@phdthesis{Schug2021, author = {Schug, Benedikt}, title = {Untersuchungen zur Ursache und Beeinflussung des Kriechverhaltens von Gips}, doi = {10.25972/OPUS-24650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In dieser Arbeit konnte ein weiterer und m{\"o}glicherweise entscheidender Schritt zur Aufkl{\"a}rung des Kriechmechanismus von Gips gemacht und darauf aufbauend Kriterien, Wege und Strategien aufgezeigt werden, um neue Antikriechmittelsubstanzen zu identifizieren oder vorhandene Kriechmittel gezielt zu verbessern. Die G{\"u}ltigkeit und Praxistauglichkeit der Kriterien wurde exemplarisch nachgewiesen. Die Basis der Untersuchungen wurde gelegt mit der Errichtung standardisierter Messaufbauten und Verfahren sowie Parameterauswahl f{\"u}r eine beschleunigte und reproduzierbare Darstellung des Kriechph{\"a}nomens, wobei zun{\"a}chst im Abgleich sichergestellt wurde, dass das beschleunigte Ph{\"a}nomen mit dem langsam {\"u}ber einen Zeitraum von Jahren erzeugten Ph{\"a}nomen deckungsgleich ist. Darauf aufbauend wurden innovative Untersuchungsmethoden entwickelt, um das Kriechverhalten zu charakterisieren und qualitativ sowie quantitativ zu analysieren. Hierzu wurde zun{\"a}chst ein Aufbau und eine Messroutine entwickelt und eingef{\"u}hrt, um morphologische Ver{\"a}nderungen w{\"a}hrend des Kriechvorgangs im Rasterelektronenmikroskop nachzuverfolgen. Im Weiteren wurden Versuchsaufbauten f{\"u}r statische 3-Punkt-Biegeversuche in verschiedenen L{\"o}sungen realisiert und diese ergebnisabh{\"a}ngig optimiert. Hierdurch konnte der Einfluss der L{\"o}slichkeit von Gips in den entsprechenden Medien auf das Kriechverhalten untersuchen werden. Mittels Laserscanning-Mikroskop wurden wiederum diese Ergebnisse untermauert. Als vorherrschender Kriechmechanismus von Gips wurde damit das Abgleiten einzelner Gipskristalle bedingt durch einen L{\"o}sungs-Abscheide-Mechanismus an Orten hoher mechanischer Belastung identifiziert und best{\"a}tigt.}, subject = {Rauchgasgips}, language = {de} } @phdthesis{Brockmann2018, author = {Brockmann, Dorothea E. R.}, title = {Gef{\"u}ge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufw{\"a}ndig und kostenintensiv. Simulationen hingegen k{\"o}nnen die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gef{\"u}gekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverl{\"a}ssigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die h{\"a}ufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten k{\"o}nnen. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen K{\"o}rnern, die Nebenphase erstarrt w{\"a}hrend der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosit{\"a}t von AlN und Si3N4 wird als vernachl{\"a}ssigbar angesehen und in den Simulationen nicht ber{\"u}cksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngr{\"o}{\"y}enverteilung. Durch Infiltration mit fl{\"u}ssigem Silicium wurden die Hohlr{\"a}ume zwischen den K{\"o}rnern aufgef{\"u}llt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zun{\"a}chst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (W{\"a}rmeleitf{\"a}higkeit, Elastizit{\"a}tsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gef{\"u}gen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gef{\"u}geparametern eine gute {\"U}bereinstimmung. F{\"u}r die makroskopischen Eigenschaften wird auf der Basis einer ausf{\"u}hrlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute {\"U}bereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation k{\"o}nnen damit erkl{\"a}rt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der W{\"a}rmeleitf{\"a}higkeit bewirken. Nachdem die G{\"u}ltigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die W{\"a}rmeleitf{\"a}higkeit, den Elastizit{\"a}tsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenl{\"a}nge der keramischen K{\"o}rner ver{\"a}ndert. Bei den AlN-Keramiken wird zus{\"a}tzlich der Dihedralwinkel variiert, welcher Auskunft {\"u}ber den Benetzungsgrad der Fl{\"u}ssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverh{\"a}ltnis der langgezogenen Si3N4-K{\"o}rner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den gr{\"o}ßten Einfluss auf die Eigenschaften der Keramik hat, w{\"a}hrend die {\"u}brigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualit{\"a}t der Simulationen zu {\"u}berpr{\"u}fen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse f{\"u}r die W{\"a}rmeleitf{\"a}higkeit und den Elastizit{\"a}tsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegen{\"u}ber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierf{\"u}r werden die W{\"a}rmeleitf{\"a}higkeit, der Elastizit{\"a}tsmodul und die Poisson-Zahl der Phasen getrennt voneinander {\"u}ber einen gr{\"o}ßeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abh{\"a}ngt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgef{\"u}hrten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen k{\"o}nnen die Architektur des Gef{\"u}ges simuliert und die Eigenschaften von Keramiken f{\"u}r individuelle Anwendungen berechnet werden. Dies ist die Basis f{\"u}r die Produktion von maßgeschneiderten Keramiken. Zudem k{\"o}nnen mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht m{\"o}glich ist.}, subject = {Aluminiumnitrid}, language = {de} } @phdthesis{Nashed2017, author = {Nashed, Alexander}, title = {Entwicklung spinnf{\"a}higer Precursorpolymere zur Herstellung nicht-oxidischer Keramikfasern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Ausgehend von chlorhaltigem Oligosilan, erhalten durch Disproportionierung der „Disilan-Fraktion" der M{\"u}ller-Rochow-Synthese, wurde mit verschiedenen Aminen dechloriert bzw. strukturell modifiziert. Die auf diese Weise in das Oligosilan eingef{\"u}hrten Baugruppen wurden spektroskopisch und durch Vergleich mit geeigneten Modellverbindungen identifiziert. Vernetzungsgrad und keramische Ausbeute der erzeugten Materialen wurden bestimmt. Mit Ammoniak oder einwertigen Aminen wie Methylamin werden Produkte erhalten, die sich nicht zu Keramikfasern verarbeiten lassen. Letzteres scheitert daran, dass entweder keine signifikante Molekulargewichtserh{\"o}hung des Oligosilans erreicht wird, oder f{\"u}hrt dazu, dass das Oligomer vergelt und damit in Toluol unl{\"o}slich wird. Durch Umsetzung des Oligosilans mit zweiwertigen Aminen wie EDA oder TMDA als Vernetzungsreagenz gelang es, eine Syntheseroute zu entwickeln, die - anders als bei der am ISC etablierten Route - keinen thermischen Vernetzungsschritt erfordert, d.h. die gesamte Synthese findet bei Temperaturen ≤200 °C statt. Hierbei wird eine kontrollierbare Erh{\"o}hung des Molekulargewichts erreicht. Die Verwendung von TMDA hat gegen{\"u}ber EDA den Vorteil, dass aufgrund des Ausbleibens von Ringbildung ein h{\"o}her vernetztes Polymer erhalten wird. Dar{\"u}ber hinaus wurde gefunden, dass Gr{\"u}nfasern w{\"a}hrend der Pyrolyse durch radikalisch vernetzbare Gruppen (C=C-Doppelbindungen) im Polymer stabilisiert werden k{\"o}nnen. Diese Gruppen lassen sich entweder durch Dechlorierung mit Allylamin oder durch Umsetzung mit Vinyl-Grignard-Reagenzien einf{\"u}hren. Allylamin erwies sich hierbei als geeigneter, da es preiswerter und leichter handhabbar ist und außerdem - im Gegensatz zu Vinyl-Grignard-Reagenzien - eine vollst{\"a}ndige Dechlorierung des Polymers gestattet. Alle Polymere wurden auf ihre Verarbeitbarkeit zu Gr{\"u}n- und anschließend zu Keramikfasern untersucht. Hierbei wurde gefunden, dass die im Hinblick auf die Eigenschaften der resultierenden Keramikfasern g{\"u}nstigste Rezeptur in der Umsetzung eines zuvor mit DMA vollst{\"a}ndig dechlorierten Oligosilans mit 18,2 mol-\% TMDA und 40 mol-\% Allylamin (bezogen auf NMe2-Gruppen) besteht. Die aus diesem Polymer erhaltenen Keramikfasern zeigen die f{\"u}r noch nicht technisch ausgereifte, im Stadium der Entwicklung befindliche Fasern typischen Festigkeiten und entsprechen damit denjenigen, die auf der am ISC bereits etablierten Route erh{\"a}ltlich sind. Dies macht sie zu aussichtsreichen Kandidaten f{\"u}r die weitere Optimierung.}, subject = {Keramikfaser}, language = {de} }