@techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @phdthesis{Leutert2021, author = {Leutert, Florian}, title = {Flexible Augmented Reality Systeme f{\"u}r robotergest{\"u}tzte Produktionsumgebungen}, isbn = {978-3-945459-39-3}, doi = {10.25972/OPUS-24972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Produktionssysteme mit Industrierobotern werden zunehmend komplex; waren deren Arbeitsbereiche fr{\"u}her noch statisch und abgeschirmt, und die programmierten Abl{\"a}ufe gleichbleibend, so sind die Anforderungen an moderne Robotik-Produktionsanlagen gestiegen: Diese sollen sich jetzt mithilfe von intelligenter Sensorik auch in unstrukturierten Umgebungen einsetzen lassen, sich bei sinkenden Losgr{\"o}ßen aufgrund individualisierter Produkte und h{\"a}ufig {\"a}ndernden Produktionsaufgaben leicht rekonfigurieren lassen, und sogar eine direkte Zusammenarbeit zwischen Mensch und Roboter erm{\"o}glichen. Gerade auch bei dieser Mensch-Roboter-Kollaboration wird es damit notwendig, dass der Mensch die Daten und Aktionen des Roboters leicht verstehen kann. Aufgrund der gestiegenen Anforderungen m{\"u}ssen somit auch die Bedienerschnittstellen dieser Systeme verbessert werden. Als Grundlage f{\"u}r diese neuen Benutzerschnittstellen bietet sich Augmented Reality (AR) als eine Technologie an, mit der sich komplexe r{\"a}umliche Daten f{\"u}r den Bediener leicht verst{\"a}ndlich darstellen lassen. Komplexe Informationen werden dabei in der Arbeitsumgebung der Nutzer visualisiert und als virtuelle Einblendungen sichtbar gemacht, und so auf einen Blick verst{\"a}ndlich. Die diversen existierenden AR-Anzeigetechniken sind f{\"u}r verschiedene Anwendungsfelder unterschiedlich gut geeignet, und sollten daher flexibel kombinier- und einsetzbar sein. Auch sollen diese AR-Systeme schnell und einfach auf verschiedenartiger Hardware in den unterschiedlichen Arbeitsumgebungen in Betrieb genommen werden k{\"o}nnen. In dieser Arbeit wird ein Framework f{\"u}r Augmented Reality Systeme vorgestellt, mit dem sich die genannten Anforderungen umsetzen lassen, ohne dass daf{\"u}r spezialisierte AR-Hardware notwendig wird. Das Flexible AR-Framework kombiniert und b{\"u}ndelt daf{\"u}r verschiedene Softwarefunktionen f{\"u}r die grundlegenden AR-Anzeigeberechnungen, f{\"u}r die Kalibrierung der notwendigen Hardware, Algorithmen zur Umgebungserfassung mittels Structured Light sowie generische ARVisualisierungen und erlaubt es dadurch, verschiedene AR-Anzeigesysteme schnell und flexibel in Betrieb zu nehmen und parallel zu betreiben. Im ersten Teil der Arbeit werden Standard-Hardware f{\"u}r verschiedene AR-Visualisierungsformen sowie die notwendigen Algorithmen vorgestellt, um diese flexibel zu einem AR-System zu kombinieren. Dabei m{\"u}ssen die einzelnen verwendeten Ger{\"a}te pr{\"a}zise kalibriert werden; hierf{\"u}r werden verschiedene M{\"o}glichkeiten vorgestellt, und die mit ihnen dann erreichbaren typischen Anzeige- Genauigkeiten in einer Evaluation charakterisiert. Nach der Vorstellung der grundlegenden ARSysteme des Flexiblen AR-Frameworks wird dann eine Reihe von Anwendungen vorgestellt, bei denen das entwickelte System in konkreten Praxis-Realisierungen als AR-Benutzerschnittstelle zum Einsatz kam, unter anderem zur {\"U}berwachung von, Zusammenarbeit mit und einfachen Programmierung von Industrierobotern, aber auch zur Visualisierung von komplexen Sensordaten oder zur Fernwartung. Im Verlauf der Arbeit werden dadurch die Vorteile, die sich durch Verwendung der AR-Technologie in komplexen Produktionssystemen ergeben, herausgearbeitet und in Nutzerstudien belegt.}, subject = {Erweiterte Realit{\"a}t }, language = {de} } @phdthesis{Kramer2021, author = {Kramer, Alexander}, title = {Orbit control of a very small satellite using electric propulsion}, isbn = {978-3-945459-34-8 (online)}, doi = {10.25972/OPUS-24155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Miniaturized satellites on a nanosatellite scale below 10kg of total mass contribute most to the number of launched satellites into Low Earth Orbit today. This results from the potential to design, integrate and launch these space missions within months at very low costs. In the past decade, the reliability in the fields of system design, communication, and attitude control have matured to allow for competitive applications in Earth observation, communication services, and science missions. The capability of orbit control is an important next step in this development, enabling operators to adjust orbits according to current mission needs and small satellite formation flight, which promotes new measurements in various fields of space science. Moreover, this ability makes missions with altitudes above the ISS comply with planned regulations regarding collision avoidance maneuvering. This dissertation presents the successful implementation of orbit control capabilities on the pico-satellite class for the first time. This pioneering achievement is demonstrated on the 1U CubeSat UWE-4. A focus is on the integration and operation of an electric propulsion system on miniaturized satellites. Besides limitations in size, mass, and power of a pico-satellite, the choice of a suitable electric propulsion system was driven by electromagnetic cleanliness and the use as a combined attitude and orbit control system. Moreover, the integration of the propulsion system leaves the valuable space at the outer faces of the CubeSat structure unoccupied for future use by payloads. The used NanoFEEP propulsion system consists of four thruster heads, two neutralizers and two Power Processing Units (PPUs). The thrusters can be used continuously for 50 minutes per orbit after the liquefaction of the propellant by dedicated heaters. The power consumption of a PPU with one activated thruster, its heater and a neutralizer at emitter current levels of 30-60μA or thrust levels of 2.6-5.5μN, respectively, is in the range of 430-1050mW. Two thruster heads were activated within the scope of in-orbit experiments. The thrust direction was determined using a novel algorithm within 15.7° and 13.2° of the mounting direction. Despite limited controllability of the remaining thrusters, thrust vector pointing was achieved using the magnetic actuators of the Attitude and Orbit Control System. In mid 2020, several orbit control maneuvers changed the altitude of UWE-4, a first for pico-satellites. During the orbit lowering scenario with a duration of ten days, a single thruster head was activated in 78 orbits for 5:40 minutes per orbit. This resulted in a reduction of the orbit altitude by about 98.3m and applied a Delta v of 5.4cm/s to UWE-4. The same thruster was activated in another experiment during 44 orbits within five days for an average duration of 7:00 minutes per orbit. The altitude of UWE-4 was increased by about 81.2m and a Delta v of 4.4cm/s was applied. Additionally, a collision avoidance maneuver was executed in July 2020, which increased the distance of closest approach to the object by more than 5000m.}, subject = {Kleinsatellit}, language = {en} }