@article{MuenstermannStrobelKlosetal.2019, author = {Muenstermann, Marcel and Strobel, Lea and Klos, Andreas and Wetsel, Rick A. and Woodruff, Trent M. and K{\"o}hl, J{\"o}rg and Johswich, Kay O.}, title = {Distinct roles of the anaphylatoxin receptors C3aR, C5aR1 and C5aR2 in experimental meningococcal infections}, series = {Virulence}, volume = {10}, journal = {Virulence}, number = {1}, doi = {10.1080/21505594.2019.1640035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200496}, pages = {677-694}, year = {2019}, abstract = {The complement system is pivotal in the defense against invasive disease caused by Neisseria meningitidis (Nme, meningococcus), particularly via the membrane attack complex. Complement activation liberates the anaphylatoxins C3a and C5a, which activate three distinct G-protein coupled receptors, C3aR, C5aR1 and C5aR2 (anaphylatoxin receptors, ATRs). We recently discovered that C5aR1 exacerbates the course of the disease, revealing a downside of complement in Nme sepsis. Here, we compared the roles of all three ATRs during mouse nasal colonization, intraperitoneal infection and human whole blood infection with Nme. Deficiency of complement or ATRs did not alter nasal colonization, but significantly affected invasive disease: Compared to WT mice, the disease was aggravated in C3ar\(^{-/-}\) mice, whereas C5ar1\(^{-/-}\) and C5ar2\(^{-/-}\) mice showed increased resistance to meningococcal sepsis. Surprisingly, deletion of either of the ATRs resulted in lower cytokine/chemokine responses, irrespective of the different susceptibilities of the mice. This was similar in ex vivo human whole blood infection using ATR inhibitors. Neutrophil responses to Nme were reduced in C5ar1\(^{-/-}\) mouse blood. Upon stimulation with C5a plus Nme, mouse macrophages displayed reduced phosphorylation of ERK1/2, when C5aR1 or C5aR2 were ablated or inhibited, suggesting that both C5a-receptors prime an initial macrophage response to Nme. Finally, in vivo blockade of C5aR1 alone (PMX205) or along with C5aR2 (A8\(^{Δ71-73}\)) resulted in ameliorated disease, whereas neither antagonizing C3aR (SB290157) nor its activation with a "super-agonist" peptide (WWGKKYRASKLGLAR) demonstrated a benefit. Thus, C5aR1 and C5aR2 augment disease pathology and are interesting targets for treatment, whereas C3aR is protective in experimental meningococcal sepsis.}, language = {en} } @article{SpitzelWagnerBreyeretal.2022, author = {Spitzel, Marlene and Wagner, Elise and Breyer, Maximilian and Henniger, Dorothea and Bayin, Mehtap and Hofmann, Lukas and Mauceri, Daniela and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275186}, year = {2022}, abstract = {Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.}, language = {en} } @article{GrimmigMoenchKreckeletal.2016, author = {Grimmig, Tanja and Moench, Romana and Kreckel, Jennifer and Haack, Stephanie and Rueckert, Felix and Rehder, Roberta and Tripathi, Sudipta and Ribas, Carmen and Chandraker, Anil and Germer, Christoph T. and Gasser, Martin and Waaga-Gasser, Ana Maria}, title = {Toll Like Receptor 2, 4, and 9 Signaling Promotes Autoregulative Tumor Cell Growth and VEGF/PDGF Expression in Human Pancreatic Cancer}, series = {International Journal of Molecular Sciences}, volume = {17}, journal = {International Journal of Molecular Sciences}, number = {12}, doi = {10.3390/ijms17122060}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165743}, pages = {2060}, year = {2016}, abstract = {Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of inflammatory cells and cytokine milieu for autoregulative tumor growth signaling in pancreatic cancer. We analyzed the expression of TLR2, -4, and -9 in primary human cancers and their impact on tumor growth via induced activation in several established pancreatic cancers. TLR-stimulated pancreatic cancer cells were specifically investigated for activated signaling pathways of VEGF/PDGF and anti-apoptotic Bcl-xL expression as well as tumor cell growth. The primary pancreatic cancers and cell lines expressed TLR2, -4, and -9. TLR-specific stimulation resulted in activated MAP-kinase signaling, most likely via autoregulative stimulation of demonstrated TLR-induced VEGF and PDGF expression. Moreover, TLR activation prompted the expression of Bcl-xL and has been demonstrated for the first time to induce tumor cell proliferation in pancreatic cancer. These findings strongly suggest that pancreatic cancer cells use specific Toll like receptor signaling to promote tumor cell proliferation and emphasize the particular role of TLR2, -4, and -9 in this autoregulative process of tumor cell activation and proliferation in pancreatic cancer.}, language = {en} } @article{MorbachBeyersdorfKerkauetal.2021, author = {Morbach, Caroline and Beyersdorf, Niklas and Kerkau, Thomas and Ramos, Gustavo and Sahiti, Floran and Albert, Judith and Jahns, Roland and Ertl, Georg and Angermann, Christiane E. and Frantz, Stefan and Hofmann, Ulrich and St{\"o}rk, Stefan}, title = {Adaptive anti-myocardial immune response following hospitalization for acute heart failure}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258907}, pages = {3348-3353}, year = {2021}, abstract = {Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49\%) female, and 24 (51\%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45\%) to F6 (n = 36, 77\%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88\%) compared with patients with reduced ejection fraction (n = 14, 61\%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95\% confidence interval 1.13-20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression.}, language = {en} } @article{RajendranRajendranGiraldoVelasquezetal.2021, author = {Rajendran, Ranjithkumar and Rajendran, Vinothkumar and Giraldo-Velasquez, Mario and Megalofonou, Fevronia-Foivi and Gurski, Fynn and Stadelmann, Christine and Karnati, Srikanth and Berghoff, Martin}, title = {Oligodendrocyte-specific deletion of FGFR1 reduces cerebellar inflammation and neurodegeneration in MOG\(_{35-55}\)-induced EAE}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {17}, issn = {1422-0067}, doi = {10.3390/ijms22179495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284296}, year = {2021}, abstract = {Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS). MS commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs significantly contribute to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are difficult to treat. Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies such as MS. In autopsy tissue from patients with MS, increased expression of FGF1, FGF2, FGF9, and FGFR1 was found in lesion areas. Recent research using mouse models has focused on regions such as the spinal cord, and data on the expression of FGF/FGFR in the cerebellum are not available. In recent EAE studies, we detected that oligodendrocyte-specific deletion of FGFRs results in a milder disease course, less cellular infiltrates, and reduced neurodegeneration in the spinal cord. The objective of this study was to characterize the role of FGFR1 in oligodendrocytes in the cerebellum. Conditional deletion of FGFR1 in oligodendrocytes (Fgfr1\(^{ind-/-}\) was achieved by tamoxifen application, EAE was induced using the MOG\(_{35-55}\) peptide. The cerebellum was analyzed by histology, immunohistochemistry, and western blot. At day 62 p.i., Fgfr1\(^{ind-/-}\) mice showed less myelin and axonal degeneration compared to FGFR1-competent mice. Infiltration of CD3(+) T cells, Mac3(+) cells, B220(+) B cells and IgG(+) plasma cells in cerebellar white matter lesions (WML) was less in Fgfr1\(^{ind-/-}\)mice. There were no effects on the number of OPC or mature oligodendrocytes in white matter lesion (WML). Expression of FGF2 and FGF9 associated with less myelin and axonal degeneration, and of the pro-inflammatory cytokines IL-1β, IL-6, and CD200 was downregulated in Fgfr1\(^{ind-/-}\) mice. The FGF/FGFR signaling protein pAkt, BDNF, and TrkB were increased in Fgfr1\(^{ind-/-}\) mice. These data suggest that cell-specific deletion of FGFR1 in oligodendrocytes has anti-inflammatory and neuroprotective effects in the cerebellum in the EAE disease model of MS.}, language = {en} } @article{SchapovalovaGorlovadeMunteretal.2022, author = {Schapovalova, Olesia and Gorlova, Anna and de Munter, Johannes and Sheveleva, Elisaveta and Eropkin, Mikhail and Gorbunov, Nikita and Sicker, Michail and Umriukhin, Aleksei and Lyubchyk, Sergiy and Lesch, Klaus-Peter and Strekalova, Tatyana and Schroeter, Careen A.}, title = {Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.952977}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286301}, year = {2022}, abstract = {Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.}, language = {en} } @article{DresenPimientoPateletal.2023, author = {Dresen, Ellen and Pimiento, Jose M. and Patel, Jayshil J. and Heyland, Daren K. and Rice, Todd W. and Stoppe, Christian}, title = {Overview of oxidative stress and the role of micronutrients in critical illness}, series = {Journal of Parenteral and Enteral Nutrition}, volume = {47}, journal = {Journal of Parenteral and Enteral Nutrition}, doi = {10.1002/jpen.2421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318186}, pages = {S38 -- S49}, year = {2023}, abstract = {Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness.}, language = {en} } @article{RapaDiIorioCampigliaetal.2019, author = {Rapa, Shara Francesca and Di Iorio, Biagio Raffaele and Campiglia, Pietro and Heidland, August and Marzocco, Stefania}, title = {Inflammation and oxidative stress in chronic kidney disease — Potential therapeutic role of minerals, vitamins and plant-derived metabolites}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284998}, year = {2019}, abstract = {Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.}, language = {en} } @article{UngernSternbergZerneckeSeizer2018, author = {Ungern-Sternberg, Saskia N. I. von and Zernecke, Alma and Seizer, Peter}, title = {Extracellular matrix metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms19020507}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285014}, year = {2018}, abstract = {The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease.}, language = {en} } @article{ScheurerBrandsElMeseryetal.2019, author = {Scheurer, Mario Joachim Johannes and Brands, Roman Camillus and El-Mesery, Mohamed and Hartmann, Stefan and M{\"u}ller-Richter, Urs Dietmar Achim and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {The selection of NFκB inhibitors to block inflammation and induce sensitisation to FasL-induced apoptosis in HNSCC cell lines is critical for their use as a prospective cancer therapy}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms20061306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201524}, year = {2019}, abstract = {Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors — Cortisol, MLN4924, QNZ and TPCA1 — on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted.}, language = {en} }