loss of stem-like memory populations due to an aggravated contraction. Our scRNA-seq data suggest that Smpdl3b could be involved in clathrinmediated endocytosis through modulation of Huntingtin interacting protein 1 (Hip1) levels, likely regulating TCR-independent signaling events. Furthermore, in this study we explored the role of UTCs in lymph node-specific immune responses. By using transgenic mouse models for photolabeling, lymph node transplantation models, infection models and flow cytometry, we demonstrate that S1P regulates the migration of tissue-derived UTC from tissues to draining lymph nodes, resulting in heterogeneous immune responses mounted by lymph nodes draining different tissues. Moreover, our unbiased scRNAseq and single lineage-deficient mouse models analysis revealed that all UTC lineages (γδ T cells, NKT and MAIT) are organized in functional units, based on transcriptional homogeneity, shared microanatomical location and migratory behavior, and numerical and functional redundancy. Taken together, our studies describe additional cell intrinsic (Smpdl3b) and extrinsic (S1Pmediated migration) functions of sphingolipid metabolism modulating T cell biology. We propose the S1P/S1PR1/5 signaling axis as the potential survival pathway for Smpdl3b+ memory CD8+ T cells and UTCs, mainly in lymph nodes. Possibly, Smpdl3b regulates S1P/S1PR signaling by balancing ligandreceptor endocytosis, while UTCs migrate to lymph nodes during homeostasis to be exposed to specific levels of S1P that assure their maintenance. Our results are clinically relevant, since several drugs modulating the S1P/S1PR signaling axis or the levels of Smpdl3b are currently used to treat human diseases, such as multiple sclerosis and B cell-mediated diseases. We hope that our discoveries will inspire future studies focusing on sphingolipid metabolism in immune cell biology.}, subject = {T-Lymphozyt}, language = {en} } @phdthesis{Wussmann2024, author = {Wußmann, Maximiliane}, title = {Humane organotypische 3D Modelle des Malignen Melanoms als in vitro Testsystem f{\"u}r die Bewertung der Wirksamkeit von anti-Tumor Therapeutika}, doi = {10.25972/OPUS-36100}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das maligne Melanom, eine der seltensten, aber gleichzeitig auch die t{\"o}dlichste dermatologische Malignit{\"a}t, gekennzeichnet durch die Neigung zu einer fr{\"u}hen Metastasierung sowie die rasche Entwicklung von Therapieresistenzen, z{\"a}hlt zu den Tumorentit{\"a}ten mit dem h{\"o}chsten Anstieg der Inzidenz weltweit. Mausmodelle werden h{\"a}ufig verwendet, um die Melanomagenese zu erforschen und neue effektive therapeutische Strategien zu entwickeln, spiegeln die menschliche Physiologie allerdings nur unzureichend wider. In zweidimensionalen (2D) Zellkulturen mangelt es dagegen an wichtigen Komponenten der Mikroumgebung des Tumors und dem dreidimensionalen Gewebekontext. Um dieses Manko zu beheben und die Entwicklung von auf den Menschen {\"u}bertragbaren Tumormodellen in der onkologischen Forschung voranzutreiben, wurde als Alternative zu Zellkulturen und Tierversuchen humane organotypische dreidimensionale (3D) Melanom-Modelle als in vitro Testsystem f{\"u}r die Bewertung der Wirksamkeit von anti-Tumor Therapeutika entwickelt. Im Zuge dieser Arbeit konnte das in vitro Melanom-Modell entscheidend weiterentwickelt werden. So konnten Modelle unterschiedlichster Komplexit{\"a}t etabliert werden, wobei abh{\"a}ngig von der Fragestellung einfachere epidermale bis hin zu unterschiedlich komplexen Vollhautmodellen Anwendung finden. Durch Simulation der Tumor-Mikroumgebung eignen sich diese zur pr{\"a}klinischen Validierung neuer Tumor-Therapeutika, sowie der Erforschung pathologischer Vorg{\"a}nge, von der Tumor-Formierung bis zur Metastasierung. Zudem konnten erfolgreich unterschiedlichste humane Melanomzelllinien ins Modell integriert werden; dadurch, dass sich diese durch ihre Treibermutationen, die zur Krankheitsentstehung beitragen, unterscheiden, stellen sie unterschiedliche Anspr{\"u}che an potentielle therapeutische Angriffspunkte und erm{\"o}glichen das Widerspiegeln vieler Melanom-Subtypen im Modell. Ferner ist es m{\"o}glich, verschiedene Stadien der Tumor-Entwicklung {\"u}ber die Zugabe von Melanomzellen in Einzelsuspension bzw. von Melanom-Sph{\"a}roiden widerzuspiegeln. Es konnte f{\"u}r bestimmte Therapie-Ans{\"a}tze, wie zielgerichtete Therapien, z.B. die Gabe von sich in der Klinik im Einsatz befindlicher BRAF-/MEK-Inhibitoren, gezeigt werden, dass sich die etablierten Modelle hervorragend als pr{\"a}klinische Testsysteme zur Wirksamkeitsbewertung eignen. Zudem bieten sich einzigartige M{\"o}glichkeiten, um die Interaktion humaner Tumorzellen und gesunder Zellen in einem Gewebeverband zu untersuchen. Ferner konnten drei neue technische Analyse-Verfahren zur nicht-invasiven Detektion der Tumor- Pro- und Regression, Beurteilung der Wirksamkeit von potenziellen Anti-Tumor-Therapien sowie der Evaluierung des Tumor-Metabolismusses implementiert werden. Perspektivisch erm{\"o}glichen immun-kompetente Melanom-Modelle die Austestung neuer Immun- und Zelltherapien in einem voll humanen System; gleichzeitig leisten die etablierten Modelle einen signifikanten Beitrag zur Reduktion von Tierexperimenten.}, subject = {Melanom}, language = {de} } @phdthesis{Adhikari2024, author = {Adhikari, Bikash}, title = {Targeted degradation of Myc-interacting oncoproteins}, doi = {10.25972/OPUS-31732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The hallmark oncoprotein Myc is a major driver of tumorigenesis in various human cancer entities. However, Myc's structural features make it challenging to develop small molecules against it. A promising strategy to indirectly inhibit the function of Myc is by targeting its interactors. Many Myc-interacting proteins have reported scaffolding functions which are difficult to target using conventional occupancy- driven inhibitors. Thus, in this thesis, the proteolysis targeting chimera (PROTAC) approach was used to target two oncoproteins interacting with Myc which promote the oncogenicity of Myc, Aurora-A and WDR5. PROTACs are bifunctional small molecules that bind to the target protein with one ligand and recruit a cellular E3- ligase with the other ligand to induce target degradation via the ubiquitin- proteasome system. So far, the most widely used E3-ligases for PROTAC development are Cereblon (CRBN) and von Hippel-Lindau tumor suppressor (VHL). Furthermore, there are cases of incompatibility between some E3-ligases and proteins to bring about degradation. Hence there is a need to explore new E3- ligases and a demand for a tool to predict degradative E3-ligases for the target protein in the PROTAC field. In the first part, a highly specific mitotic kinase Aurora-A degrader, JB170, was developed. This compound utilized Aurora-A inhibitor alisertib as the target ligand and thalidomide as the E3-ligase CRBN harness. The specificity of JB170 and the ternary complex formation was supported by the interactions between Aurora-A and CRBN. The PROTAC-mediated degradation of Aurora-A induced a distinct S- phase defect rather than mitotic arrest, shown by its catalytic inhibition. The finding demonstrates that Aurora-A has a non-catalytic role in the S-phase. Furthermore, the degradation of Aurora-A led to apoptosis in various cancer cell lines. In the second part, two different series of WDR5 PROTACs based on two protein- protein inhibitors of WDR5 were evaluated. The most efficient degraders from both series recruited VHL as a E3-ligase and showed partial degradation of WDR5. In addition, the degradation efficiency of the PROTACs was significantly affected by the linker nature and length, highlighting the importance of linker length and composition in PROTAC design. The degraders showed modest proliferation defects at best in cancer cell lines. However, overexpression of VHL increased the degradation efficiency and the antiproliferative effect of the PROTACs. In the last part, a rapamycin-based assay was developed to predict the degradative E3-ligase for a target. The assay was validated using the WDR5/VHL and Aurora- A/CRBN pairs. The result that WDR5 is degraded by VHL but not CRBN and Aurora-A is degraded by CRBN, matches observations made with PROTACs. This technique will be used in the future to find effective tissue-specific and essential E3-ligases for targeted degradation of oncoproteins using PROTACs. Collectively, the work presented here provides a strategy to improve PROTAC development and a starting point for developing Aurora-A and WDR5 PROTACs for cancer therapy.}, subject = {Degradation}, language = {en} } @phdthesis{Bakirci2024, author = {Bakirci, Ezgi}, title = {Development of \(In\) \(vitro\) Models for Tissue Engineering Applications Using a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-25164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In vitro models mimic the tissue-specific anatomy and play essential roles in personalized medicine and disease treatments. As a sophisticated manufacturing technology, 3D printing overcomes the limitations of traditional technologies and provides an excellent potential for developing in vitro models to mimic native tissue. This thesis aims to investigate the potential of a high-resolution 3D printing technology, melt electrowriting (MEW), for fabricating in vitro models. MEW has a distinct capacity for depositing micron size fibers with a defined design. In this thesis, three approaches were used, including 1) extending the MEW polymer library for different biomedical applications, 2) developing in vitro models for evaluation of cell growth and migration toward the different matrices, and 3) studying the effect of scaffold designs and biochemical cues of microenvironments on cells. First, we introduce the MEW processability of (AB)n and (ABAC)n segmented copolymers, which have thermally reversible network formulation based on physical crosslinks. Bisurea segments are combined with hydrophobic poly(dimethylsiloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments to form the (AB)n segmented copolymers. (ABAC)n segmented copolymers contain all three segments: in addition to bisurea, both hydrophobic and hydrophilic segments are available in the same polymer chain, resulting in tunable mechanical and biological behaviors. MEW copolymers either support cells attachment or dissolve without cytotoxic side effects when in contact with the polymers at lower concentrations, indicating that this copolymer class has potential in biological applications. The unique biological and surface properties, transparency, adjustable hydrophilicity of these copolymers could be beneficial in several in vitro models. The second manuscript addresses the design and development of a melt electrowritten competitive 3D radial migration device. The approach differs from most of the previous literature, as MEW is not used here to produce cell invasive scaffolds but to fabricate an in vitro device. The device is utilized to systematically determine the matrix which promotes cell migration and growth of glioblastoma cells. The glioblastoma cell migration is tested on four different Matrigel concentrations using a melt electrowritten radial device. The glioblastoma U87 cell growth and migration increase at Matrigel concentrations 6 and 8 mg mL-1 In the development of this radial device, the accuracy, and precision of melt electrowritten circular shapes were investigated. The results show that the printing speed and design diameter are essential parameters for the accuracy of printed constructs. It is the first instance where MEW is used for the production of in vitro devices. The influence of biochemical cues and scaffold designs on astrocytes and glioblastoma is investigated in the last manuscript. A fiber comprising the box and triangle-shaped pores within MEW scaffolds are modified with biochemical cues, including RGD and IKVAV peptides using a reactive NCO-sP(EO-stat-PO) macromer. The results show that astrocytes and glioblastoma cells exhibit different phenotypes on scaffold designs and peptide-coated scaffolds.}, subject = {3D-Druck}, language = {en} } @article{SnaebjornssonSchulze2018, author = {Snaebjornsson, Marteinn T and Schulze, Almut}, title = {Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways}, series = {Experimental \& Molecular Medicine}, volume = {50}, journal = {Experimental \& Molecular Medicine}, doi = {10.1038/s12276-018-0065-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238763}, pages = {1-16}, year = {2018}, abstract = {The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.}, language = {en} } @article{SirtlKnollDieuThuyetal.2018, author = {Sirtl, Simon and Knoll, Gertrud and Dieu Thuy, Trinh and Lang, Isabell and Siegmund, Daniela and Gross, Stefanie and Schuler-Thurner, Beatrice and Neubert, Patrick and Jantsch, Jonathan and Wajant, Harald and Ehrenschwender, Martin}, title = {Hypertonicity-enforced BCL-2 addiction unleashes the cytotoxic potential of death receptors}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0265-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238327}, pages = {4122-4136}, year = {2018}, abstract = {Attempts to exploit the cytotoxic activity of death receptors (DR) for treating cancer have thus far been disappointing. DR activation in most malignant cells fails to trigger cell death and may even promote tumor growth by activating cell death-independent DR-associated signaling pathways. Overcoming apoptosis resistance is consequently a prerequisite for successful clinical exploitation of DR stimulation. Here we show that hyperosmotic stress in the tumor microenvironment unleashes the deadly potential of DRs by enforcing BCL-2 addiction of cancer cells. Hypertonicity robustly enhanced cytotoxicity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and other DR ligands in various cancer entities. Initial events in TRAIL DR signaling remained unaffected, but hypertonic conditions unlocked activation of the mitochondrial death pathway and thus amplified the apoptotic signal. Mechanistically, we demonstrate that hyperosmotic stress imposed a BCL-2-addiction on cancer cells to safeguard the integrity of the outer mitochondrial membrane (OMM), essentially exhausting the protective capacity of BCL-2-like pro-survival proteins. Deprivation of these mitochondrial safeguards licensed DR-generated truncated BH3-interacting domain death agonist (tBID) to activate BCL-2-associated X protein (BAX) and initiated mitochondrial outer membrane permeabilization (MOMP). Our work highlights that hyperosmotic stress in the tumor environment primes mitochondria for death and lowers the threshold for DR-induced apoptosis. Beyond TRAIL-based therapies, our findings could help to strengthen the efficacy of other apoptosis-inducing cancer treatment regimens.}, language = {en} } @article{StegmannReichertsAndreattaetal.2019, author = {Stegmann, Yannik and Reicherts, Philipp and Andreatta, Marta and Pauli, Paul and Wieser, Matthias J.}, title = {The effect of trait anxiety on attentional mechanisms in combined context and cue conditioning and extinction learning}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-45239-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239394}, year = {2019}, abstract = {Sensory processing and attention allocation are shaped by threat, but the role of trait-anxiety in sensory processing as a function of threat predictability remains incompletely understood. Therefore, we measured steady-state visual evoked potentials (ssVEPs) as an index of sensory processing of predictable and unpredictable threat cues in 29 low (LA) and 29 high (HA) trait-anxious participants during a modified NPU-paradigm followed by an extinction phase. Three different contextual cues indicated safety (N), predictable (P) or unpredictable threat (U), while foreground cues signalled shocks in the P-condition only. All participants allocated increased attentional resources to the central P-threat cue, replicating previous findings. Importantly, LA individuals exhibited larger ssVEP amplitudes to contextual threat (U and P) than to contextual safety cues, while HA individuals did not differentiate among contextual cues in general. Further, HA exhibited higher aversive ratings of all contexts compared to LA. These results suggest that high trait-anxious individuals might be worse at discriminating contextual threat stimuli and accordingly overestimate the probability and aversiveness of unpredictable threat. These findings support the notion of aberrant sensory processing of unpredictable threat in anxiety disorders, as this processing pattern is already evident in individuals at risk of these disorders.}, language = {en} } @article{SolimandoBrandlMattenheimeretal.2018, author = {Solimando, A G and Brandl, A and Mattenheimer, K and Graf, C and Ritz, M and Ruckdeschel, A and St{\"u}hmer, T and Mokhtari, Z and Rudelius, M and Dotterweich, J and Bittrich, M and Desantis, V and Ebert, R and Trerotoli, P and Frassanito, M A and Rosenwald, A and Vacca, A and Einsele, H and Jakob, F and Beilhack, A}, title = {JAM-A as a prognostic factor and new therapeutic target in multiple myeloma}, series = {Leukemia}, volume = {32}, journal = {Leukemia}, doi = {10.1038/leu.2017.287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239069}, pages = {736-743}, year = {2018}, abstract = {Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.}, language = {en} } @article{SiegmundEhrenschwenderWajant2018, author = {Siegmund, Daniela and Ehrenschwender, Martin and Wajant, Harald}, title = {TNFR2 unlocks a RIPK1 kinase activity-dependent mode of proinflammatory TNFR1 signaling}, series = {Cell Death \& Disease}, volume = {9}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-018-0973-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238034}, year = {2018}, abstract = {TNF is not only a major effector molecule of PAMP/DAMP-activated macrophages, but also regulates macrophage function and viability. We recently demonstrated that TNFR2 triggers necroptosis in macrophages with compromised caspase activity by two cooperating mechanisms: induction of endogenous TNF with subsequent stimulation of TNFR1 and depletion of cytosolic TRAF2-cIAP complexes. Here we show that TNFR2 activation in caspase-inhibited macrophages results in the production of endogenous TNF and TNFR1 stimulation followed by upregulation of A20, TRAF1, IL-6, and IL-1β. Surprisingly, TNFR1-mediated induction of IL-6 and IL-1β was clearly evident in response to TNFR2 stimulation but occurred not or only weakly in macrophages selectively and directly stimulated via TNFR1. Moreover, TNFR2-induced TNFR1-mediated gene induction was largely inhibited by necrostatin-1, whereas upregulation of A20 and TRAF1 by direct and exclusive stimulation of TNFR1 remained unaffected by this compound. Thus, treatment with TNFR2/ZVAD enables TNFR1 in macrophages to stimulate gene induction via a pathway requiring RIPK1 kinase activity. TNFR2/ZVAD-induced production of IL-6 and IL-1β was largely blocked in necroptosis-resistant MLKL- and RIPK3-deficient macrophages, whereas induction of A20 and TRAF1 remained unaffected. In sum, our results show that in caspase-inhibited macrophages TNFR2 not only triggers TNF/TNFR1-mediated necroptosis but also TNF/TNFR1-mediated RIPK3/MLKL-dependent and -independent gene induction.}, language = {en} } @article{VaethWangEcksteinetal.2019, author = {Vaeth, Martin and Wang, Yin-Hu and Eckstein, Miriam and Yang, Jun and Silverman, Gregg J. and Lacruz, Rodrigo S. and Kannan, Kasthuri and Feske, Stefan}, title = {Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08959-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232148}, year = {2019}, abstract = {T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells.}, language = {en} } @article{SulzerCassidyHorgaetal.2018, author = {Sulzer, David and Cassidy, Clifford and Horga, Guillermo and Kang, Un Jung and Fahn, Stanley and Casella, Luigi and Pezzoli, Gianni and Langley, Jason and Hu, Xiaoping P. and Zucca, Fabio A. and Isaias, Ioannis U. and Zecca, Luigi}, title = {Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0047-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240207}, year = {2018}, abstract = {The diagnosis of Parkinson's disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM's avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.}, language = {en} } @article{UllrichWeberPostetal.2018, author = {Ullrich, M and Weber, M and Post, A M and Popp, S and Grein, J and Zechner, M and Gonz{\´a}lez, H Guerrero and Kreis, A and Schmitt, A G and {\"U}ҫeyler, N and Lesch, K-P and Schuh, K}, title = {OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency}, series = {Molecular Psychiatry}, volume = {23}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2016.232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232096}, pages = {444-458}, year = {2018}, abstract = {Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2\% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.}, language = {en} } @article{TrautzFrankeBohnertetal.2019, author = {Trautz, Florian and Franke, Heike and Bohnert, Simone and Hammer, Niels and M{\"u}ller, Wolf and Stassart, Ruth and Tse, Rexson and Zwirner, Johann and Dreßler, Jan and Ondruschka, Benjamin}, title = {Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48145-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229037}, year = {2019}, abstract = {Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.}, language = {en} } @article{TylekSchillingSchlegelmilchetal.2019, author = {Tylek, Tina and Schilling, Tatjana and Schlegelmilch, Katrin and Ries, Maximilian and Rudert, Maximilian and Jakob, Franz and Groll, J{\"u}rgen}, title = {Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40190-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229174}, year = {2019}, abstract = {In vitro co-cultures of different primary human cell types are pivotal for the testing and evaluation of biomaterials under conditions that are closer to the human in vivo situation. Especially co-cultures of macrophages and mesenchymal stem cells (MSCs) are of interest, as they are both present and involved in tissue regeneration and inflammatory reactions and play crucial roles in the immediate inflammatory reactions and the onset of regenerative processes, thus reflecting the decisive early phase of biomaterial contact with the host. A co-culture system of these cell types might thus allow for the assessment of the biocompatibility of biomaterials. The establishment of such a co-culture is challenging due to the different in vitro cell culture conditions. For human macrophages, medium is usually supplemented with human serum (hS), whereas hMSC culture is mostly performed using fetal calf serum (FCS), and these conditions are disadvantageous for the respective other cell type. We demonstrate that human platelet lysate (hPL) can replace hS in macrophage cultivation and appears to be the best option for co-cultivation of human macrophages with hMSCs. In contrast to FCS and hS, hPL maintained the phenotype of both cell types, comparable to that of their respective standard culture serum, as well as the percentage of each cell population. Moreover, the expression profile and phagocytosis activity of macrophages was similar to hS.}, language = {en} } @article{StraubFreudenbergSchleicheretal.2018, author = {Straub, Tobias and Freudenberg, Marina A. and Schleicher, Ulrike and Bogdan, Christian and Gasteiger, Georg and Pircher, Hanspeter}, title = {Bacterial coinfection restrains antiviral CD8 T-cell response via LPS-induced inhibitory NK cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06609-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240075}, year = {2018}, abstract = {Infection of specific pathogen-free mice with lymphocytic choriomeningitis virus (LCMV) is a widely used model to study antiviral T-cell immunity. Infections in the real world, however, are often accompanied by coinfections with unrelated pathogens. Here we show that in mice, systemic coinfection with E. coli suppresses the LCMV-specific cytotoxic T-lymphocyte (CTL) response and virus elimination in a NK cell- and TLR2/4-dependent manner. Soluble TLR4 ligand LPS also induces NK cell-mediated negative CTL regulation during LCMV infection. NK cells in LPS-treated mice suppress clonal expansion of LCMV-specific CTLs by a NKG2D- or NCR1-independent but perforin-dependent mechanism. These results suggest a TLR4-mediated immunoregulatory role of NK cells during viral-bacterial coinfections.}, language = {en} } @article{WentSudSpeedyetal.2018, author = {Went, Molly and Sud, Amit and Speedy, Helen and Sunter, Nicola J. and F{\"o}rsti, Asta and Law, Philip J. and Johnson, David C. and Mirabella, Fabio and Holroyd, Amy and Li, Ni and Orlando, Giulia and Weinhold, Niels and van Duin, Mark and Chen, Bowang and Mitchell, Jonathan S. and Mansouri, Larry and Juliusson, Gunnar and Smedby, Karin E and Jayne, Sandrine and Majid, Aneela and Dearden, Claire and Allsup, David J. and Bailey, James R. and Pratt, Guy and Pepper, Chris and Fegan, Chris and Rosenquist, Richard and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Einsele, Hermann and Gregory, Walter M. and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and J{\"o}ckel, Karl-Heinz and Nickel, Jolanta and N{\"o}then, Markus M. and da Silva Filho, Miguel Inacio and Thomsen, Hauke and Walker, Brian A. and Broyl, Annemiek and Davies, Faith E. and Hansson, Markus and Goldschmidt, Hartmut and Dyer, Martin J. S. and Kaiser, Martin and Sonneveld, Pieter and Morgan, Gareth J. and Hemminki, Kari and Nilsson, Bj{\"o}rn and Catovsky, Daniel and Allan, James M. and Houlston, Richard S.}, title = {Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology}, series = {Blood Cancer Journal}, volume = {9}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-018-0162-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233627}, year = {2018}, abstract = {The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies.}, language = {en} } @article{WenFeilWoltersetal.2018, author = {Wen, Lai and Feil, Susanne and Wolters, Markus and Thunemann, Martin and Regler, Frank and Schmidt, Kjestine and Friebe, Andreas and Olbrich, Marcus and Langer, Harald and Gawaz, Meinrad and de Wit, Cor and Feil, Robert}, title = {A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06638-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233616}, year = {2018}, abstract = {Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear.}, language = {en} } @article{WelzEickhoffAbdullahetal.2018, author = {Welz, M. and Eickhoff, S. and Abdullah, Z. and Trebicka, J. and Gartlan, K. H. and Spicer, J. A. and Demetris, A. J. and Akhlaghi, H. and Anton, M. and Manske, K. and Zehn, D. and Nieswandt, B. and Kurts, C. and Trapani, J. A. and Knolle, P. and Wohlleber, D. and Kastenm{\"u}ller, W.}, title = {Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07213-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233593}, year = {2018}, abstract = {CD8 T cells protect the liver against viral infection, but can also cause severe liver damage that may even lead to organ failure. Given the lack of mechanistic insights and specific treatment options in patients with acute fulminant hepatitis, we develop a mouse model reflecting a severe acute virus-induced CD8 T cell-mediated hepatitis. Here we show that antigen-specific CD8 T cells induce liver damage in a perforin-dependent manner, yet liver failure is not caused by effector responses targeting virus-infected hepatocytes alone. Additionally, CD8 T cell mediated elimination of cross-presenting liver sinusoidal endothelial cells causes endothelial damage that leads to a dramatically impaired sinusoidal perfusion and indirectly to hepatocyte death. With the identification of perforin-mediated killing as a critical pathophysiologic mechanism of liver failure and the protective function of a new class of perforin inhibitor, our study opens new potential therapeutic angles for fulminant viral hepatitis.}, language = {en} }