@phdthesis{Zeiger2010, author = {Zeiger, Florian}, title = {Internet Protocol based networking of mobile robots}, isbn = {978-3-923959-59-4}, doi = {10.25972/OPUS-4661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This work is composed of three main parts: remote control of mobile systems via Internet, ad-hoc networks of mobile robots, and remote control of mobile robots via 3G telecommunication technologies. The first part gives a detailed state of the art and a discussion of the problems to be solved in order to teleoperate mobile robots via the Internet. The focus of the application to be realized is set on a distributed tele-laboratory with remote experiments on mobile robots which can be accessed world-wide via the Internet. Therefore, analyses of the communication link are used in order to realize a robust system. The developed and implemented architecture of this distributed tele-laboratory allows for a smooth access also with a variable or low link quality. The second part covers the application of ad-hoc networks for mobile robots. The networking of mobile robots via mobile ad-hoc networks is a very promising approach to realize integrated telematic systems without relying on preexisting communication infrastructure. Relevant civilian application scenarios are for example in the area of search and rescue operations where first responders are supported by multi-robot systems. Here, mobile robots, humans, and also existing stationary sensors can be connected very fast and efficient. Therefore, this work investigates and analyses the performance of different ad-hoc routing protocols for IEEE 802.11 based wireless networks in relevant scenarios. The analysis of the different protocols allows for an optimization of the parameter settings in order to use these ad-hoc routing protocols for mobile robot teleoperation. Also guidelines for the realization of such telematics systems are given. Also traffic shaping mechanisms of application layer are presented which allow for a more efficient use of the communication link. An additional application scenario, the integration of a small size helicopter into an IP based ad-hoc network, is presented. The teleoperation of mobile robots via 3G telecommunication technologies is addressed in the third part of this work. The high availability, high mobility, and the high bandwidth provide a very interesting opportunity to realize scenarios for the teleoperation of mobile robots or industrial remote maintenance. This work analyses important parameters of the UMTS communication link and investigates also the characteristics for different data streams. These analyses are used to give guidelines which are necessary for the realization of or industrial remote maintenance or mobile robot teleoperation scenarios. All the results and guidelines for the design of telematic systems in this work were derived from analyses and experiments with real hardware.}, subject = {Robotik}, language = {en} } @phdthesis{Xu2014, author = {Xu, Zhihao}, title = {Cooperative Formation Controller Design for Time-Delay and Optimality Problems}, isbn = {978-3-923959-96-9}, doi = {10.25972/OPUS-10555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105555}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This dissertation presents controller design methodologies for a formation of cooperative mobile robots to perform trajectory tracking and convoy protection tasks. Two major problems related to multi-agent formation control are addressed, namely the time-delay and optimality problems. For the task of trajectory tracking, a leader-follower based system structure is adopted for the controller design, where the selection criteria for controller parameters are derived through analyses of characteristic polynomials. The resulting parameters ensure the stability of the system and overcome the steady-state error as well as the oscillation behavior under time-delay effect. In the convoy protection scenario, a decentralized coordination strategy for balanced deployment of mobile robots is first proposed. Based on this coordination scheme, optimal controller parameters are generated in both centralized and decentralized fashion to achieve dynamic convoy protection in a unified framework, where distributed optimization technique is applied in the decentralized strategy. This unified framework takes into account the motion of the target to be protected, and the desired system performance, for instance, minimal energy to spend, equal inter-vehicle distance to keep, etc. Both trajectory tracking and convoy protection tasks are demonstrated through simulations and real-world hardware experiments based on the robotic equipment at Department of Computer Science VII, University of W{\"u}rzburg.}, subject = {Optimalwertregelung}, language = {en} } @misc{Werner2024, type = {Master Thesis}, author = {Werner, Lennart}, title = {Terrain Mapping for Autonomous Navigation of Lunar Rovers}, doi = {10.25972/OPUS-35826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358268}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Autonomous mobile robots operating in unknown terrain have to guide their drive decisions through local perception. Local mapping and traversability analysis is essential for safe rover operation and low level locomotion. This thesis deals with the challenge of building a local, robot centric map from ultra short baseline stereo imagery for height and traversability estimation. Several grid-based, incremental mapping algorithms are compared and evaluated in a multi size, multi resolution framework. A new, covariance based mapping update is introduced, which is capable of detecting sub- cellsize obstacles and abstracts the terrain of one cell as a first order surface. The presented mapping setup is capable of producing reliable ter- rain and traversability estimates under the conditions expected for the Cooperative Autonomous Distributed Robotic Exploreration (CADRE) mission. Algorithmic- and software architecture design targets high reliability and efficiency for meeting the tight constraints implied by CADRE's small on-board embedded CPU. Extensive evaluations are conducted to find possible edge-case scenar- ios in the operating envelope of the map and to confirm performance parameters. The research in this thesis targets the CADRE mission, but is applicable to any form of mobile robotics which require height- and traversability mapping.}, subject = {Mondfahrzeug}, language = {en} } @phdthesis{Wagner2023, author = {Wagner, Jan Cetric}, title = {Maximalnetzplan zur reaktiven Steuerung von Produktionsabl{\"a}ufen}, isbn = {978-3-945459-43-0}, doi = {10.25972/OPUS-30545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305452}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {182}, year = {2023}, abstract = {In produzierenden Unternehmen werden verschiedene Vorgehensweisen zur Planung, {\"U}berwachung und Steuerung von Produktionsabl{\"a}ufen eingesetzt. Einer dieser Methoden wird als Vorgangsknotennetzplantechnik bezeichnet. Die einzelnen Produktionsschritte werden als Knoten definiert und durch Pfeile miteinander verbunden. Die Pfeile stellen die Beziehungen der jeweiligen Vorg{\"a}nge zueinander und damit den Produktionsablauf dar. Diese Technik erlaubt den Anwendern einen umfassenden {\"U}berblick {\"u}ber die einzelnen Prozessrelationen. Zus{\"a}tzlich k{\"o}nnen mit ihr Vorgangszeiten und Produktfertigstellungszeiten ermittelt werden, wodurch eine ausf{\"u}hrliche Planung der Produktion erm{\"o}glicht wird. Ein Nachteil dieser Technik begr{\"u}ndet sich in der alleinigen Darstellung einer ausf{\"u}hrbaren Prozessabfolge. Im Falle eines St{\"o}rungseintritts mit der Folge eines nicht durchf{\"u}hrbaren Vorgangs muss von dem origin{\"a}ren Prozess abgewichen werden. Aufgrund dessen wird eine Neuplanung erforderlich. Es werden Alternativen f{\"u}r den gest{\"o}rten Vorgang ben{\"o}tigt, um eine Fortf{\"u}hrung des Prozesses ungeachtet der St{\"o}rung zu erreichen. Innerhalb dieser Arbeit wird daher eine Erweiterung der Vorgangsknotennetzplantechnik beschrieben, die es erlaubt, erg{\"a}nzend zu dem geplanten Soll-Prozess Alternativvorg{\"a}nge f{\"u}r einzelne Vorg{\"a}nge darzulegen. Diese Methode wird als Maximalnetzplan bezeichnet. Die Alternativen werden im Falle eines St{\"o}rungseintritts automatisch evaluiert und dem Anwender in priorisierter Reihenfolge pr{\"a}sentiert. Durch die Verwendung des Maximalnetzplans kann eine aufwendige Neuplanung vermieden werden. Als Anwendungsbeispiel dient ein Montageprozess, mithilfe dessen die Verwendbarkeit der Methode dargelegt wird. Weiterf{\"u}hrend zeigt eine zeitliche Analyse zufallsbedingter Maximalnetzpl{\"a}ne eine Begr{\"u}ndung zur Durchf{\"u}hrung von Alternativen und damit den Nutzen des Maximalnetzplans auf. Zus{\"a}tzlich sei angemerkt, dass innerhalb dieser Arbeit verwendete Begrifflichkeiten wie Anwender, Werker oder Mitarbeiter in maskuliner Schreibweise niedergeschrieben werden. Dieses ist ausschließlich der Einfachheit geschuldet und nicht dem Zweck der Diskriminierung anderer Geschlechter dienlich. Die verwendete Schreibweise soll alle Geschlechter ansprechen, ob m{\"a}nnlich, weiblich oder divers.}, subject = {Produktionsplanung}, language = {de} } @phdthesis{Tzschichholz2014, author = {Tzschichholz, Tristan}, title = {Relative pose estimation of known rigid objects using a novel approach to high-level PMD-/CCD- sensor data fusion with regard to applications in space}, isbn = {978-3-923959-95-2}, issn = {1868-7474}, doi = {10.25972/OPUS-10391}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103918}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, a novel method for estimating the relative pose of a known object is presented, which relies on an application-specific data fusion process. A PMD-sensor in conjunction with a CCD-sensor is used to perform the pose estimation. Furthermore, the work provides a method for extending the measurement range of the PMD sensor along with the necessary calibration methodology. Finally, extensive measurements on a very accurate Rendezvous and Docking testbed are made to evaluate the performance, what includes a detailed discussion of lighting conditions.}, subject = {Bildverarbeitung}, language = {en} } @phdthesis{Sun2014, author = {Sun, Kaipeng}, title = {Six Degrees of Freedom Object Pose Estimation with Fusion Data from a Time-of-flight Camera and a Color Camera}, isbn = {978-3-923959-97-6}, doi = {10.25972/OPUS-10508}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Object six Degrees of Freedom (6DOF) pose estimation is a fundamental problem in many practical robotic applications, where the target or an obstacle with a simple or complex shape can move fast in cluttered environments. In this thesis, a 6DOF pose estimation algorithm is developed based on the fused data from a time-of-flight camera and a color camera. The algorithm is divided into two stages, an annealed particle filter based coarse pose estimation stage and a gradient decent based accurate pose optimization stage. In the first stage, each particle is evaluated with sparse representation. In this stage, the large inter-frame motion of the target can be well handled. In the second stage, the range data based conventional Iterative Closest Point is extended by incorporating the target appearance information and used for calculating the accurate pose by refining the coarse estimate from the first stage. For dealing with significant illumination variations during the tracking, spherical harmonic illumination modeling is investigated and integrated into both stages. The robustness and accuracy of the proposed algorithm are demonstrated through experiments on various objects in both indoor and outdoor environments. Moreover, real-time performance can be achieved with graphics processing unit acceleration.}, subject = {Mustererkennung}, language = {en} } @phdthesis{Schmidt2011, author = {Schmidt, Marco}, title = {Ground Station Networks for Efficient Operation of Distributed Small Satellite Systems}, isbn = {978-3-923959-77-8}, doi = {10.25972/OPUS-4984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The field of small satellite formations and constellations attracted growing attention, based on recent advances in small satellite engineering. The utilization of distributed space systems allows the realization of innovative applications and will enable improved temporal and spatial resolution in observation scenarios. On the other side, this new paradigm imposes a variety of research challenges. In this monograph new networking concepts for space missions are presented, using networks of ground stations. The developed approaches combine ground station resources in a coordinated way to achieve more robust and efficient communication links. Within this thesis, the following topics were elaborated to improve the performance in distributed space missions: Appropriate scheduling of contact windows in a distributed ground system is a necessary process to avoid low utilization of ground stations. The theoretical basis for the novel concept of redundant scheduling was elaborated in detail. Additionally to the presented algorithm was a scheduling system implemented, its performance was tested extensively with real world scheduling problems. In the scope of data management, a system was developed which autonomously synchronizes data frames in ground station networks and uses this information to detect and correct transmission errors. The system was validated with hardware in the loop experiments, demonstrating the benefits of the developed approach.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{SchauerMarinRodrigues2020, author = {Schauer Marin Rodrigues, Johannes}, title = {Detecting Changes and Finding Collisions in 3D Point Clouds : Data Structures and Algorithms for Post-Processing Large Datasets}, isbn = {978-3-945459-32-4}, doi = {10.25972/OPUS-21428}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214285}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Affordable prices for 3D laser range finders and mature software solutions for registering multiple point clouds in a common coordinate system paved the way for new areas of application for 3D point clouds. Nowadays we see 3D laser scanners being used not only by digital surveying experts but also by law enforcement officials, construction workers or archaeologists. Whether the purpose is digitizing factory production lines, preserving historic sites as digital heritage or recording environments for gaming or virtual reality applications -- it is hard to imagine a scenario in which the final point cloud must also contain the points of "moving" objects like factory workers, pedestrians, cars or flocks of birds. For most post-processing tasks, moving objects are undesirable not least because moving objects will appear in scans multiple times or are distorted due to their motion relative to the scanner rotation. The main contributions of this work are two postprocessing steps for already registered 3D point clouds. The first method is a new change detection approach based on a voxel grid which allows partitioning the input points into static and dynamic points using explicit change detection and subsequently remove the latter for a "cleaned" point cloud. The second method uses this cleaned point cloud as input for detecting collisions between points of the environment point cloud and a point cloud of a model that is moved through the scene. Our approach on explicit change detection is compared to the state of the art using multiple datasets including the popular KITTI dataset. We show how our solution achieves similar or better F1-scores than an existing solution while at the same time being faster. To detect collisions we do not produce a mesh but approximate the raw point cloud data by spheres or cylindrical volumes. We show how our data structures allow efficient nearest neighbor queries that make our CPU-only approach comparable to a massively-parallel algorithm running on a GPU. The utilized algorithms and data structures are discussed in detail. All our software is freely available for download under the terms of the GNU General Public license. Most of the datasets used in this thesis are freely available as well. We provide shell scripts that allow one to directly reproduce the quantitative results shown in this thesis for easy verification of our findings.}, subject = {Punktwolke}, language = {en} } @phdthesis{Scharnagl2022, author = {Scharnagl, Julian}, title = {Distributed Guidance, Navigation and Control for Satellite Formation Flying Missions}, isbn = {978-3-945459-42-3}, doi = {10.25972/OPUS-28753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287530}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Ongoing changes in spaceflight - continuing miniaturization, declining costs of rocket launches and satellite components, and improved satellite computing and control capabilities - are advancing Satellite Formation Flying (SFF) as a research and application area. SFF enables new applications that cannot be realized (or cannot be realized at a reasonable cost) with conventional single-satellite missions. In particular, distributed Earth observation applications such as photogrammetry and tomography or distributed space telescopes require precisely placed and controlled satellites in orbit. Several enabling technologies are required for SFF, such as inter-satellite communication, precise attitude control, and in-orbit maneuverability. However, one of the most important requirements is a reliable distributed Guidance, Navigation and Control (GNC) strategy. This work addresses the issue of distributed GNC for SFF in 3D with a focus on Continuous Low-Thrust (CLT) propulsion satellites (e.g., with electric thrusters) and concentrates on circular low Earth orbits. However, the focus of this work is not only on control theory, but control is considered as part of the system engineering process of typical small satellite missions. Thus, common sensor and actuator systems are analyzed to derive their characteristics and their impacts on formation control. This serves as the basis for the design, implementation, and evaluation of the following control approaches: First, a Model Predictive Control (MPC) method with specific adaptations to SFF and its requirements and constraints; second, a distributed robust controller that combines consensus methods for distributed system control and \$H_{\infty}\$ robust control; and finally, a controller that uses plant inversion for control and combines it with a reference governor to steer the controller to the target on an optimal trajectory considering several constraints. The developed controllers are validated and compared based on extensive software simulations. Realistic 3D formation flight scenarios were taken from the Networked Pico-Satellite Distributed System Control (NetSat) cubesat formation flight mission. The three compared methods show different advantages and disadvantages in the different application scenarios. The distributed robust consensus-based controller for example lacks the ability to limit the maximum thrust, so it is not suitable for satellites with CLT. But both the MPC-based approach and the plant inversionbased controller are suitable for CLT SFF applications, while showing again distinct advantages and disadvantages in different scenarios. The scientific contribution of this work may be summarized as the creation of novel and specific control approaches for the class of CLT SFF applications, which is still lacking methods withstanding the application in real space missions, as well as the scientific evaluation and comparison of the developed methods.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{Sauer2010, author = {Sauer, Markus}, title = {Mixed-Reality for Enhanced Robot Teleoperation}, isbn = {978-3-923959-67-9}, doi = {10.25972/OPUS-4666}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55083}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In den letzten Jahren ist die Forschung in der Robotik soweit fortgeschritten, dass die Mensch-Maschine Schnittstelle zunehmend die kritischste Komponente f{\"u}r eine hohe Gesamtperformanz von Systemen zur Navigation und Koordination von Robotern wird. In dieser Dissertation wird untersucht wie Mixed-Reality Technologien f{\"u}r Nutzerschnittstellen genutzt werden k{\"o}nnen, um diese Gesamtperformanz zu erh{\"o}hen. Hierzu werden Konzepte und Technologien entwickelt, die durch Evaluierung mit Nutzertest ein optimiertes und anwenderbezogenes Design von Mixed-Reality Nutzerschnittstellen erm{\"o}glichen. Er werden somit sowohl die technische Anforderungen als auch die menschlichen Faktoren f{\"u}r ein konsistentes Systemdesign ber{\"u}cksichtigt. Nach einer detaillierten Problemanalyse und der Erstellung eines Systemmodels, das den Menschen als Schl{\"u}sselkomponente mit einbezieht, wird zun{\"a}chst die Anwendung der neuartigen 3D-Time-of-Flight Kamera zur Navigation von Robotern, aber auch f{\"u}r den Einsatz in Mixed-Reality Schnittstellen analysiert und optimiert. Weiterhin wird gezeigt, wie sich der Netzwerkverkehr des Videostroms als wichtigstes Informationselement der meisten Nutzerschnittstellen f{\"u}r die Navigationsaufgabe auf der Netzwerk Applikationsebene in typischen Multi-Roboter Netzwerken mit dynamischen Topologien und Lastsituation optimieren l{\"a}sst. Hierdurch ist es m{\"o}glich in sonst in sonst typischen Ausfallszenarien den Videostrom zu erhalten und die Bildrate zu stabilisieren. Diese fortgeschrittenen Technologien werden dann auch dem entwickelten Konzept der generischen 3D Mixed Reality Schnittselle eingesetzt. Dieses Konzept erm{\"o}glicht eine integrierte 3D Darstellung der verf{\"u}gbaren Information, so dass r{\"a}umliche Beziehungen von Informationen aufrechterhalten werden und somit die Anzahl der mentalen Transformationen beim menschlichen Bediener reduziert wird. Gleichzeitig werden durch diesen Ansatz auch immersive Stereo Anzeigetechnologien unterst{\"u}tzt, welche zus{\"a}tzlich das r{\"a}umliche Verst{\"a}ndnis der entfernten Situation f{\"o}rdern. Die in der Dissertation vorgestellten und evaluierten Ans{\"a}tze nutzen auch die Tatsache, dass sich eine lokale Autonomie von Robotern heute sehr robust realisieren l{\"a}sst. Dies wird zum Beispiel zur Realisierung eines Assistenzsystems mit variabler Autonomie eingesetzt. Hierbei erh{\"a}lt der Fernbediener {\"u}ber eine Kraftr{\"u}ckkopplung kombiniert mit einer integrierten Augmented Reality Schnittstelle, einen Eindruck {\"u}ber die Situation am entfernten Arbeitsbereich, aber auch {\"u}ber die aktuelle Navigationsintention des Roboters. Die durchgef{\"u}hrten Nutzertests belegen die signifikante Steigerung der Navigationsperformanz durch den entwickelten Ansatz. Die robuste lokale Autonomie erm{\"o}glicht auch den in der Dissertation eingef{\"u}hrten Ansatz der pr{\"a}diktiven Mixed-Reality Schnittstelle. Die durch diesen Ansatz entkoppelte Regelschleife {\"u}ber den Menschen erm{\"o}glicht es die Sichtbarkeit von unvermeidbaren Systemverz{\"o}gerungen signifikant zu reduzieren. Zus{\"a}tzlich k{\"o}nnen durch diesen Ansatz beide f{\"u}r die Navigation hilfreichen Blickwinkel in einer 3D-Nutzerschnittstelle kombiniert werden - der exozentrische Blickwinkel und der egozentrische Blickwinkel als Augmented Reality Sicht.}, subject = {Mobiler Roboter}, language = {en} } @phdthesis{Saska2009, author = {Saska, Martin}, title = {Trajectory planning and optimal control for formations of autonomous robots}, isbn = {978-3-923959-56-3}, doi = {10.25972/OPUS-4622}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In this thesis, we present novel approaches for formation driving of nonholonomic robots and optimal trajectory planning to reach a target region. The methods consider a static known map of the environment as well as unknown and dynamic obstacles detected by sensors of the formation. The algorithms are based on leader following techniques, where the formation of car-like robots is maintained in a shape determined by curvilinear coordinates. Beyond this, the general methods of formation driving are specialized and extended for an application of airport snow shoveling. Detailed descriptions of the algorithms complemented by relevant stability and convergence studies will be provided in the following chapters. Furthermore, discussions of the applicability will be verified by various simulations in existing robotic environments and also by a hardware experiment.}, subject = {Autonomer Roboter}, language = {en} } @techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @phdthesis{Pfitzner2019, author = {Pfitzner, Christian}, title = {Visual Human Body Weight Estimation with Focus on Clinical Applications}, isbn = {978-3-945459-27-0 (online)}, doi = {10.25972/OPUS-17484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174842}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {It is the aim of this thesis to present a visual body weight estimation, which is suitable for medical applications. A typical scenario where the estimation of the body weight is essential, is the emergency treatment of stroke patients: In case of an ischemic stroke, the patient has to receive a body weight adapted drug, to solve a blood clot in a vessel. The accuracy of the estimated weight influences the outcome of the therapy directly. However, the treatment has to start as early as possible after the arrival at a trauma room, to provide sufficient treatment. Weighing a patient takes time, and the patient has to be moved. Furthermore, patients are often not able to communicate a value for their body weight due to their stroke symptoms. Therefore, it is state of the art that physicians guess the body weight. A patient receiving a too low dose has an increased risk that the blood clot does not dissolve and brain tissue is permanently damaged. Today, about one-third gets an insufficient dosage. In contrast to that, an overdose can cause bleedings and further complications. Physicians are aware of this issue, but a reliable alternative is missing. The thesis presents state-of-the-art principles and devices for the measurement and estimation of body weight in the context of medical applications. While scales are common and available at a hospital, the process of weighing takes too long and can hardly be integrated into the process of stroke treatment. Sensor systems and algorithms are presented in the section for related work and provide an overview of different approaches. The here presented system -- called Libra3D -- consists of a computer installed in a real trauma room, as well as visual sensors integrated into the ceiling. For the estimation of the body weight, the patient is on a stretcher which is placed in the field of view of the sensors. The three sensors -- two RGB-D and a thermal camera -- are calibrated intrinsically and extrinsically. Also, algorithms for sensor fusion are presented to align the data from all sensors which is the base for a reliable segmentation of the patient. A combination of state-of-the-art image and point cloud algorithms is used to localize the patient on the stretcher. The challenges in the scenario with the patient on the bed is the dynamic environment, including other people or medical devices in the field of view. After the successful segmentation, a set of hand-crafted features is extracted from the patient's point cloud. These features rely on geometric and statistical values and provide a robust input to a subsequent machine learning approach. The final estimation is done with a previously trained artificial neural network. The experiment section offers different configurations of the previously extracted feature vector. Additionally, the here presented approach is compared to state-of-the-art methods; the patient's own assessment, the physician's guess, and an anthropometric estimation. Besides the patient's own estimation, Libra3D outperforms all state-of-the-art estimation methods: 95 percent of all patients are estimated with a relative error of less than 10 percent to ground truth body weight. It takes only a minimal amount of time for the measurement, and the approach can easily be integrated into the treatment of stroke patients, while physicians are not hindered. Furthermore, the section for experiments demonstrates two additional applications: The extracted features can also be used to estimate the body weight of people standing, or even walking in front of a 3D camera. Also, it is possible to determine or classify the BMI of a subject on a stretcher. A potential application for this approach is the reduction of the radiation dose of patients being exposed to X-rays during a CT examination. During the time of this thesis, several data sets were recorded. These data sets contain the ground truth body weight, as well as the data from the sensors. They are available for the collaboration in the field of body weight estimation for medical applications.}, subject = {Punktwolke}, language = {en} } @phdthesis{Leutert2021, author = {Leutert, Florian}, title = {Flexible Augmented Reality Systeme f{\"u}r robotergest{\"u}tzte Produktionsumgebungen}, isbn = {978-3-945459-39-3}, doi = {10.25972/OPUS-24972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Produktionssysteme mit Industrierobotern werden zunehmend komplex; waren deren Arbeitsbereiche fr{\"u}her noch statisch und abgeschirmt, und die programmierten Abl{\"a}ufe gleichbleibend, so sind die Anforderungen an moderne Robotik-Produktionsanlagen gestiegen: Diese sollen sich jetzt mithilfe von intelligenter Sensorik auch in unstrukturierten Umgebungen einsetzen lassen, sich bei sinkenden Losgr{\"o}ßen aufgrund individualisierter Produkte und h{\"a}ufig {\"a}ndernden Produktionsaufgaben leicht rekonfigurieren lassen, und sogar eine direkte Zusammenarbeit zwischen Mensch und Roboter erm{\"o}glichen. Gerade auch bei dieser Mensch-Roboter-Kollaboration wird es damit notwendig, dass der Mensch die Daten und Aktionen des Roboters leicht verstehen kann. Aufgrund der gestiegenen Anforderungen m{\"u}ssen somit auch die Bedienerschnittstellen dieser Systeme verbessert werden. Als Grundlage f{\"u}r diese neuen Benutzerschnittstellen bietet sich Augmented Reality (AR) als eine Technologie an, mit der sich komplexe r{\"a}umliche Daten f{\"u}r den Bediener leicht verst{\"a}ndlich darstellen lassen. Komplexe Informationen werden dabei in der Arbeitsumgebung der Nutzer visualisiert und als virtuelle Einblendungen sichtbar gemacht, und so auf einen Blick verst{\"a}ndlich. Die diversen existierenden AR-Anzeigetechniken sind f{\"u}r verschiedene Anwendungsfelder unterschiedlich gut geeignet, und sollten daher flexibel kombinier- und einsetzbar sein. Auch sollen diese AR-Systeme schnell und einfach auf verschiedenartiger Hardware in den unterschiedlichen Arbeitsumgebungen in Betrieb genommen werden k{\"o}nnen. In dieser Arbeit wird ein Framework f{\"u}r Augmented Reality Systeme vorgestellt, mit dem sich die genannten Anforderungen umsetzen lassen, ohne dass daf{\"u}r spezialisierte AR-Hardware notwendig wird. Das Flexible AR-Framework kombiniert und b{\"u}ndelt daf{\"u}r verschiedene Softwarefunktionen f{\"u}r die grundlegenden AR-Anzeigeberechnungen, f{\"u}r die Kalibrierung der notwendigen Hardware, Algorithmen zur Umgebungserfassung mittels Structured Light sowie generische ARVisualisierungen und erlaubt es dadurch, verschiedene AR-Anzeigesysteme schnell und flexibel in Betrieb zu nehmen und parallel zu betreiben. Im ersten Teil der Arbeit werden Standard-Hardware f{\"u}r verschiedene AR-Visualisierungsformen sowie die notwendigen Algorithmen vorgestellt, um diese flexibel zu einem AR-System zu kombinieren. Dabei m{\"u}ssen die einzelnen verwendeten Ger{\"a}te pr{\"a}zise kalibriert werden; hierf{\"u}r werden verschiedene M{\"o}glichkeiten vorgestellt, und die mit ihnen dann erreichbaren typischen Anzeige- Genauigkeiten in einer Evaluation charakterisiert. Nach der Vorstellung der grundlegenden ARSysteme des Flexiblen AR-Frameworks wird dann eine Reihe von Anwendungen vorgestellt, bei denen das entwickelte System in konkreten Praxis-Realisierungen als AR-Benutzerschnittstelle zum Einsatz kam, unter anderem zur {\"U}berwachung von, Zusammenarbeit mit und einfachen Programmierung von Industrierobotern, aber auch zur Visualisierung von komplexen Sensordaten oder zur Fernwartung. Im Verlauf der Arbeit werden dadurch die Vorteile, die sich durch Verwendung der AR-Technologie in komplexen Produktionssystemen ergeben, herausgearbeitet und in Nutzerstudien belegt.}, subject = {Erweiterte Realit{\"a}t }, language = {de} } @phdthesis{Kramer2021, author = {Kramer, Alexander}, title = {Orbit control of a very small satellite using electric propulsion}, isbn = {978-3-945459-34-8 (online)}, doi = {10.25972/OPUS-24155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Miniaturized satellites on a nanosatellite scale below 10kg of total mass contribute most to the number of launched satellites into Low Earth Orbit today. This results from the potential to design, integrate and launch these space missions within months at very low costs. In the past decade, the reliability in the fields of system design, communication, and attitude control have matured to allow for competitive applications in Earth observation, communication services, and science missions. The capability of orbit control is an important next step in this development, enabling operators to adjust orbits according to current mission needs and small satellite formation flight, which promotes new measurements in various fields of space science. Moreover, this ability makes missions with altitudes above the ISS comply with planned regulations regarding collision avoidance maneuvering. This dissertation presents the successful implementation of orbit control capabilities on the pico-satellite class for the first time. This pioneering achievement is demonstrated on the 1U CubeSat UWE-4. A focus is on the integration and operation of an electric propulsion system on miniaturized satellites. Besides limitations in size, mass, and power of a pico-satellite, the choice of a suitable electric propulsion system was driven by electromagnetic cleanliness and the use as a combined attitude and orbit control system. Moreover, the integration of the propulsion system leaves the valuable space at the outer faces of the CubeSat structure unoccupied for future use by payloads. The used NanoFEEP propulsion system consists of four thruster heads, two neutralizers and two Power Processing Units (PPUs). The thrusters can be used continuously for 50 minutes per orbit after the liquefaction of the propellant by dedicated heaters. The power consumption of a PPU with one activated thruster, its heater and a neutralizer at emitter current levels of 30-60μA or thrust levels of 2.6-5.5μN, respectively, is in the range of 430-1050mW. Two thruster heads were activated within the scope of in-orbit experiments. The thrust direction was determined using a novel algorithm within 15.7° and 13.2° of the mounting direction. Despite limited controllability of the remaining thrusters, thrust vector pointing was achieved using the magnetic actuators of the Attitude and Orbit Control System. In mid 2020, several orbit control maneuvers changed the altitude of UWE-4, a first for pico-satellites. During the orbit lowering scenario with a duration of ten days, a single thruster head was activated in 78 orbits for 5:40 minutes per orbit. This resulted in a reduction of the orbit altitude by about 98.3m and applied a Delta v of 5.4cm/s to UWE-4. The same thruster was activated in another experiment during 44 orbits within five days for an average duration of 7:00 minutes per orbit. The altitude of UWE-4 was increased by about 81.2m and a Delta v of 4.4cm/s was applied. Additionally, a collision avoidance maneuver was executed in July 2020, which increased the distance of closest approach to the object by more than 5000m.}, subject = {Kleinsatellit}, language = {en} } @phdthesis{Koch2018, author = {Koch, Rainer}, title = {Sensor Fusion for Precise Mapping of Transparent and Specular Reflective Objects}, isbn = {978-3-945459-25-6}, doi = {10.25972/OPUS-16346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Almost once a week broadcasts about earthquakes, hurricanes, tsunamis, or forest fires are filling the news. While oneself feels it is hard to watch such news, it is even harder for rescue troops to enter such areas. They need some skills to get a quick overview of the devastated area and find victims. Time is ticking, since the chance for survival shrinks the longer it takes till help is available. To coordinate the teams efficiently, all information needs to be collected at the command center. Therefore, teams investigate the destroyed houses and hollow spaces for victims. Doing so, they never can be sure that the building will not fully collapse while they are inside. Here, rescue robots are welcome helpers, as they are replaceable and make work more secure. Unfortunately, rescue robots are not usable off-the-shelf, yet. There is no doubt, that such a robot has to fulfil essential requirements to successfully accomplish a rescue mission. Apart from the mechanical requirements it has to be able to build a 3D map of the environment. This is essential to navigate through rough terrain and fulfil manipulation tasks (e.g. open doors). To build a map and gather environmental information, robots are equipped with multiple sensors. Since laser scanners produce precise measurements and support a wide scanning range, they are common visual sensors utilized for mapping. Unfortunately, they produce erroneous measurements when scanning transparent (e.g. glass, transparent plastic) or specular reflective objects (e.g. mirror, shiny metal). It is understood that such objects can be everywhere and a pre-manipulation to prevent their influences is impossible. Using additional sensors also bear risks. The problem is that these objects are occasionally visible, based on the incident angle of the laser beam, the surface, and the type of object. Hence, for transparent objects, measurements might result from the object surface or objects behind it. For specular reflective objects, measurements might result from the object surface or a mirrored object. These mirrored objects are illustrated behind the surface which is wrong. To obtain a precise map, the surfaces need to be recognised and mapped reliably. Otherwise, the robot navigates into it and crashes. Further, points behind the surface should be identified and treated based on the object type. Points behind a transparent surface should remain as they represent real objects. In contrast, Points behind a specular reflective surface should be erased. To do so, the object type needs to be classified. Unfortunately, none of the current approaches is capable to fulfil these requirements. Therefore, the following thesis addresses this problem to detect transparent and specular reflective objects and to identify their influences. To give the reader a start up, the first chapters describe: the theoretical background concerning propagation of light; sensor systems applied for range measurements; mapping approaches used in this work; and the state-of-the-art concerning detection and identification of transparent and specular reflective objects. Afterwards, the Reflection-Identification-Approach, which is the core of subject thesis is presented. It describes 2D and a 3D implementation to detect and classify such objects. Both are available as ROS-nodes. In the next chapter, various experiments demonstrate the applicability and reliability of these nodes. It proves that transparent and specular reflective objects can be detected and classified. Therefore, a Pre- and Post-Filter module is required in 2D. In 3D, classification is possible solely with the Pre-Filter. This is due to the higher amount of measurements. An example shows that an updatable mapping module allows the robot navigation to rely on refined maps. Otherwise, two individual maps are build which require a fusion afterwards. Finally, the last chapter summarizes the results and proposes suggestions for future work.}, subject = {laserscanner}, language = {en} } @phdthesis{Houshiar2017, author = {Houshiar, Hamidreza}, title = {Documentation and mapping with 3D point cloud processing}, isbn = {978-3-945459-14-0}, doi = {10.25972/OPUS-14449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144493}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {3D point clouds are a de facto standard for 3D documentation and modelling. The advances in laser scanning technology broadens the usability and access to 3D measurement systems. 3D point clouds are used in many disciplines such as robotics, 3D modelling, archeology and surveying. Scanners are able to acquire up to a million of points per second to represent the environment with a dense point cloud. This represents the captured environment with a very high degree of detail. The combination of laser scanning technology with photography adds color information to the point clouds. Thus the environment is represented more realistically. Full 3D models of environments, without any occlusion, require multiple scans. Merging point clouds is a challenging process. This thesis presents methods for point cloud registration based on the panorama images generated from the scans. Image representation of point clouds introduces 2D image processing methods to 3D point clouds. Several projection methods for the generation of panorama maps of point clouds are presented in this thesis. Additionally, methods for point cloud reduction and compression based on the panorama maps are proposed. Due to the large amounts of data generated from the 3D measurement systems these methods are necessary to improve the point cloud processing, transmission and archiving. This thesis introduces point cloud processing methods as a novel framework for the digitisation of archeological excavations. The framework replaces the conventional documentation methods for excavation sites. It employs point clouds for the generation of the digital documentation of an excavation with the help of an archeologist on-site. The 3D point cloud is used not only for data representation but also for analysis and knowledge generation. Finally, this thesis presents an autonomous indoor mobile mapping system. The mapping system focuses on the sensor placement planning method. Capturing a complete environment requires several scans. The sensor placement planning method solves for the minimum required scans to digitise large environments. Combining this method with a navigation system on a mobile robot platform enables it to acquire data fully autonomously. This thesis introduces a novel hole detection method for point clouds to detect obscured parts of a captured environment. The sensor placement planning method selects the next scan position with the most coverage of the obscured environment. This reduces the required number of scans. The navigation system on the robot platform consist of path planning, path following and obstacle avoidance. This guarantees the safe navigation of the mobile robot platform between the scan positions. The sensor placement planning method is designed as a stand alone process that could be used with a mobile robot platform for autonomous mapping of an environment or as an assistant tool for the surveyor on scanning projects.}, subject = {3D Punktwolke}, language = {en} } @phdthesis{Hess2009, author = {Hess, Martin}, title = {Motion coordination and control in systems of nonholonomic autonomous vehicles}, isbn = {978-3-923959-55-6}, doi = {10.25972/OPUS-3794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {This work focuses on coordination methods and the control of motion in groups of nonholonomic wheeled mobile robots, in particular of the car-like type. These kind of vehicles are particularly restricted in their mobility. In the main part of this work the two problems of formation motion coordination and of rendezvous in distributed multi-vehicle systems are considered. We introduce several enhancements to an existing motion planning approach for formations of nonholonomic mobile robots. Compared to the original method, the extended approach is able to handle time-varying reference speeds as well as adjustments of the formation's shape during reference trajectory segments with continuously differentiable curvature. Additionally, undesired discontinuities in the speed and steering profiles of the vehicles are avoided. Further, the scenario of snow shoveling on an airfield by utilizing multiple formations of autonomous snowplows is discussed. We propose solutions to the subproblems of motion planning for the formations and tracking control for the individual vehicles. While all situations that might occur have been tested in a simulation environment, we also verified the developed tracking controller in real robot hardware experiments. The task of the rendezvous problem in groups of car-like robots is to drive all vehicles to a common position by means of decentralized control laws. Typically there exists no direct interaction link between all of the vehicles. In this work we present decentralized rendezvous control laws for vehicles with free and with bounded steering. The convergence properties of the approaches are analyzed by utilizing Lyapunov based techniques. Furthermore, they are evaluated within various simulation experiments, while the bounded steering case is also verified within laboratory hardware experiments. Finally we introduce a modification to the bounded steering system that increases the convergence speed at the expense of a higher traveled distance of the vehicles.}, subject = {Robotik}, language = {en} } @phdthesis{Herrmann2013, author = {Herrmann, Christian}, title = {Robotic Motion Compensation for Applications in Radiation Oncology}, isbn = {978-3-923959-88-4}, doi = {10.25972/OPUS-6727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Aufgrund vieler Verbesserungen der Behandlungsmethoden im Laufe der letzten 60 Jahre, erlaubt die Strahlentherapie heutzutage pr{\"a}zise Behandlungen von statischen Tumoren. Jedoch birgt die Bestrahlung von sich bewegenden Tumoren noch große Herausforderungen in sich, da bewegliche Tumore oft den Behandlungsstrahl verlassen. Dabei reduziert sich die Strahlendosis im Tumor w{\"a}hrend sich diese im umliegenden gesunden Gewebe erh{\"o}ht. Diese Forschungsarbeit zielt darauf ab, die Grenzen der Strahlentherapie zu erweitern, um pr{\"a}zise Behandlungen von beweglichen Tumoren zu erm{\"o}glichen. Der Fokus der Arbeit liegt auf der Erstellung eines Echtzeitsystems zur aktiven Kompensation von Tumorbewegungen durch robotergest{\"u}tzte Methoden. W{\"a}hrend Behandlungen befinden sich Patienten auf einer Patientenliege, mit der statische Lagerungsfehler vor Beginn einer Behandlung korrigiert werden. Die in dieser Arbeit verwendete Patientenliege "HexaPOD" ist ein paralleler Manipulator mit sechs Freiheitsgraden, der große Lasten innerhalb eines eingeschr{\"a}nkten Arbeitsbereichs pr{\"a}zise positionieren kann. Obwohl der HexaPOD urspr{\"u}nglich nicht f{\"u}r dynamische Anwendungen konzipiert wurde, wird dieser f{\"u}r eine dauerhafte Bewegungskompensation eingesetzt, in dem Patienten so bewegt werden, dass Tumore pr{\"a}zise im Zentralstrahl w{\"a}hrend der Dauer einer gesamten Behandlung verbleiben. Um ein echtzeitf{\"a}higes Kompensationssystem auf Basis des HexaPODs zu realisieren, muss eine Reihe an Herausforderungen bew{\"a}ltigt werden. Echtzeitaspekte werden einerseits durch die Verwendung eines harten Echtzeitbetriebssystems abgedeckt, andererseits durch die Messung und Sch{\"a}tzung von Latenzzeiten aller physikalischen Gr{\"o}ßen im System, z.B. Messungen der Tumor- und Atemposition. Neben der konsistenten und durchg{\"a}ngigen Ber{\"u}cksichtigung von akkuraten Zeitinformation, werden alle software-induzierten Latenzen adaptiv ausgeglichen. Dies erfordert Vorhersagen der Tumorposition in die nahe Zukunft. Zahlreiche Pr{\"a}diktoren zur Atem- und Tumorpositionsvorhersage werden vorgeschlagen und anhand verschiedenster Metriken evaluiert. Erweiterungen der Pr{\"a}diktionsalgorithmen werden eingef{\"u}hrt, die sowohl Atem- als auch Tumorpositionsinformationen fusionieren, um Vorhersagen ohne explizites Korrelationsmodell zu erm{\"o}glichen. Die Vorhersagen bestimmen den zuk{\"u}nftigen Bewegungspfad des HexaPODs, um Tumorbewegungen zu kompensieren. Dazu werden verschiedene Regler entwickelt, die eine Trajektorienverfolgung mit dem HexaPOD erm{\"o}glichen. Auf der Basis von linearer und nicht-linearer dynamischer Modellierung des HexaPODs mit Methoden der Systemidentifikation, wird zun{\"a}chst ein modellpr{\"a}diktiver Regler entwickelt. Ein zweiter Regler wird auf Basis einer Annahme {\"u}ber das Arbeitsprinzip des internen Reglers im HexaPOD entworfen. Schließlich wird ein dritter Regler vorgeschlagen, der beide vorhergehenden Regler miteinander kombiniert. F{\"u}r jeden dieser Regler werden vergleichende Ergebnisse aus Experimenten mit realer Hardware und menschlichen Versuchspersonen pr{\"a}sentiert und diskutiert. Dar{\"u}ber hinaus wird die geeignete Wahl von freien Parametern in den Reglern vorgestellt. Neben einer pr{\"a}zisen Verfolgung der Referenztrajektorie spielt der Patientenkomfort eine entscheidende Rolle f{\"u}r die Akzeptanz des Systems. Es wird gezeigt, dass die Regler glatte Trajektorien realisieren k{\"o}nnen, um zu garantieren, dass sich Patienten wohl f{\"u}hlen w{\"a}hrend ihre Tumorbewegung mit Genauigkeiten im Submillimeterbereich ausgeglichen wird. Gesamtfehler werden im Kompensationssystem analysiert, in dem diese zu Trajektorienverfolgungsfehlern und Pr{\"a}diktionsfehlern in Beziehung gesetzt werden. Durch Ausnutzung von Eigenschaften verschiedener Pr{\"a}diktoren wird gezeigt, dass die Startzeit des Systems bis die Verfolgung der Referenztrajektorie erreicht ist, wenige Sekunden betr{\"a}gt. Dies gilt insbesondere f{\"u}r den Fall eines initial ruhenden HexaPODs und ohne Vorwissen {\"u}ber Tumorbewegungen. Dies zeigt die Eignung des Systems f{\"u}r die sehr kurz fraktionierten Behandlungen von Lungentumoren. Das Tumorkompensationssystem wurde ausschließlich auf Basis von klinischer Standard-Hardware entwickelt, die in vielen Behandlungsr{\"a}umen zu finden ist. Durch ein einfaches und flexibles Design k{\"o}nnen Behandlungsr{\"a}ume in kosteneffizienter Weise um M{\"o}glichkeiten der Bewegungskompensation erg{\"a}nzt werden. Dar{\"u}ber hinaus werden aktuelle Behandlungsmethoden wie intensit{\"a}tsmodulierte Strahlentherapie oder Volumetric Modulated Arc Therapy in keiner Weise eingeschr{\"a}nkt. Aufgrund der Unterst{\"u}tzung verschiedener Kompensationsmodi kann das System auf alle beweglichen Tumore angewendet werden, unabh{\"a}ngig davon ob die Bewegungen vorhersagbar (Lungentumore) oder nicht vorhersagbar (Prostatatumore) sind. Durch Integration von geeigneten Methoden zur Tumorpositionsbestimmung kann das System auf einfache Weise zur Kompensation von anderen Tumoren erweitert werden.}, subject = {Robotik}, language = {en} } @phdthesis{Freimann2022, author = {Freimann, Andreas}, title = {Efficient Communication in Networks of Small Low Earth Orbit Satellites and Ground Stations}, isbn = {978-3-945459-41-6}, doi = {10.25972/OPUS-28052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280521}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {With the miniaturization of satellites a fundamental change took place in the space industry. Instead of single big monolithic satellites nowadays more and more systems are envisaged consisting of a number of small satellites to form cooperating systems in space. The lower costs for development and launch as well as the spatial distribution of these systems enable the implementation of new scientific missions and commercial services. With this paradigm shift new challenges constantly emerge for satellite developers, particularly in the area of wireless communication systems and network protocols. Satellites in low Earth orbits and ground stations form dynamic space-terrestrial networks. The characteristics of these networks differ fundamentally from those of other networks. The resulting challenges with regard to communication system design, system analysis, packet forwarding, routing and medium access control as well as challenges concerning the reliability and efficiency of wireless communication links are addressed in this thesis. The physical modeling of space-terrestrial networks is addressed by analyzing existing satellite systems and communication devices, by evaluating measurements and by implementing a simulator for space-terrestrial networks. The resulting system and channel models were used as a basis for the prediction of the dynamic network topologies, link properties and channel interference. These predictions allowed for the implementation of efficient routing and medium access control schemes for space-terrestrial networks. Further, the implementation and utilization of software-defined ground stations is addressed, and a data upload scheme for the operation of small satellite formations is presented.}, subject = {Satellitenfunk}, language = {en} }