@article{KarakayaBiderFranketal.2022, author = {Karakaya, Emine and Bider, Faina and Frank, Andreas and Teßmar, J{\"o}rg and Sch{\"o}bel, Lisa and Forster, Leonard and Schr{\"u}fer, Stefan and Schmidt, Hans-Werner and Schubert, Dirk Wolfram and Blaeser, Andreas and Boccaccini, Aldo R. and Detsch, Rainer}, title = {Targeted printing of cells: evaluation of ADA-PEG bioinks for drop on demand approaches}, series = {Gels}, volume = {8}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels8040206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267317}, year = {2022}, abstract = {A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde—polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1-8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff's bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches.}, language = {en} } @article{RuppAuvrayHananetal.2021, author = {Rupp, Mira T. and Auvray, Thomas and Hanan, Garry S. and Kurth, Dirk G.}, title = {Electrochemical and photophysical study of homoleptic and heteroleptic methylated Ru(II) Bis-terpyridine complexes}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {28}, doi = {doi.org/10.1002/ejic.202100092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248769}, pages = {2822 -- 2829}, year = {2021}, abstract = {In this study, we investigate the impact of N-methylation on the electronic and photophysical properties of both homoleptic and heteroleptic Ru(II) bis-terpyridine complexes based on the recently reported ligand 4'-(4-bromophenyl)-4,4''': 4'',4''''-dipyr-idinyl-2,2' : 6',2''-terpyridine (Bipytpy), with pyridine substituents in the 4- and 4''-position. The first reduction of the methylated complexes takes place at the pyridinium site and is observed as multi-electron process. Following N-methylation, the complexes exhibit higher luminescence quantum yields and longer excited-state lifetimes. Interestingly, the photophysical properties of the heteroleptic and homoleptic complexes are rather similar. TD-DFT calculations support the experimental results. Furthermore, the complexes are tested as photosensitizers for photocatalytic hydrogen production, as the parent complex 1[Ru(Bipytpy)(Tolyltpy)](PF \(_6\))\(_2\) (Tolyltpy: 4'-tolyl-2,2': 6',2''-terpyri-dine) was recently shown to be active and highly stable underphotocatalytic conditions. However, the methylated complexes reported herein are inactive as photosensitizers under the chosen conditions, presumably due to loss of the methyl groups, converting them to the non-methylated parent complexes.}, language = {en} } @article{ChilakaObidiegwuChilakaetal.2022, author = {Chilaka, Cynthia Adaku and Obidiegwu, Jude Ejikeme and Chilaka, Augusta Chinenye and Atanda, Olusegun Oladimeji and Mally, Angela}, title = {Mycotoxin regulatory status in Africa: a decade of weak institutional efforts}, series = {Toxins}, volume = {14}, journal = {Toxins}, number = {7}, issn = {2072-6651}, doi = {10.3390/toxins14070442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278941}, year = {2022}, abstract = {Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.}, language = {en} }