@phdthesis{Ziegenhals2018, author = {Ziegenhals, Thomas}, title = {The role of the miR-26 family in neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For the differentiation of a embryonic stem cells (ESCs) to neuronal cells (NCs) a complex and coordinated gene regulation program is needed. One important control element for neuronal differentiation is the repressor element 1 silencing transcription factor (REST) complex, which represses neuronal gene expression in non-neuronal cells. Crucial effector proteins of the REST complex are small phosphatases such as the CTDSPs (C-terminal domain small phosphatases) that regulate polymerase II activity by dephosphorylating the C-terminal domain of the polymerase, thereby repressing target genes. The stepwise inactivation of REST, including the CTDSPs, leads to the induction of a neuron-specific gene program, which ultimately induces the formation of neurons. The spatio-temporal control of REST and its effector components is therefore a crucial step for neurogenesis. In zebrafish it was shown that the REST-associated CTDSP2 is negatively regulated by the micro RNA (miR) -26b. Interestingly, the miR-26b is encoded in an intron of the primary transcript of CTDSP2. This gives the fundament of an intrinsic regulatory negative feedback loop, which is essential for the proceeding of neurogenesis. This feedback loop is active during neurogenesis, but inactive in non-neuronal cells. The reason for this is that the maturation of the precursor miR (pre-miR) to the mature miR-26 is arrested in non neuronal cells, but not in neurons. As only mature miRs are actively repressing genes, the regulation of miR-26 processing is an essential step in neurogenesis. In this study, the molecular basis of miR-26 processing regulation in the context of neurogenesis was addressed. The mature miR is processed from two larger precursors: First the primary transcript is cleaved by the enzyme DROSHA in the nucleus to form the pre-miR. The pre-miR is exported from the nucleus and processed further through the enzyme DICER to yield the mature miR. The mature miR can regulate gene expression in association with the RNA-induced silencing complex (RISC). Multiple different scenarios in which miR processing was regulated were proposed and experimentally tested. Microinjection studies using Xenopus leavis oocytes showed that slowdown or blockage of the nucleo-cytoplasmic transport are not the reason for delayed pre-miR-26 processing. Moreover, in vitro and in vivo miR-processing assays showed that maturation is most likely regulated through a in trans acting factor, which blocks processing in non neuronal cells. Through RNA affinity chromatographic assays using zebrafish and murine lysates I was able to isolate and identify proteins that interact specifically with pre-miR-26 and could by this influence its biogenesis. Potential candidates are FMRP/FXR1/2, ZNF346 and Eral1, whose functional characterisation in the context of miR-biogenesis could now be addressed. The second part of my thesis was executed in close colaboration with the laboratory of Prof. Albrecht M{\"u}ller. The principal question was addressed how miR-26 influences neuronal gene expression and which genes are primarily affected. This research question could be addressed by using a cell culture model system, which mimics ex vivo the differentiation of ESCs to NCs via neuronal progenitor. For the functional analysis of miR-26 knock out cell lines were generated by the CRISPR/Cas9 technology. miR-26 deficient ESC keep their pluripotent state and are able to develop NPC, but show major impairment in differentiating to NCs. Through RNA deep sequencing the miR-26 induced transcriptome differences could be analysed. On the level of mRNAs it could be shown, that the expression of neuronal gene is downregulated in miR-26 deficient NCs. Interestingly, the deletion of miR-26 leads to selectively decreased levels of miRs, which on one hand regulate the REST complex and on the other hand are under transcriptional control by REST themself. This data and the discovery that induction of miR-26 leads to enrichment of other REST regulating miRs indicates that miR-26 initiates neurogenesis through stepwise inactivation of the REST complex.}, subject = {miRNS}, language = {en} } @phdthesis{Chen2018, author = {Chen, Jiangtian}, title = {Functions of allatostatin A (AstA) and myoinhibitory peptides (MIPs) in the regulation of food intake and sleep in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neuropeptides and peptide hormones carrying neural or physiological information are intercellular signalling substances. They control most if not all biological processes in vertebrates and invertebrates by acting on specific receptors on the target cell. In mammals, many different neuropeptides and peptide hormones are involved in the regulation of feeding and sleep. In \textit{Drosophila}, allatostatin A (AstA) and myoinhibitory peptides (MIPs) are brain-gut peptides. The AstA receptors are homologues of the mammalian galanin receptors and the amino acid sequences of MIPs are similar to a part of galanin, which has an orexigenic effect and is implicated in the control of sleep behaviour in mammals. I am interested in dissecting pleiotropic functions of AstA and MIPs in the regulation of food intake and sleep in \textit{Drosophila}. \par In the first part of the dissertation the roles of brain-gut peptide allatostatin A are analysed. Due to the genetic and molecular tools available, the fruit fly \textit{Drosophila melanogaster} is chosen to investigate functions of AstA. The aims in this part are to identify pleiotropic functions of AstA and assign specific effects to the activity of certain subsets of AstA expressing cells in \textit{Drosophila} adults. A new and restricted \textit{AstA\textsuperscript{34}-Gal4} line was generated. The confocal imaging result showed that AstA neurons are located in the posterior lateral protocerebrum (PLP), the gnathal ganglia (GNG), the medullae, and thoracic-abdominal ganglion (TAG). AstA producing DLAa neurons in the TAG innervate hindgut and the poterior part of midgut. In addition, AstA are detected in the enteroendocrine cells (EECs).\par Thermogenetic activation and neurogenetic silencing tools with the aid of the \textit{UAS/Gal4} system were employed to manipulate the activity of all or individual subsets of AstA cells and investigate the effects on food intake, locomotor activity and sleep. Our experimental results showed that thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs reduced food intake, which can be traced to AstA signalling by using \textit{AstA} mutants. In the locomotor activity, thermogenetic activation of two pairs of PLP neurons and/or AstA expressing EECs resulted in strongly inhibited locomotor activity and promoted sleep without sexual difference, which was most apparent during the morning and evening activity peaks. The experimental and control flies were not impaired in climbing ability. In contrast, conditional silencing of the PLP neurons and/or AstA expressing EECs reduced sleep specifically in the siesta. The arousal experiment was employed to test for the sleep intensity. Thermogenetically activated flies walked significantly slower and a shorter distance than controls for all arousal stimulus intensities. Furthermore, PDF receptor was detected in the PLP neurons and the PLP neurons reacted with an intracellular increase of cAMP upon PDF, only when PDF receptor was present. Constitutive activation of AstA cells by tethered PDF increased sleep and thermogenetic activation of the PDF producing sLNvs promoted sleep specifically in the morning and evening. \par The study shows that the PLP neurons and/or EECs vis AstA signalling subserve an anorexigenic and sleep-regulating function in \textit{Drosophila}. The PLP neurons arborise in the posterior superior protocerebrum, where the sleep relevant dopaminergic neurons are located, and EECs extend themselves to reach the gut lumen. Thus, the PLP neurons are well positioned to regulate sleep and EECs potentially modulate feeding and possibly locomotor activity and sleep during sending the nutritional information from the gut to the brain. The results of imaging, activation of the PDF signalling pathway by tethered PDF and thermoactivation of PDF expressing sLNvs suggest that the PLP neurons are modulated by PDF from sLNv clock neurons and AstA in PLP neurons is the downstream target of the central clock to modulate locomotor activity and sleep. AstA receptors are homologues of galanin receptors and both of them are involved in the regulation of feeding and sleep, which appears to be conserved in evolutionary aspect.\par In the second part of the dissertation, I analysed the role of myoinhibitory peptides. MIPs are brain-gut peptides in insects and polychaeta. Also in \textit{Drosophila}, MIPs are expressed in the CNS and EECs in the gut. Previous studies have demonstrated the functions of MIPs in the regulation of food intake, gut motility and ecdysis in moths and crickets. Yet, the functions of MIPs in the fruit fly are little known. To dissect effects of MIPs regarding feeding, locomotor activity and sleep in \textit{Drosophila melanogater}, I manipulated the activity of MIP\textsuperscript{W{\"U}} cells by using newly generated \textit{Mip\textsuperscript{W{\"U}}-Gal4} lines. Thermogenetical activation or genetical silencing of MIP\textsuperscript{W{\"U}} celles did not affect feeding behaviour and resulted in changes in the sleep status. \par My results are in contradiction to a recent research of Min Soohong and colleagues who demonstrated a role of MIPs in the regulation of food intake and body weight in \textit{Drosophila}. They showed that constitutive silencing of MIP\textsuperscript{KR} cells increased food intake and body weight, whereas thermogenetic activation of MIP\textsuperscript{KR} cells decreased food intake and body weight by using \textit{Mip\textsuperscript{KR}-Gal4} driver. Then I repeated the experiments with the \textit{Mip\textsuperscript{KR}-Gal4} driver, but could not reproduce the results. Interestingly, I just observed the opposite phenotype. When MIP\textsuperscript{KR} cells were silenced by expressing UAS-tetanus toxin (\textit{UAS-TNT}), the \textit{Mip\textsuperscript{KR}\$>\$TNT} flies showed reduced food intake. The thermogenetic activation of MIP\textsuperscript{KR} cells did not affect food intake. Furthermore, I observed that the thermogenetic activation of MIP\textsuperscript{KR} cells strongly reduced the sleep duration.\par In the third part of the dissertation, I adapted and improved a method for metabolic labelling for \textit{Drosophila} peptides to quantify the relative amount of peptides and the released peptides by mass spectrometry under different physiological and behavioural conditions. qRT-PCR is a practical technique to measure the transcription and the corresponding mRNA level of a given peptide. However, this is not the only way to measure the translation and production of peptides. Although the amount of peptides can be quantified by mass spectrometry, it is not possible to distinguish between peptides stored in vesicles and released peptides in CNS extracts. I construct an approach to assess the released peptides, which can be calculated by comparing the relative amount of peptides between two timepoints in combination with the mRNA levels which can be used as semiquantitative proxy reflecting the production of peptides during this period. \par After optimizing the protocol for metabolic labelling, I carried out a quantitative analysis of peptides before and after eclosion as a test. I was able to show that the EH- and SIFa-related peptides were strongly reduced after eclosion. This is in line with the known function and release of EH during eclosion. Since this test was positive, I next used the metabolic labelling in \textit{Drosophila} adult, which were either fed \textit{ad libitum} or starved for 24 hrs, and analysed the effects on the amount of AstA and MIPs. In the mRNA level, my results showed that in the brain \textit{AstA} mRNA level in the 24 hrs starved flies was increased compared to in the \textit{ad libitum} fed flies, whereas in the gut the \textit{AstA} mRNA level was decreased. Starvation induced the reduction of \textit{Mip} mRNA level in the brain and gut. Unfortunately, due to technical problems I was unable to analyse the metabolic labelled peptides during the course of this thesis.\par}, subject = {AstA}, language = {en} } @phdthesis{Balasubramanian2018, author = {Balasubramanian, Srikkanth}, title = {Novel anti-infectives against pathogenic bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Marine sponge-associated actinomycetes are reservoirs of diverse natural products with novel biological activities. Their antibiotic potential has been well explored against a range of Gram positive and negative bacteria. However, not much is known about their anti-infective or anti-virulence potential against human pathogens. This Ph.D. project aimed to investigate the anti-infective (anti-Shiga toxin and anti-biofilm) potential of sponge-derived actinobacteria through identification and isolation of their bioactive metabolites produced and characterizing their mechanism of action by transcriptomics. This thesis is divided into three studies with the overall objective of exploring the anti-infective efficacy of actinomycetes-derived extracts and compound(s) that could possibly be used as future therapeutics. The first study deals with investigation on the anti-Shiga toxin effects of sponge-associated actinomycetes. Diarrheal infections pose a huge burden in several developing and developed countries. Diarrheal outbreaks caused by Enterohemorrhagic Escherichia coli (EHEC) could lead to life-threatening complications like gastroenteritis and haemolytic uremic syndrome (HUS) if left untreated. Shiga toxin (Stx) produced by EHEC is a major virulence factor that negatively affects the human cells, leading them to death via apoptosis. Antibiotics are not prescribed against EHEC infections since they may enhance the risk of development of HUS by inducing the production and release of Stx from disintegrating bacteria and thereby, worsening the complications. Therefore, an effective drug that blocks the Stx production without affecting the growth needs to be urgently developed. In this study, the inhibitory effects of 194 extracts and several compounds originating from a collection of marine sponge-derived actinomycetes were evaluated against the Stx production in EHEC strain EDL933 with the aid of Ridascreen® Verotoxin ELISA assay kit. It was found that treatment with the extracts did not lead to significant reduction in Stx production. However, strepthonium A isolated from the culture of Streptomyces sp. SBT345 (previously cultivated from the Mediterranean sponge Agelas oroides) reduced the Stx production (at 80 μM concentration) in EHEC strain EDL933 without affecting the bacterial growth. The structure of strepthonium A was resolved by spectroscopic analyses including 1D and 2D-NMR, as well as ESI-HRMS and ESI-HRMS2 experiments. This demonstrated the possible application of strepthonium A in restraining EHEC infections. VI In the second study, the effect of marine sponge-associated actinomycetes on biofilm formation of staphylococci was assessed. Medical devices such as contact lenses, metallic implants, catheters, pacemakers etc. are ideal ecological niches for formation of bacterial biofilms, which thereby lead to device-related infections. Bacteria in biofilms are multiple fold more tolerant to the host immune responses and conventional antibiotics, and hence are hard-to-treat. Here, the anti-biofilm potential of an organic extract derived from liquid fermentation of Streptomyces sp. SBT343 (previously cultivated from the Mediterranean sponge Petrosia ficiformis) was reported. Results obtained in vitro demonstrated its anti-biofilm (against staphylococci) and non-toxic nature (against mouse macrophage (J774.1), fibroblast (NIH/3T3) and human corneal epithelial cell lines). Interestingly, SBT343 extract could inhibit staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces without affecting the bacterial growth. High Resolution Fourier Transform Mass Spectrometry (HR-MS) analysis indicated the complexity and the chemical diversity of components present in the extract. Preliminary physio-chemical characterization unmasked the heat stable and non-proteinaceous nature of the active component(s) in the extract. Finally, fractionation experiments revealed that the biological activity was due to synergistic effects of multiple components present in the extract. In the third study, anti-biofilm screening of 50 organic extracts generated from solid and liquid fermentation of 25 different previously characterized sponge-derived actinomycetes was carried out. This led to identification of the anti-biofilm organic extract derived from the solid culture of Streptomyces sp. SBT348 (previously cultivated from the Mediterranean sponge Petrosia ficiformis). Bioassay-guided fractionation was employed to identify the active fraction Fr 7 in the SBT348 crude extract. Further purification with semi-preparative HPLC led to isolation of the bioactive SKC1, SKC2, SKC3, SKC4 and SKC5 sub-fractions. The most active sub-fraction SKC3 was found to be a pure compound having BIC90 and MIC values of 3.95 μg/ml and 31.25 μg/ml against S. epidermidis RP62A. SKC3 had no apparent toxicity in vitro on cell lines and in vivo on the greater wax moth Galleria melonella larvae. SKC3 was stable to heat and enzymatic treatments indicating its non-proteinaceous nature. HR-MS analysis revealed the mass of SKC3 to be 1258.3 Da. Structure elucidation of SKC3 with the aid of 1D and 2D-NMR data is currently under investigation. Further, to obtain insights into the mode of action of SKC3 on S. epidermidis RP62A, RNA sequencing was done. Transcriptome data revealed that SKC3 was recognized by RP62A at 20 min and SKC3 negatively interfered with the central metabolism of staphylococci at 3 h. Taken VII together, these findings suggest that SKC3 could be a lead structure for development of new anti-staphylococcal drugs. Overall, the results obtained from this work underscore the anti-infective attributes of actinomycetes consortia associated with marine sponges, and their applications in natural product drug discovery programs.}, subject = {Marine sponges}, language = {en} } @phdthesis{Koenig2018, author = {K{\"o}nig, Julia Maria}, title = {Fungal grass endophytes and their dependence on land-use intensity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Plant-associated fungi can affect the plants' interaction with herbivores and other microorganisms. For example, many common forage grasses are infected with Epichlo{\"e} endophytes. The endophytes systemically colonize the aerial parts of the plants. They produce bioprotective alkaloids that can negatively affect insects and livestock feeding on the grasses, and interact with other fungal species which living from the plants' nutrients. Environmental conditions strongly influence Epichlo{\"e} endophytes. Endophyte-mediated effects on herbivores are more pronounced under increased temperatures and the endophytes may benefit from land use in managed grasslands. Under the framework of the large-scale German project "Biodiversity Exploratories", I investigated whether infection rates and alkaloid concentrations of Epichlo{\"e} festucae var. lolii in Lolium perenne (Chapter I) and Epichlo{\"e} endophytes (E. uncinata, E. siegelii) in Festuca pratensis (Chapter II) depend on land use and season. Further I analysed, whether foliar fungal assemblages of L. perenne are affected by the presence of Epichlo{\"e} endophytes (Chapter IV).}, subject = {Endophytische Pilze}, language = {en} } @phdthesis{Wohlfart2018, author = {Wohlfart, Christian}, title = {The Yellow River Basin in Transition - Multi-faceted Land Cover Change Analysis in the Yellow River Basin in the Context of Global Change Using Multi-sensor Remote Sensing Imagery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship has intensified further as the basin plays a vital role for China's continued economic development. It is one of the most densely-populated, fastest growing, and most dynamic regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the basin has witnessed a spectacular economic boom during the last decades and can be considered as an exemplary blueprint region for contemporary dynamic Global Change processes occurring throughout the country, which is currently transitioning from an agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow River social-ecological systems, where complex challenges arise threatening a long-term sustainable development. Consistent and continuous remote sensing-based monitoring of recent and past land cover and land use change is a fundamental requirement to mitigate the adverse impacts of Global Change processes. Nowadays, technical advancement and the multitude of available satellite sensors, in combination with the opening of data archives, allow the creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the prevailing dynamics and underlying factors influencing the current processes, detailed regional specific land cover data and change information are surprisingly absent for this region. In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii), the most dominant processes related to mining, agriculture, forest, and urban dynamics are determined on finer spatial and temporal scales. The complex and manifold problems and challenges that result from long-term abuse of the water and land resources in the basin have been underpinned by policy choices, cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow River. Whereas flooding is therefore largely now under control, new environmental and social problems have evolved, including soil and water pollution, ecological degradation, biodiversity decline, and food security, all being further aggravated by anthropogenic climate change. To resolve the contemporary and complex challenges, many individual environmental laws and regulations have been enacted by various Chinese ministries. However, these policies often pursue different, often contradictory goals, are too general to tackle specific problems and are usually implemented by a strong top-down approach. Recently, more flexible economic and market-based incentives (pricing, tradable permits, investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments. One way towards a more holistic and integrated river basin management could be the establishment of a common platform (e.g. a Geographical Information System) for data handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures are coalesced, on which sustainable decision-making could be based. So far, the collected data is hardly accessible, fragmented, inconsistent, or outdated. The first step to address the absence and lack of consistent and spatially up-to-date information for the entire basin capturing the heterogeneous landscape conditions was taken up in this thesis. Land cover characteristics and dynamics were derived from the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m. To minimize the inherent influence of atmospheric and geometric interferences found in raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed the time series and substantially reduced noise. Based on the smoothed time series data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random forest (RF) classifiers. High quality reference data sets were derived from very high resolution imagery for each year independently of which 70 \% trained the RF models. The accuracy assessments for all regionally specific defined thematic classes were based on the remaining 30 \% reference data split and yielded overall accuracies of 87 \% and 84 \% for 2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products (YRB LC) depict the detail spatial extent and distribution of the current land cover status and dynamics. The novel products overall differentiate overall 18 land cover and use classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes, mosaic classes, non-vegetated, and artificial classes, which are not presented in previous land cover studies so far. Building on this, an extended multi-faceted land cover analysis on the most prominent land cover change types at finer spatial and temporal scales provides a better and more detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products about mining, agriculture, forest, and urban areas were examined from long-trem Landsat satellite time series monitored at annual scales to capture the rapid rate of change in four selected focus regions. All archived Landsat images between 2000 and 2015 were used to derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a mono-temporal reference stable-pixels data set to keep manual sampling requirements to a minimum level. Derived results gained high accuracies ranging from 88 \% to 98 \%. Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are identified as most prominent drivers of land cover change, whereas agricultural land remained stable, only showing local small-scale dynamics. Mining operations started in 2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine meadows and wetlands. In this thesis, a novel and unique regional specific view of current and past land cover characteristics in a complex and heterogeneous landscape was presented by using a multi-source remote sensing approach. The delineated products hold great potential for various model and management applications. They could serve as valuable components for effective and sustainable land and water management to adapt and mitigate the predicted consequences of Global Change processes.}, subject = {Fernerkundung}, language = {en} } @phdthesis{KraehenbuehlAmstalden2018, author = {Kr{\"a}henb{\"u}hl Amstalden, Maria Cecilia}, title = {Development of a bacterial responsive antibiotic release system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often neglected is their untargeted mechanism of action, affecting not only the infection itself but also commensal bacteria which are often opportunistic pathogens causing many diseases as well. Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease aureolysin which is expressed by S. aureus during infections would cleave the linker and partially release the antibiotic which would be still attached to a remaining tetrapeptide. These would be cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally releasing the compound. In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. It should be sensitive towards the target bacterial protease but not be cleaved by any human enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen since it was not sensitive towards MMPs, but cleaved by aureolysin. In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in hydrogel formulations. The purpose was to physically incorporate the antibiotic within the hydrogel, which would be released by the cleavage of those sequences and the consequent loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a PVA matrix modified with maleimide, which allows a conjugation reaction with thiol functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) presented a low diffusion rate, thus the aureolysin release assays were performed only using this prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either quickly diffused into the medium or was not released at all. The physical incorporation of the antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a peak with the same retention time correspondent to the fragment product after cleavage of the free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a promising strategy for its bioresponsive release. Within the third part of this study, we analyzed the degradation of the resulted fragment after aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We determined the concentration of those enzymes in human plasma and synthesized the fragment by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By incubating the construct with the lowest aminopeptidase concentration measured in plasma, the fluorophore was completely released within two hours, showing the efficacy of these enzymes as bioresponsive agents. The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker- CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker by aureolysin was very similar to the one obtained for the free peptide, indicating that the PEGylation does not interfere on the enzymatic activity. However, by trying to increase the loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the system, indicating the formation of aggregates by those constructs. The designed system has proved to be a smart strategy for the delivery on demand of antibiotics in which the drug is only released by the presence of S. aureus during their virulent state.}, subject = {Arzneimittelforschung}, language = {en} } @phdthesis{Bury2018, author = {Bury, Susanne}, title = {Molekularbiologische Untersuchungen der antagonistischen Effekte des probiotischen \(Escherichia\) \(coli\) Stamms Nissle 1917 auf Shiga-Toxin produzierende \(Escherichia\) \(coli\) St{\"a}mme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163401}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Shiga toxin produzierende E. coli (STEC) stellen mit einer Infektionsdosis von gerade einmal 100 Bakterien ein großes Risiko f{\"u}r unsere Gesundheit dar. Betroffene Patienten k{\"o}nnen milde Krankheitssymptome wie w{\"a}ssrigen Durchfall aufweisen, welcher sich allerdings zu blutigem Durchfall oder dem h{\"a}molytisch ur{\"a}mischen Syndrom (HUS) weiterentwickeln kann. Die Ursache f{\"u}r das Krankheitsbild ist das zytotoxische Protein Shiga-Toxin (Stx), welches von STEC St{\"a}mmen produziert wird, eukaryotischen Zellen angreift und den apoptotischen Zelltod induziert. Es konnte gezeigt werden, dass infizierte Patienten in ihrem Krankheitsverlauf stark variieren, was unter anderem auf die Zusammensetzung ihrer Mikrobiota zur{\"u}ckzuf{\"u}hren sein k{\"o}nnte. Diesbez{\"u}glich k{\"o}nnen zum Beispiel einige Bakterien bereits die Darmbesiedlung von STEC St{\"a}mmen unterbinden, wohingegen andere die Toxin Produktion der pathogenen St{\"a}mme beeinflussen und wieder andere von den stx tragenden Phagen infiziert werden k{\"o}nnen und daraufhin selbst zu Toxin produzierenden St{\"a}mmen werden. Da die genetischen Informationen f{\"u}r das Toxin auf einem Prophagen im Genom der STEC St{\"a}mme kodiert ist, f{\"u}hrt eine Antibiotika Behandlung von infizierten Patienten zwar zum Tod der Bakterien, hat allerdings auch einen Wechsel vom lysogenen zum lytischen Phagen Zyklus und damit einen enormen Anstieg an freigesetztem Stx zur Folge. In den letzten Jahrzehnten kam es immer wieder zu Epidemien mit STEC St{\"a}mmen, welche auch einige Todesopfer forderten. Die Behandlung von Patienten erfolgt auf Grund von mangelnden Behandlungsm{\"o}glichkeiten meist nur symptomatisch, weswegen neue Strategien f{\"u}r die Behandlung einer STEC Infektion dringend ben{\"o}tigt werden. Der probiotische E. coli Stamm Nissle 1917 (EcN) z{\"a}hlt bereits seit mehr als 100 Jahren als Medikament f{\"u}r Behandlungen von Darmentz{\"u}ndungen. In vitro und in vivo Studien mit dem probiotischen Stamm und STEC St{\"a}mmen konnten zeigen, dass EcN die Produktion von Stx unterdr{\"u}ckt und gleichzeitig die STEC Zellzahl reduziert. Diese Ergebnisse waren der Anlass f{\"u}r diese Studie in der die Auswirkungen von EcN auf STEC St{\"a}mme genauer untersucht wurden, um eine m{\"o}gliche Behandlung von STEC Infektionen mit dem Probiotikum zu gew{\"a}hrleisten. Eines der Hauptziele dieser Studie war es, herauszufinden, ob EcN von stx-Phagen infiziert werden kann und damit selbst zu einem Toxin Produzenten wird. In diesem Falle w{\"a}re eine Behandlung mit dem E. coli Stamm ausgeschlossen, da es den Krankheitsverlauf verschlimmern k{\"o}nnte. Verschiedene experimentelle Ans{\"a}tze in denen versucht wurde den YaeT stx-Phagen Rezeptor tragenden Stamm zu infizieren schlugen fehl. Weder mittels PCR Analysen, Phagen Plaque Assays oder der Phagen Anreicherung konnte eine Lyse oder eine Prophagen Integration nachgewiesen werden. Transkriptom Analysen konnten zeigen, dass Gene eines lambdoiden Prophagen in EcN in Anwesenheit von stx-Phagen stark reguliert sind. Auch andere E. coli St{\"a}mme, welche sich ebenfalls durch eine Resistenz gegen{\"u}ber einer stx-Phagen Infektion auswiesen, wurden positiv auf lambdoide Prophagen untersucht. Einzig dem stx-Phagen sensitiven K-12 Stamm MG1655 fehlt ein kompletter lambdoider Prophage, weswegen die Vermutung nahe liegt, dass ein intakter lambdoider Prophage vor der Superinfektion mit stx-Phagen sch{\"u}tzten kann. In weiteren Experimenten wurde der Einfluss der Mikrozin-negativen EcN Mutante SK22D auf STEC St{\"a}mme untersucht. Es konnte gezeigt werden, dass SK22D nicht nur die Produktion des zytotoxischen Proteins unterdr{\"u}ckt, sondern auch mit der Produktion der stx-Phagen von allen getesteten STEC St{\"a}mmen interferiert (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- und zwei O104:H4 Isolate vom STEC Ausbruch in Deutschland im Jahr 2011). Transwell Studien konnten zeigen, dass der Faktor, welcher die Transkription des Prophagen unterdr{\"u}ckt, von SK22D sekretiert wird. Die Ergebnisse lassen vermuten, dass die Pr{\"a}senz von SK22D den lysogenen Zustand des Prophagen st{\"u}tzt und somit den lytischen Zyklus unterdr{\"u}ckt. Da stx-Phagen eine große Gefahr darstellen andere E. coli St{\"a}mme zu infizieren, haben wir uns in weiteren Studien dem Einfluss von EcN auf isolierte Phagen gewidmet. Die Kultivierungsexperimente von EcN mit Phagen zeigten, dass der probiotische Stamm in der Lage war die stx-Phagen in ihrer Effizienz der Lyse des K 12 Stammes MG1655 von~ 1e7 pfus/ml auf 0 pfus/ml nach einer 44 st{\"u}ndigen Inkubation zu inaktivieren. Diese Inaktivierung konnte auf die Aktivit{\"a}t eines hitzestabilen Proteins, welches in der station{\"a}ren Wachstumsphase synthetisiert wird, zur{\"u}ckgef{\"u}hrt werden. Studien welche einen Anstieg der Biofilmmasse zur Folge hatten zeigten eine gesteigerte Effizienz in der Phagen Inaktivierung, weswegen Komponenten des Biofilms m{\"o}glicherweise die Phagen Inaktivierung herbeif{\"u}hren. Neben dem direkten Einfluss auf die Phagen wurde auch ein Schutzeffekt von SK22D gegen{\"u}ber dem stx-Phagen empf{\"a}nglichen K 12 St{\"a}mmen untersucht. Lysogene K 12 St{\"a}mme zeichneten sich durch eine enorme Stx und stx-Phagen Produktion aus. Die Pr{\"a}senz von SK22D konnte den K 12 vermittelten Anstieg der pathogenen Faktoren unterbinden. Transwell Ergebnisse und Kinetik Studien lassen vermuten, dass SK22D eher die Phagen Infektion von K-12 St{\"a}mmen unterbindet als die Lyse von lysogenen K-12 St{\"a}mmen zu st{\"o}ren. Eine m{\"o}gliche Erkl{\"a}rung f{\"u}r den Schutz der K-12 St{\"a}mme vor einer stx-Phagen Infektion k{\"o}nnte darin liegen, dass die K-12 St{\"a}mme innerhalb der SK22D Kultur wachsen und dadurch von den infekti{\"o}sen Phagen abgeschirmt werden. Zusammenfassend konnte in dieser Studie gezeigt werden, dass der probiotische Stamm EcN sowohl die Lyse von STEC St{\"a}mmen unterdr{\"u}ckt als auch die infekti{\"o}sen stx-Phagen inaktiviert und sensitive E. coli St{\"a}mme vor der Phagen Infektion sch{\"u}tzen kann. Diese Ergebnisse sollten als Grundlage f{\"u}r in vivo Studien herangezogen werden, um eine m{\"o}gliche Behandlung von STEC infizierten Patienten mit dem Probiotikum zu gew{\"a}hrleisten.}, subject = {EHEC}, language = {en} } @phdthesis{Dolles2018, author = {Dolles, Dominik}, title = {Development of Hybrid GPCR Ligands: Photochromic and Butyrylcholinesterase Inhibiting Human Cannabinoid Receptor 2 Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {While life expectancy increases worldwide, treatment of neurodegenerative diseases such as AD becomes a major task for industrial and academic research. Currently, a treatment of AD is only symptomatical and limited to an early stage of the disease by inhibiting AChE. A cure for AD might even seem far away. A rethinking of other possible targets is therefore necessary. Addressing targets that can influence AD even at later stages might be the key. Even if it is not possible to find a cure for AD, it is of great value for AD patients by providing an effective medication. The suffering of patients and their families might be relieved and remaining years may be spent with less symptoms and restrictions. It was shown that a combination of hCB2R agonist and BChE inhibitor might exactly be a promising approach to combat AD. In the previous chapters, a first investigation of dual-acting compounds that address both hCB2R and BChE was illustrated (figure 6.1). A set of over 30 compounds was obtained by applying SARs from BChE inhibitors to a hCB2R selective agonist developed by AstraZeneca. In a first in vitro evaluation compounds showed selectivity over hCB1R and AChE. Further investigations could also prove agonism and showed that unwanted off-target affinity to hMOP receptor could be designed out. The development of a homology model for hCB2R (based on a novel hCB1R crystal) could further elucidate the mode of action of the ligand binding. Lastly, first in vivo studies showed a beneficial effect of selected dual-acting compounds regarding memory and cognition. Since these first in vivo studies mainly aim for an inhibition of the BChE, it should be the aim of upcoming projects to proof the relevance of hCB2R agonism in vivo as well. In addition, pharmacokinetic as well as solubility studies may help to complete the overall picture. Currently, hybrid-based dual-acting hCB2R agonists and selective BChE inhibitors are under investigation in our lab. First in vitro evaluations showed improved BChE inhibition and selectivity over AChE compared to tacrine.78 Future in vitro and in vivo studies will clarify their usage as drug molecules with regard to hepatotoxicity and blood-brain barrier penetration. Since the role of hCB2R is not yet completely elucidated, the use of photochromic toolcompounds becomes an area of interest. These tool-compounds (and their biological effect) can be triggered upon irradiation with light and thus help to investigate time scales and ligand binding. A set of 5-azobenzene benzimidazoles was developed and synthesized. In radioligand binding studies, affinity towards hCB2R could be increased upon irradiation with UV-light (figure 6.2). This makes the investigated compounds the first GPCR ligands that can be activated upon irradiation (not vice versa). The aim of upcoming research will be the triggering of a certain intrinsic activity by an "efficacy-switch". For this purpose, several attempts are currently under investigation: an introduction of an azobenzene moiety at the 2-position of the benzimidazole core already led to a slight difference in efficacy upon irradiation with UV light. Another approach going on in our lab is the development of hCB1R switches based on the selective hCB1R inverse agonist rimonabant. First in vitro results are not yet available (figure 6.3).}, subject = {Ligand }, language = {en} } @phdthesis{SchuesslergebHecht2018, author = {Sch{\"u}ßler [geb. Hecht], Nina Kristin Petra}, title = {Novel formulation principles for bioavailability enhancement of poorly water-soluble and poorly permeable drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Since four decades, high-throughput screenings have been conducted in drug discovery, fuelling the identification of potential new drug candidates. This approach, however, often promotes the detection of compounds with undesired physico-chemical properties like poor aqueous solubility or low membrane permeability. Indeed, dissolution and absorption of a drug are prerequisites for systemic exposure and therapeutic effects. Therefore, innovative strategies to optimize unfavourable performance of new drug candidates are in great demand in order to increase drug concentrations at the site of action whilst simultaneously reducing drug variability. In chapter I of this research work, hydrophobic ion pairing (HIP) is discussed as a promising strategy to improve the bioavailability of BCS class III compounds, which have high aqueous solubility and low permeability. The review points out the limitations of poorly absorbable drugs and details the approach of pairing these APIs with hydrophobic counterions. Apart from the motivation to tailor physico-chemical, biopharmaceutical and toxicological properties of BCS class III compounds, the hydrophobic ion pairing facilitates their formulation into drug delivery systems. Besides advantageous effects, disadvantages of the ion pair formation, such as the decreased aqueous solubility of the ions pair, are critically outlined. Finally, the review covers an overview of non-invasive administration routes permitted after ion pair formation, including oral/enteral, buccal, nasal, ocular and transdermal drug administration. Overall, the HIP approach offers substantial benefits regarding the bioavailability enhancement of BCS class III compounds. Chapter II concerns GHQ168 developed by Holzgrabe et al., a BCS class II compound characterized by low aqueous solubility and high permeability. GHQ168 was developed for the treatment of human African trypanosomiasis (HAT), a tropical disease for which novel active compounds are urgently needed. This lead compound was found to be very active against trypanosoma brucei brucei and trypanosoma brucei rhodesiense in cell culture assays, however, the low aqueous solubility prevented further preclinical development. To target this drawback, two different approaches were selected, including (I) the chemical modification and (II) the spray drying of GHQ168. The newly synthesized set of derivatives as well as the spray dried GHQ168 were subjected to a physico-chemical and microbiological characterization. It turned out that both approaches successfully improved aqueous solubility, however, for the derivatives of GHQ168 at the expense of activity. Furthermore, the pharmacokinetic parameters of GHQ168 and of the most active derivatives, GHQ242 and GHQ243, were evaluated. Elimination half-lives between 1.5 to 3.5 h after intraperitoneal administration and modest to strong serum albumin binding for GHQ243 (45\%) and GHQ168 (80\%) and very high binding (> 99\%) for GHQ242 were detected. The spray dried formulation of GHQ168, as well as GHQ242 and GHQ243 were investigated in two in vivo studies in mice infected with t. b. rhodesiense (STIB900), referred to as (I) stringent model and (II) early-treatment model. In the stringent model (2 applications/day on day 3-6 after infection) the mean survival duration (MSD) of mice treated with spray dried GHQ168 exceeded the MSD of the untreated control group (17 days versus 9 days), a difference that was statistically significant. In contrast, no statistical difference was observed for GHQ242 (14 days) and GHQ243 (12 days). GHQ168 was further assessed in the early-treatment model (2 applications/day on day 1-4 after infection) and again a statistically significant improvement of MSD (32 days (end of observation period) versus 7 days) was observed. Finally, exciting antitrypanosomal efficacy for the spray dried formulation of GHQ168 was demonstrated. NADPH oxidases (NOX) were found to be the main source of endothelial reactive oxygen species (ROS) formation. Chapter III reports on the formulation studies on triazolopyrimidine derivatives from the VAS library, a set of NADPH oxidase inhibitors. These were developed for the treatment of elevated ROS levels, which contribute to the development of cardiovascular diseases. Although in vitro results from numerous studies indicated promising efficacy and selectivity for the VAS-compounds, the low water solubility impeded the in vivo translation and further preclinical development. For this reason, three derivatives, VAS2870, VAS3947, and VAS4024 were physico-chemically characterized and VAS3947, the most soluble compound, was selected for further formulation studies. These approaches included (I) spray drying, (II) microemulsification and (III) complexation with cyclodextrins in order to develop formulations for oral and parenteral application. Solubility improvement of VAS3947 was successfully demonstrated for all preparations as expressed by supersaturation ratios in comparison to the solubility of the unformulated compound. For seven spray dried formulations, the ratio ranged from 3-9, and the ratio for four microemulsions was 8-19 after 120 min, respectively. The six cyclodextrin formulations achieved the highest supersaturation ratio between 3 and 174 after 20 hours. NMR measurements elucidated the inclusion of VAS3947 within the CD's cavity as well as the interaction with its outer surface. Ultimately, NOX inhibitors were opened for oral and parenteral administration for the first time. After successful solubility improvement of VAS3947, further investigations towards in vivo studies were conducted including stability studies with a focus on stability in solution and in plasma as presented in chapter IV. Furthermore, permeability and cytotoxicity assays were performed for the first time. It turned out that VAS3947 was instable in buffer and when exposed to light. Moreover, the compound showed decomposition in the presence of mouse microsomes and in human plasma. The VAS compounds contain an oxazol moiety linked to the triazolopyrimidine skeleton via a thioether. This structural element is responsible for the efficacy of the compound class, however it is susceptible to hydrolysis and to further degradation reactions. Moreover, VAS3947 harmed membrane integrity in the cell permeability assays and cytotoxicity investigations in HEK-293 and HEP-G2 cells revealed IC50 values in the same concentration range as reported for efficacy assays. Summarized, it was demonstrated that substances from the VAS library were no appropriate model compounds for ROS investigations nor suitable candidates for further preclinical development.}, subject = {L{\"o}slichkeit}, language = {en} } @phdthesis{Wiedenmann2018, author = {Wiedenmann, Jonas}, title = {Induced topological superconductivity in HgTe based nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162782}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I -V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3-4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3-4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems.}, subject = {Quecksilbertellurid}, language = {en} }