@phdthesis{Bemm2018, author = {Bemm, Felix Mathias}, title = {Genetic foundation of unrivaled survival strategies - Of water bears and carnivorous plants -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {All living organisms leverage mechanisms and response systems to optimize reproduction, defense, survival, and competitiveness within their natural habitat. Evolutionary theories such as the universal adaptive strategy theory (UAST) developed by John Philip Grime (1979) attempt to describe how these systems are limited by the trade-off between growth, maintenance and regeneration; known as the universal three-way trade-off. Grime introduced three adaptive strategies that enable organisms to coop with either high or low intensities of stress (e.g., nutrient deficiency) and environmental disturbance (e.g., seasons). The competitor is able to outcompete other organisms by efficiently tapping available resources in environments of low intensity stress and disturbance (e.g., rapid growers). A ruderal specism is able to rapidly complete the life cycle especially during high intensity disturbance and low intensity stress (e.g., annual colonizers). The stress tolerator is able to respond to high intensity stress with physiological variability but is limited to low intensity disturbance environments. Carnivorous plants like D. muscipula and tardigrades like M. tardigradum are two extreme examples for such stress tolerators. D. muscipula traps insects in its native habitat (green swamps in North and South Carolina) with specialized leaves and thereby is able to tolerate nutrient deficient soils. M. tardigradum on the other side, is able to escape desiccation of its terrestrial habitat like mosses and lichens which are usually covered by a water film but regularly fall completely dry. The stress tolerance of the two species is the central study object of this thesis. In both cases, high througput sequencing data and methods were used to test for transcriptomic (D. muscipula) or genomic adaptations (M. tardigradum) which underly the stress tolerance. A new hardware resource including computing cluster and high availability storage system was implemented in the first months of the thesis work to effectively analyze the vast amounts of data generated for both projects. Side-by-side, the data management resource TBro [14] was established together with students to intuitively approach complex biological questions and enhance collaboration between researchers of several different disciplines. Thereafter, the unique trapping abilities of D. muscipula were studied using a whole transcriptome approach. Prey-dependent changes of the transcriptional landscape as well as individual tissue-specific aspects of the whole plant were studied. The analysis revealed that non-stimulated traps of D. muscipula exhibit the expected hallmarks of any typical leaf but operates evolutionary conserved stress-related pathways including defense-associated responses when digesting prey. An integrative approach, combining proteome and transcriptome data further enabled the detailed description of the digestive cocktail and the potential nutrient uptake machinery of the plant. The published work [25] as well as a accompanying video material (https://www.eurekalert.org/pub_releases/ 2016-05/cshl-fgr042816.php; Video credit: S{\"o}nke Scherzer) gained global press coverage and successfully underlined the advantages of D. muscipula as experimental system to understand the carnivorous syndrome. The analysis of the peculiar stress tolerance of M. tardigradum during cryptobiosis was carried out using a genomic approach. First, the genome size of M. tardigradum was estimated, the genome sequenced, assembled and annotated. The first draft of M. tardigradum and the workflow used to established its genome draft helped scrutinizing the first ever released tardigrade genome (Hypsibius dujardini) and demonstrated how (bacterial) contamination can influence whole genome analysis efforts [27]. Finally, the M. tardigradum genome was compared to two other tardigrades and all species present in the current release of the Ensembl Metazoa database. The analysis revealed that tardigrade genomes are not that different from those of other Ecdysozoa. The availability of the three genomes allowed the delineation of their phylogenetic position within the Ecdysozoa and placed them as sister taxa to the nematodes. Thereby, the comparative analysis helped to identify evolutionary trends within this metazoan lineage. Surprisingly, the analysis did not reveal general mechanisms (shared by all available tardigrade genomes) behind the arguably most peculiar feature of tardigrades; their enormous stress tolerance. The lack of molecular evidence for individual tardigrade species (e.g., gene expression data for M. tardigradum) and the non-existence of a universal experimental framework which enables hypothesis testing withing the whole phylum Tardigrada, made it nearly impossible to link footprints of genomic adaptations to the unusual physiological capabilities. Nevertheless, the (comparative) genomic framework established during this project will help to understand how evolution tinkered, rewired and modified existing molecular systems to shape the remarkable phenotypic features of tardigrades.}, subject = {B{\"a}rtierchen}, language = {en} } @phdthesis{Langhammer2018, author = {Langhammer, Romy}, title = {Metabolomic Imaging for Human Prostate Cancer Detection using MR Spectroscopy at 7T}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165772}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {BACKGROUND. Prostate cancer (PCa) remains a major health concern in men of the Western World. However, we still lack effective diagnostic tools a) for an effective screening with both high sensitivity and specificity, b) to guide biopsies and avoid histology sampling errors and c) to predict tumor aggressiveness in order to avoid overtreatment. Therefore, a more reliable, highly cancer-specific and ideally in vivo approach is needed. The present study has been designed in order to further develop and test the method of "metabolomic imaging" using magnetic resonance spectroscopy (MRS) at 7T to address those challenges. METHODS. Thirty whole prostates with biopsy-proven PCa were in vitro analyzed with a 7T human MR scanner. A voxel grid containing the spectral information was overlaid with the MR image of the middle transverse cross-sectional plane of each case. Subsequent histopathological evaluation of the prostate specimen followed. After the spectral output was processed, all voxels were compared with a metabolomic PCa profile, which had been established within a preliminary study, in order to create a metabolomic map indicating MRS cancer-suspicious regions. Those regions were compared with the histologically identified tumor lesions regarding location. RESULTS. Sixty-one percent of the histological cancer lesions were detected by metabolomic imaging. Among the cases with PCa on the examined slice, 75\% were identified as cancerous. None of the tested features significantly differed between detected and undetected cancer lesions. A defined "Malignancy Index" (MI) significantly differentiated between MRS-suspicious lesions corresponding with a histological cancer lesion and benign lesions (p = 0.006) with an overall accuracy of 70\%. The MI furthermore showed a positive correlation with the Gleason grade (p = 0.021). CONCLUSION. A new approach within PCa diagnostics was developed with spectral analysis including the whole measureable metabolome - referred to as "metabolomics" - rather than focusing on single metabolites. The MI facilitates precise tumor detection and may additionally serve as a marker for tumor aggressiveness. Metabolomic imaging might contribute to a highly cancer-specific in vivo diagnostic protocol for PCa.}, subject = {Prostatakrebs}, language = {en} } @phdthesis{Eichhorn2018, author = {Eichhorn, Antonius}, title = {Copper(I) catalyzed borylation and cross-coupling reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present thesis comprises synthesis and stoichiometric model reactions of well-defined NHC-stabilized copper(I) complexes (NHC = N-heterocyclic carbene) in order to understand their basic reactivity in borylation and cross-coupling reactions. This also includes the investigations of the reactivity of the ligands used (NHCs and CaaCs = cyclic alkyl(amino)carbenes) with the substrates, i.e. diboron(4) esters and arylboronates, which are addressed in the second part of the thesis.}, subject = {Copper}, language = {en} } @phdthesis{Botrel2018, author = {Botrel, Loic}, title = {Brain-computer interfaces (BCIs) based on sensorimotor rhythms - Evaluating practical interventions to improve their performance and reduce BCI inefficiency}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168110}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Brain computer interfaces based on sensorimotor rhythms modulation (SMR-BCIs) allow people to emit commands to an interface by imagining right hand, left hand or feet movements. The neurophysiological activation associated with those specific mental imageries can be measured by electroencephalography and detected by machine learning algorithms. Improvements for SMR-BCI accuracy in the last 30 years seem to have reached a limit. The currrent main issue with SMR-BCIs is that between 15\% to 30\% cannot use the BCI, called the "BCI inefficiency" issue. Alternatively to hardware and software improvements, investigating the individual characteristics of the BCI users has became an interesting approach to overcome BCI inefficiency. In this dissertation, I reviewed existing literature concerning the individual sources of variation in SMR-BCI accuracy and identified generic individual characteristics. In the empirical investigation, attention and motor dexterity predictors for SMR-BCI performance were implemented into a trainings that would manipulate those predictors and lead to higher SMR-BCI accuracy. Those predictors were identified by Hammer et al. (2012) as the ability to concentrate (associated with relaxation levels) and "mean error duration" in a two-hand visuo-motor coordination task (VMC). Prior to a SMR-BCI session, a total of n=154 participants in two locations took part of 23 min sessions of either Jacobson's Progressive Muscle Relaxation session (PMR), a VMC session, or a control group (CG). No effect of PMR or VMC manipulation was found, but the manipulation checks did not consistently confirm whether PMR had an effect of relaxation levels and VMC on "mean error duration". In this first study, correlations between relaxation levels or "mean error duration" and accuracy were found but not in both locations. A second study, involving n=39 participants intensified the training in four sessions on four consecutive days or either PMR, VMC or CG. The effect or manipulation was assessed for in terms of a causal relationship by using a PRE-POST study design. The manipulation checks of this second study validated the positive effect of training on both relaxation and "mean error duration". But the manipulation did not yield a specific effect on BCI accuracy. The predictors were not found again, displaying the instability of relaxation levels and "mean error duration" in being associated with BCI performance. An effect of time on BCI accuracy was found, and a correlation between State Mindfulness Scale and accuracy were reported. Results indicated that a short training of PMR or VMC were insufficient in increasing SMR-BCI accuracy. This study contrasted with studies succeeding in increasing SMR-BCI accuracy Tan et al. (2009, 2014), by the shortness of its training and the relaxation training that did not include mindfulness. It also contrasted by its manipulation checks and its comprehensive experimental approach that attempted to replicate existing predictors or correlates for SMR-BCI accuracy. The prediction of BCI accuracy by individual characteristics is receiving increased attention, but requires replication studies and a comprehensive approach, to contribute to the growing base of evidence of predictors for SMR-BCI accuracy. While short PMR and VMC trainings could not yield an effect on BCI performance, mindfulness meditation training might be beneficial for SMR-BCI accuracy. Moreover, it could be implemented for people in the locked-in-syndrome, allowing to reach the end-users that are the most in need for improvements in BCI performance.}, subject = {Gehirn-Computer-Schnittstelle}, language = {en} } @phdthesis{Munzert2018, author = {Munzert, Stefanie Martina}, title = {Coordination of dynamic metallosupramolecular polymers (MEPEs)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene. Due to the high association constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, the kinetics of coordination and the kinetics of growth of MEPEs are presented. The species in solutions are analyzed by stopped-flow fluorescence spectroscopy, light scattering, viscometry and cryogenic transmission electron microscopy. At near-stoichiometric amounts of the reactants, high molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. Furthermore, a way is presented to adjust the average molar mass, chain-length and viscosity of MEPEs using the monotopic chain stopper 4'-(phenyl)-2,2':6',2''-terpyridine.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Zenk2018, author = {Zenk, Markus}, title = {On Numerical Methods for Astrophysical Applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Approximation der L{\"o}sungen von Modellen zur Beschreibung des Str{\"o}mungsverhaltens in Atmosph{\"a}ren. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bez{\"u}glich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die L{\"o}sungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von L{\"o}sungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualit{\"a}t der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine m{\"o}glichst hohe Approximationsg{\"u}te zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gew{\"u}nschte Qualit{\"a}t zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualit{\"a}t der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in W{\"u}rzburg und Prof. R{\"o}pke des Astrophysikalischen Instituts in W{\"u}rzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosph{\"a}ren zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata f{\"u}hrt. Diese erlauben genaue Approximationen von L{\"o}sungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Str{\"o}mungen bei kleinen Mach Zahlen. Es ist bekannt, dass L{\"o}sungen der kompressiblen Euler Gleichungen zu L{\"o}sungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema f{\"a}llt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zus{\"a}tzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabh{\"a}ngig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann L{\"o}ser f{\"u}r die Approximation der L{\"o}sungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata f{\"u}r die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest L{\"o}sungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgef{\"u}hrt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations L{\"o}ser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzul{\"o}sen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen L{\"o}sungen zu. Es wird jedoch gezeigt, dass das neue Schema f{\"u}r eine große Klasse dieser L{\"o}sungen die well-balanced Eigenschaft besitzt. F{\"u}r bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erh{\"a}lt die Positivit{\"a}t der Masse und Energie, und stabil bez{\"u}glich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst f{\"u}r Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema f{\"u}r bestimmte Parameter robust ist. Eine Stabilit{\"a}t wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Fl{\"u}ssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosph{\"a}ren zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilit{\"a}t werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgef{\"u}hrt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzul{\"o}sen als vor der Anpassung. Das Kapitel 7 besch{\"a}ftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate k{\"o}nnen nicht pr{\"a}sentiert werden. Es wird aufgezeigt, wo sich die Schw{\"a}chen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht.}, subject = {Str{\"o}mung}, language = {en} } @phdthesis{Poerner2018, author = {P{\"o}rner, Frank}, title = {Regularization Methods for Ill-Posed Optimal Control Problems}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-086-3 (Print)}, doi = {10.25972/WUP-978-3-95826-087-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163153}, school = {W{\"u}rzburg University Press}, pages = {xiii, 166}, year = {2018}, abstract = {This thesis deals with the construction and analysis of solution methods for a class of ill-posed optimal control problems involving elliptic partial differential equations as well as inequality constraints for the control and state variables. The objective functional is of tracking type, without any additional \(L^2\)-regularization terms. This makes the problem ill-posed and numerically challenging. We split this thesis in two parts. The first part deals with linear elliptic partial differential equations. In this case, the resulting solution operator of the partial differential equation is linear, making the objective functional linear-quadratic. To cope with additional control constraints we introduce and analyse an iterative regularization method based on Bregman distances. This method reduces to the proximal point method for a specific choice of the regularization functional. It turns out that this is an efficient method for the solution of ill-posed optimal control problems. We derive regularization error estimates under a regularity assumption which is a combination of a source condition and a structural assumption on the active sets. If additional state constraints are present we combine an augmented Lagrange approach with a Tikhonov regularization scheme to solve this problem. The second part deals with non-linear elliptic partial differential equations. This significantly increases the complexity of the optimal control as the associated solution operator of the partial differential equation is now non-linear. In order to regularize and solve this problem we apply a Tikhonov regularization method and analyse this problem with the help of a suitable second order condition. Regularization error estimates are again derived under a regularity assumption. These results are then extended to a sparsity promoting objective functional.}, subject = {Optimale Steuerung}, language = {en} } @phdthesis{Namal2018, author = {Namal, Imge}, title = {Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162393}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In order to shrink the size of semiconductor devices and improve their efficiency at the same time, silicon-based semiconductor devices have been engineered, until the material almost reaches its performance limits. As the candidate to be used next in semiconducting devices, single-wall carbon nanotubes show a great potential due to their promise of increased device efficiency and their high charge carrier mobilities in the nanometer size active areas. However, there are material based problems to overcome in order to imply SWNTs in the semiconductor devices. SWNTs tend to aggregate in bundles and it is not trivial to obtain an electronically or chirally homogeneous SWNT dispersion and when it is done, a homogeneous thin film needs to be produced with a technique that is practical, easy and scalable. This work was aimed to solve both of these problems. In the first part of this study, six different polymers, containing fluorene or carbazole as the rigid part and bipyridine, bithiophene or biphenyl as the accompanying copolymer unit, were used to selectively disperse semiconducting SWNTs. With the data obtained from absorption and photoluminescence spectroscopy of the corresponding dispersions, it was found out that the rigid part of the copolymer plays a primary role in determining its dispersion efficiency and electronic sorting ability. Within the two tested units, carbazole has a higher π electron density. Due to increased π-π interactions, carbazole containing copolymers have higher dispersion efficiency. However, the electronic sorting ability of fluorene containing polymers is superior. Chiral selection of the polymers in the dispersion is not directly foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw material in combination to the preferred polymer. Next, one of the best performing polymers due to high chirality enrichment and electronic sorting ability was chosen in order to disperse SWNTs. Thin films of varying thickness between 18 ± 5 to 755o±o5 nm were prepared using vacuum filtration wet transfer method in order to analyze them optically and electronically. The scalability and efficiency of the integrated thin film production method were shown using optical, topographical and electronic measurements. The relative photoluminescence quantum yield of the radiative decay from the SWNT thin films was found to be constant for the thickness scale. Constant roughness on the film surface and linearly increasing concentration of SWNTs were also supporting the scalability of this thin film production method. Electronic measurements on bottom gate top contact transistors have shown an increasing charge carrier mobility for linear and saturation regimes. This was caused by the missing normalization of the mobility for the thickness of the active layer. This emphasizes the importance of considering this dimension for comparison of different field effect transistor mobilities.}, subject = {Feldeffekttransistor}, language = {en} } @phdthesis{Pirner2018, author = {Pirner, Marlies}, title = {Kinetic modelling of gas mixtures}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-080-1 (Print)}, doi = {10.25972/WUP-978-3-95826-081-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161077}, school = {W{\"u}rzburg University Press}, pages = {xi, 222}, year = {2018}, abstract = {This book deals with the kinetic modelling of gas mixtures. It extends the existing literature in mathematics for one species of gas to the case of gasmixtures. This is more realistic in applications. Thepresentedmodel for gas mixtures is proven to be consistentmeaning it satisfies theconservation laws, it admitsanentropy and an equilibriumstate. Furthermore, we can guarantee the existence, uniqueness and positivity of solutions. Moreover, the model is used for different applications, for example inplasma physics, for fluids with a small deviation from equilibrium and in the case of polyatomic gases.}, subject = {Polyatomare Verbindungen}, language = {en} } @phdthesis{Gador2018, author = {Gador, Eva}, title = {Strategies to improve the biological performance of protein therapeutics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161798}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {199}, year = {2018}, abstract = {During the last decades the number of biologics increased dramatically and several biopharmaceutical drugs such as peptides, therapeutic proteins, hormones, enzymes, vaccines, monoclonal antibodies and antibody-drug conjugates conquered the market. Moreover, administration and local delivery of growth factors has gained substantial importance in the field of tissue engineering. Despite progress that has been made over the last decades formulation and delivery of therapeutic proteins is still a challenge. Thus, we worked on formulation and delivery strategies of therapeutic proteins to improve their biological performance. Phase I of this work deals with protein stability with the main focus on a liquid protein formulation of the dimeric fusion protein PR-15, a lesion specific platelet adhesion inhibitor. In order to develop an adequate formulation ensuring the stability and bioactivity of PR-15 during storage at 4 °C, a pH screening, a forced degradation and a Design of Experiments (DoE) was performed. First the stability and bioactivity of PR-15 in 50 mM histidine buffer in relation to pH was evaluated in a short-term storage stability study at 25 °C and 40 °C for 4 and 8 weeks using different analytical methods. Additionally, potential degradation pathways of PR-15 were investigated under stressed conditions such as heat treatment, acidic or basic pH, freeze-thaw cycles, light exposure, induced oxidation and induced deamidation during the forced degradation study. Moreover, we were able to identify the main degradation product of PR-15 by performing LC/ESI-MS analysis. Further optimization of the injectable PR 15 formulation concerning pH, the choice of buffer and the addition of excipients was studied in the following DoE and finally an optimal PR-15 formulation was found. The growth factors BMP-2, IGF-I and TGF-β3 were selected for the differentiation of stem cells for tissue engineering of cartilage and bone in order to prepare multifunctionalized osteochondral implants for the regeneration of cartilage defects. Silk fibroin (SF) was chosen as biomaterial because of its biocompatibility, mechanical properties and its opportunity for biofunctionalization. Ideal geometry of SF scaffolds with optimal porosity was found in order to generate both tissues on one scaffold. The growth factors BMP-2 and IGF-I were modified to allow spatially restricted covalent immobilization on the generated porous SF scaffolds. In order to perform site-directed covalent coupling by the usage of click chemistry on two opposite sides of the scaffold, we genetically engineered BMP-2 (not shown in this work; performed by Barbara Tabisz) and IGF-I for the introduction of alkyne or azide bearing artificial amino acids. TGF β3 was immobilized to beads through common EDC/NHS chemistry requiring no modification and distributed in the pores of the entire scaffold. For this reason protein modification, protein engineering, protein immobilization and bioconjugation are investigated in phase II. Beside the synthesis the focus was on the characterization of such modified proteins and its conjugates. The field of protein engineering offers a wide range of possibilities to modify existing proteins or to design new proteins with prolonged serum half-life, increased conformational stability or improved release rates according to their clinical use. Site-directed click chemistry and non-site-directed EDC/NHS chemistry were used for bioconjugation and protein immobilization with the aim to underline the preferences of site-directed coupling. We chose three strategies for the incorporation of alkyne or azide functionality for the performance of click reaction into the protein of interest: diazonium coupling reaction, PEGylation and genetic engineering. Azido groups were successfully introduced into SF by implementation of diazonium coupling and alkyne, amino or acid functionality was incorporated into FGF-2 as model protein by means of thiol PEGylation. The proper folding of FGF-2 after PEGylation was assessed by fluorescence spectroscopy, WST-1 proliferation assay ensured moderate bioactivity and the purity of PEGylated FGF-2 samples was monitored with RP-HPLC. Moreover, the modification of native FGF-2 with 10 kDa PEG chains resulted in enhanced thermal stability. Additionally, we genetically engineered one IGF-I mutant by incorporating the unnatural amino acid propargyl-L-lysine (plk) at position 65 into the IGF-I amino acid sequence and were able to express hardly verifiable amounts of plk-IGF-I. Consequently, plk-IGF-I expression has to be further optimized in future studies in order to generate plk-IGF-I with higher yields. Bioconjugation of PEGylated FGF-2 with functionalized silk was performed in solution and was successful for click as well as EDC/NHS chemistry. However, substantial amounts of unreacted PEG-FGF-2 were adsorbed to SF and could not be removed from the reaction mixture making it impossible to expose the advantages of click chemistry in relation to EDC/NHS chemistry. The immobilization of PEG-FGF-2 to microspheres was a trial to increase product yield and to remove unreacted PEG-FGF-2 from reaction mixture. Bound PEG-FGF-2 was visualized by fluorescence imaging or flow cytometry and bioactivity was assessed by analysis of the proliferation of NIH 3T3 cells. However, immobilization on beads raised the same issue as in solution: adsorption caused by electrostatic interactions of positively charged FGF-2 and negatively charged SF or beads. Finally, we were not able to prove superiority of site-directed click chemistry over non-site-directed EDC/NHS. The skills and knowledge in protein immobilization as well as protein characterization acquired during phase II helped us in phase III to engineer cartilage tissue in biofunctionalized SF scaffolds. The approach of covalent immobilization of the required growth factors is relevant because of their short in vivo half-lives and aimed at controlling their bioavailability. So TGF-β3 was covalently coupled by means of EDC/NHS chemistry to biocompatible and biostable PMMA beads. Herein, we directly compared bioactivity of covalently coupled and adsorbed TGF-β3. During the so-called luciferase assay bioactivity of covalent coupled as well as adsorbed TGF-β3 on PMMA beads was ensured. In order to investigate the real influence of EDC/NHS chemistry on TGF-β3's bioactivity, the amount of immobilized TGF-β3 on PMMA beads was determined. Therefore, an ELISA method was established. The assessment of total amount of TGF-β3 immobilized on the PMMA beads allowed as to calculate coupling efficiency. A significantly higher coupling efficiency was determined for the coupling of TGF-β3 via EDC/NHS chemistry compared to the reaction without coupling reagents indicating a small amount of adsorbed TGF-β3. These results provide opportunity to determine the consequence of coupling by means of EDC/NHS chemistry for TGF β3 bioactivity. At first sight, no statistically significant difference between covalent immobilized and adsorbed TGF-β3 was observed regarding relative luciferase activities. But during comparison of total and active amount of TGF-β3 on PMMA beads detected by ELISA or luciferase assay, respectively, a decrease of TGF-β3's bioactivity became apparent. Nevertheless, immobilized TGF β3 was further investigated in combination with SF scaffolds in order to drive BMSCs to the chondrogenic lineage. According to the results obtained through histological and immunohistochemical studies, biochemical assays as well as qRT-PCR of gene expression from BMSCs after 21 days in culture immobilized TGF-β3 was able to engineer cartilage tissue. These findings support the thesis that local presentation of TGF β3 is superior towards exogenous TGF β3 for the development of hyaline cartilage. Furthermore, we conclude that covalent immobilized TGF β3 is not only superior towards exogenously supplemented TGF-β3 but also superior towards adsorbed TGF-β3 for articular hyaline cartilage tissue engineering. Diffusion processes were inhibited through covalent immobilization of TGF-β3 to PMMA beads and thereby a stable and consistent TGF-β3 concentration was maintained in the target area. With the knowledge acquired during phase II and III as well as during the studies of Barbara Tabisz concerning the expression and purification of plk-BMP-2 we made considerable progress towards the formation of multifunctionalized osteochondral implants for the regeneration of cartilage defects. However, further studies are required for the translation of these insights into the development of multifunctionalized osteochondral SF scaffolds.}, subject = {biologics}, language = {en} } @phdthesis{AlvarezLoeblich2018, author = {Alvarez Loeblich, Paul Sebastian}, title = {Not Here, Not Now!
 - Situational Appropriateness, Negative Affect and the Experience of (Remote) Embarrassment. A Process Model.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fremdsch{\"a}men or Fremdscham, a negative emotion which arises while observing someone behave inappropriately, comes to fame after the turn of the millennium in german speaking countries. There, they name it literally „other's shame" and it becomes obvious that this emotion happens most commonly while watching TV: reality shows, talent shows and bad comedies. The word even makes it to the dictionaries starting 2009, as its use increases unstoppably in everyday language, starting to get used in more and more situations, seemingly as a synonym of embarrassing or shameful. Still, a look in the emotional research on the subject returns exactly zero results as of 2011, leaving open the question as of what this emotion might be, and what it is not. The present wort aims at explaining not only the phenomenon of Fremdsch{\"a}men, but also the Emotion behind it - Embarrassment -, at a process level.}, subject = {Sozialpsychologie}, language = {en} } @phdthesis{Bolze2018, author = {Bolze, Tom}, title = {Photodynamics of a fluorescent tetrazolium salt and shaping of femtosecond Laguerre-Gaussian laser modes in time and space}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis will outline studies performed on the fluorescence dynamics of phenyl-benzo- [c]-tetrazolo-cinnolium chloride (PTC) in alcoholic solutions with varying viscosity using time-resolved fluoro-spectroscopic methods. Furthermore, the properties of femtosecond Laguerre-Gaussian (LG) laser pulses will be investigated with respect to their temporal and spatial features and an approach will be developed to measure and control the spatial intensity distribution on the time scale of the pulse. Tetrazolium salts are widely used in biological assays for their low oxidation and reduction thresholds and spectroscopic properties. However, a neglected feature in these applications is the advantage that detection of emitted light has over the determination of the absorbance. To corroborate this, PTC as one of the few known fluorescent tetrazolium salts was investigated with regard to its luminescent features. Steady-state spectroscopy revealed how PTC can be formed by a photoreaction from 2,3,5-triphenyl-tetrazolium chloride (TTC) and how the fluorescence quantum yield behaved in alcoholic solvents with different viscosity. In the same array of solvents time correlated single photon counting (TCSPC) measurements were performed and the fluorescence decay was investigated. Global analysis of the results revealed different dynamics in the different solvents, but although the main emission constant did change with the solvent, taking the fluorescence quantum yield into consideration resulted in an independence of the radiative rate from the solvent. The non-radiative rate, however, was highly solvent dependent and responsible for the observed solvent-related changes in the fluorescence dynamics. Further studies with the increased time resolution of femtosecond fluorescence upconversion revealed an independence of the main emission constant from the excitation energy, however the dynamics of the cooling processes prior to emission were prolonged for higher excitation energy. This led to a conceivable photoreaction scheme with one emissive state with a competing non-radiative relaxation channel, that may involve an intermediate state. LG laser beams and their properties have seen a lot of scientific attention over the past two decades. Also in the context of new techniques pushing the limit of technology further to explore new phenomena, it is essential to understand the features of this beam class and check the consistency of the findings with theoretical knowledge. The mode conversion of a Hermite-Gaussian (HG) mode into a LG mode with the help of a spiral phase plate (SPP) was investigated with respect to its space-time characteristics. It was found that femtosecond LG and HG pulses of a given temporal duration share the same spectrum and can be characterized using the same well-established methods. The mode conversion proved to only produce the desired LG mode with its characteristic orbital angular momentum (OAM), that is conserved after frequency doubling the pulse. Furthermore, it was demonstrated that temporal shaping of the HG pulse does not alter the result of its mode-conversion, as three completely different temporal pulse shapes produced the same LG mode. Further attention was given to the sum frequency generation of fs LG beams and dynamics of the interference of a HG and a LG pulse. It was found that if both are chirped with inverse signs the spatial intensity distribution does rotate around the beam axis on the time scale of the pulse. A strategy was found that would enable a measurement of these dynamics by upconversion of the interference with a third gate pulse. The results of which are discussed theoretically and an approach of an experimental realization had been made. The simulated findings had only been reproduced to a limited extend due to experimental limitations, especially the interferometric stability of the setup.}, subject = {Tetrazoliumsalze}, language = {en} } @phdthesis{Bischler2018, author = {Bischler, Thorsten David}, title = {Data mining and software development for RNA-seq-based approaches in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {RNA sequencing (RNA-seq) has in recent years become the preferred method for gene expression analysis and whole transcriptome annotation. While initial RNA-seq experiments focused on eukaryotic messenger RNAs (mRNAs), which can be purified from the cellular ribonucleic acid (RNA) pool with relative ease, more advanced protocols had to be developed for sequencing of microbial transcriptomes. The resulting RNA-seq data revealed an unexpected complexity of bacterial transcriptomes and the requirement for specific analysis methods, which in many cases is not covered by tools developed for processing of eukaryotic data. The aim of this thesis was the development and application of specific data analysis methods for different RNA-seq-based approaches used to gain insights into transcription and gene regulatory processes in prokaryotes. The differential RNA sequencing (dRNA-seq) approach allows for transcriptional start site (TSS) annotation by differentiating between primary transcripts with a 5'-triphosphate (5'-PPP) and processed transcripts with a 5'-monophosphate (5'-P). This method was applied in combination with an automated TSS annotation tool to generate global trancriptome maps for Escherichia coli (E. coli) and Helicobacter pylori (H. pylori). In the E. coli study we conducted different downstream analyses to gain a deeper understanding of the nature and properties of transcripts in our TSS map. Here, we focused especially on putative antisense RNAs (asRNAs), an RNA class transcribed from the opposite strand of known protein-coding genes with the potential to regulate corresponding sense transcripts. Besides providing a set of putative asRNAs and experimental validation of candidates via Northern analysis, we analyzed and discussed different sources of variation in RNA-seq data. The aim of the H. pylori study was to provide a detailed description of the dRNA-seq approach and its application to a bacterial model organism. It includes information on experimental protocols and requirements for data analysis to generate a genome-wide TSS map. We show how the included TSS can be used to identify and analyze transcriptome and regulatory features and discuss challenges in terms oflibrary preparation protocols, sequencing platforms, and data analysis including manual and automated TSS annotation. The TSS maps and associated transcriptome data from both H. pylori and E. coli were made available for visualization in an easily accessible online browser. Furthermore, a modified version of dRNA-seq was used to identify transcriptome targets of the RNA pyrophosphohydrolase (RppH) in H. pylori. RppH initiates 5'-end-dependent degradation of transcripts by converting the 5'-PPP of primary transcripts to a 5'-P. I developed an analysis method, which uses data from complementary DNA (cDNA) libraries specific for transcripts carrying a 5'-PPP, 5'-P or both, to specifically identify transcripts modified by RppH. For this, the method assessed the 5'-phosphorylation state and cellular concentration of transcripts in rppH deletion in comparison to strains with the intact gene. Several of the identified potential RppH targets were further validated via half-life measurements and quantification of their 5'-phosphorylation state in wild-type and mutant cells. Our findings suggest an important role for RppH in post-transcriptional gene regulationin H. pylori and related organisms. In addition, we applied two RNA-seq -based approaches, RNA immunoprecipitation followed by sequencing (RIP-seq) and cross-linking immunoprecipitation followed by sequencing (CLIP-seq), to identify transcripts bound by Hfq and CsrA, two RNA-binding proteins (RBPs) with an important role in post-transcriptional regulation. For RIP-seq -based identification of CsrA binding regions in Campylobacter jejuni(C. jejuni), we used annotation-based analysis and, in addition, a self-developed peak calling method based on a sliding window approach. Both methods revealed flaA mRNA, encoding the major flagellin, as the main target and functional analysis of identified targets showed a significant enrichment of genes involved in flagella biosynthesis. Further experimental analysis revealed the role of flaA mRNA in post-transcriptional regulation. In comparison to RIP-seq, CLIP-seq allows mapping of RBP binding sites with a higher resolution. To identify these sites an approach called "block-based peak calling" was developed and resulting peaks were used to identify sequence and structural constraints required for interaction of Hfq and CsrA with Salmonella transcripts. Overall, the different RNA-seq-based approaches described in this thesis together with their associated analyis pipelines extended our knowledge on the transcriptional repertoire and modes of post-transcriptional regulation in bacteria. The global TSS maps, including further characterized asRNA candidates, putative RppH targets, and identified RBP interactomes will likely trigger similar global studies in the same or different organisms or will be used as a resource for closer examination of these features.}, subject = {Bakterien}, language = {en} } @phdthesis{Braun2018, author = {Braun, Alexandra Carolin}, title = {Bioresponsive delivery of anticatabolic and anabolic agents for muscle regeneration using bioinspired strategies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169047}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Progressive loss of skeletal muscle mass, strength and function poses a major threat to independence and quality of life, particularly in the elderly. To date, sarcopenia therapy consists of resistance exercise training in combination with protein supplementation due to the limited efficacy of available pharmacological options in counteracting the effects of muscle wasting. Therapeutic intervention with growth factors including insulin-like growth factor I (IGF-I) or inhibitors of myostatin  a potent suppressor of myogenesis  hold potential to rebalance the altered activity of anabolic and catabolic cytokines. However, dosing limitations due to acute side effects and disruptions of the homeostasis have so far precluded clinical application. Intending to provide a therapy with a superior safety and efficacy profile by directing drug release to inflamed tissue and minimizing off-target activity, we designed bioresponsive delivery systems for an anti-catabolic peptide and anabolic IGF-I responding to local flares of muscle wasting. In Chapter I, current concepts for bioorthogonal conjugation methods are discussed and evaluated based on various drug delivery applications. With a focus on protein delivery, challenges and potential pitfalls of each chemical and enzymatic conjugation strategy are analyzed and opportunities regarding their use for coupling of biomolecules are given. Based on various studies conjugating proteins to polymers, particles and biomaterials using different site-directed approaches, the chapter summarizes available strategies and highlights certain aspects requiring particular consideration when applied to biomolecules. Finally, a decision process for selection of an optimum conjugation strategy is exemplarily presented. Three of these bioorthogonal coupling reactions are applied in Chapter II detailing the potential of site-directed conjugation in the development of novel, homogenous drug delivery systems. The chapter describes the design of a delivery system of a myostatin inhibitor (MI) for controlled and local release counteracting myositis flares. MI release from the carrier is driven by increased matrix metalloproteinase (MMP) levels in compromised muscle tissues cleaving the interposed linker, thereby releasing the peptide inhibitor from the particulate carrier. Release experiments were performed to assess the response towards various MMP isoforms (MMP-1, -8, -9 and -13) - as upregulated during skeletal muscle myopathies - and the release pattern of the MI in case of disease progression was analyzed. By selection of the protease-sensitive linker (PSL) showing variable susceptibilities to proteases, release rates of the MI can be controlled and adapted. Immobilized MI as well as released MI as response to MMP upregulation was able to antagonize the effects of myostatin on cell signalling and myoblast differentiation. The approach of designing bioresponsive protein delivery systems was also applied to the anabolic growth factor IGF-I, as described in Chapter III. Numerous studies of PEGylated proteins or peptides reveal, that successful therapy is challenged by safety and efficacy issues, as polymer attachment considerably alters the properties of the biologic, thereby jeopardizing clinical efficacy. To this end, a novel promising approach is presented, intending to exploit beneficial effects of PEGylation on pharmacokinetics, but addressing the pharmacodynamic challenges by releasing the protein upon entering the target tissue. This was realized by integration of a PSL between the PEG moiety and the protein. The soluble polymer conjugate was produced by site-directed, enzymatic conjugation of IGF-I to the PSL, followed by attachment of a 30 kDa-PEG using Strain-promoted azide-alkyne cycloaddition (SPAAC). This strategy illustrates the potential of bioorthogonal conjugation (as described in Chapter I) for generation of homogenous protein-polymer conjugates with reproducible outcome, but also emphasizes the altered protein properties resulting from permanent polymer conjugation. As compared to wild type IGF-I, the PEGylated protein showed considerable changes in pharmacologic effects - such as impaired insulin-like growth factor binding protein (IGFBPs) interactions, submaximal proliferative activity and altered endocytosis patterns. In contrast, IGF-I characteristics were fully restored upon local disintegration of the conjugate triggered by MMP upregulation and release of the natural growth factor. For successful formulation development for the proteins and conjugates, the careful selection of suitable excipients is crucial for a safe and reliable therapy. Chapter IV addresses one aspect by highlighting the chemical heterogeneity of excipients and associated differences in performance. Polysorbate 80 (PS80) is a surfactant frequently used in protein formulations to prevent aggregation and surface adsorption. Despite being widely deployed as a standard excipient, heterogeneous composition and performance entails the risk of eliciting degradation and adverse effects on protein stability. Based on a comprehensive study using different batches of various suppliers, the PS80 products were characterized regarding chemical composition and physicochemical properties, facilitating the assessment of excipient performance in a formulation. Noticeable deviations were recorded between different suppliers as well as between batches of the same suppliers. Correlation of all parameters revealed, that functionality related characteristics (FRCs) could be reliably predicted based on chemical composition alone or by a combination of chemical and physicochemical properties, respectively. In summary, this thesis describes and evaluates novel strategies for the targeted delivery and controlled release of biologics intended to counteract the imbalance of anabolic and catabolic proteins observed during aging and musculoskeletal diseases. Two delivery platforms were developed and characterized in vitro - (i) using anti-catabolic peptides immobilized on a carrier for local delivery and (ii) using soluble IGF-I polymer conjugates for systemic application. Both approaches were implemented by bioorthogonal coupling strategies, which were carefully selected in consideration of limitations, side reactions and efficiency aspects. Bioresponsive release of the active biomolecules following increased protease activity could be successfully realized. The therapeutic potential of these approaches was demonstrated using various cell-based potency assays. The systems allow targeted and controlled release of the growth factor IGF-I and anti-catabolic peptides thereby overcoming safety concerns of current growth factor therapy and thus positively impacting the benefit-risk profile of potent therapeutics. Taking potential heterogeneity and by-product concerns into account, comprehensive excipient characterization was performed and a predictive algorithm for FRCs developed, in order to facilitate formulation design and guarantee a safe and efficient therapy from start to finish.}, subject = {Muskelatrophie}, language = {en} } @phdthesis{Bendias2018, author = {Bendias, Michel Kalle}, title = {Quantum Spin Hall Effect - A new generation of microstructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168214}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-B{\"u}ttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Budig2018, author = {Budig, Benedikt}, title = {Extracting Spatial Information from Historical Maps: Algorithms and Interaction}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-092-4}, doi = {10.25972/WUP-978-3-95826-093-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160955}, school = {W{\"u}rzburg University Press}, pages = {viii, 160}, year = {2018}, abstract = {Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century.}, subject = {Karte}, language = {en} }