@article{SnaebjornssonSchulze2018, author = {Snaebjornsson, Marteinn T and Schulze, Almut}, title = {Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways}, series = {Experimental \& Molecular Medicine}, volume = {50}, journal = {Experimental \& Molecular Medicine}, doi = {10.1038/s12276-018-0065-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238763}, pages = {1-16}, year = {2018}, abstract = {The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.}, language = {en} } @article{SirtlKnollDieuThuyetal.2018, author = {Sirtl, Simon and Knoll, Gertrud and Dieu Thuy, Trinh and Lang, Isabell and Siegmund, Daniela and Gross, Stefanie and Schuler-Thurner, Beatrice and Neubert, Patrick and Jantsch, Jonathan and Wajant, Harald and Ehrenschwender, Martin}, title = {Hypertonicity-enforced BCL-2 addiction unleashes the cytotoxic potential of death receptors}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0265-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238327}, pages = {4122-4136}, year = {2018}, abstract = {Attempts to exploit the cytotoxic activity of death receptors (DR) for treating cancer have thus far been disappointing. DR activation in most malignant cells fails to trigger cell death and may even promote tumor growth by activating cell death-independent DR-associated signaling pathways. Overcoming apoptosis resistance is consequently a prerequisite for successful clinical exploitation of DR stimulation. Here we show that hyperosmotic stress in the tumor microenvironment unleashes the deadly potential of DRs by enforcing BCL-2 addiction of cancer cells. Hypertonicity robustly enhanced cytotoxicity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and other DR ligands in various cancer entities. Initial events in TRAIL DR signaling remained unaffected, but hypertonic conditions unlocked activation of the mitochondrial death pathway and thus amplified the apoptotic signal. Mechanistically, we demonstrate that hyperosmotic stress imposed a BCL-2-addiction on cancer cells to safeguard the integrity of the outer mitochondrial membrane (OMM), essentially exhausting the protective capacity of BCL-2-like pro-survival proteins. Deprivation of these mitochondrial safeguards licensed DR-generated truncated BH3-interacting domain death agonist (tBID) to activate BCL-2-associated X protein (BAX) and initiated mitochondrial outer membrane permeabilization (MOMP). Our work highlights that hyperosmotic stress in the tumor environment primes mitochondria for death and lowers the threshold for DR-induced apoptosis. Beyond TRAIL-based therapies, our findings could help to strengthen the efficacy of other apoptosis-inducing cancer treatment regimens.}, language = {en} } @article{StegmannReichertsAndreattaetal.2019, author = {Stegmann, Yannik and Reicherts, Philipp and Andreatta, Marta and Pauli, Paul and Wieser, Matthias J.}, title = {The effect of trait anxiety on attentional mechanisms in combined context and cue conditioning and extinction learning}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-45239-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239394}, year = {2019}, abstract = {Sensory processing and attention allocation are shaped by threat, but the role of trait-anxiety in sensory processing as a function of threat predictability remains incompletely understood. Therefore, we measured steady-state visual evoked potentials (ssVEPs) as an index of sensory processing of predictable and unpredictable threat cues in 29 low (LA) and 29 high (HA) trait-anxious participants during a modified NPU-paradigm followed by an extinction phase. Three different contextual cues indicated safety (N), predictable (P) or unpredictable threat (U), while foreground cues signalled shocks in the P-condition only. All participants allocated increased attentional resources to the central P-threat cue, replicating previous findings. Importantly, LA individuals exhibited larger ssVEP amplitudes to contextual threat (U and P) than to contextual safety cues, while HA individuals did not differentiate among contextual cues in general. Further, HA exhibited higher aversive ratings of all contexts compared to LA. These results suggest that high trait-anxious individuals might be worse at discriminating contextual threat stimuli and accordingly overestimate the probability and aversiveness of unpredictable threat. These findings support the notion of aberrant sensory processing of unpredictable threat in anxiety disorders, as this processing pattern is already evident in individuals at risk of these disorders.}, language = {en} } @article{SommerfeldSenfBumaetal.2018, author = {Sommerfeld, Andreas and Senf, Cornelius and Buma, Brian and D'Amato, Anthony W. and Despr{\´e}s, Tiphaine and D{\´i}az-Hormaz{\´a}bal, Ignacio and Fraver, Shawn and Frelich, Lee E. and Guti{\´e}rrez, {\´A}lvaro G. and Hart, Sarah J. and Harvey, Brian J. and He, Hong S. and Hl{\´a}sny, Tom{\´a}š and Holz, Andr{\´e}s and Kitzberger, Thomas and Kulakowski, Dominik and Lindenmayer, David and Mori, Akira S. and M{\"u}ller, J{\"o}rg and Paritsis, Juan and Perry, George L. W. and Stephens, Scott L. and Svoboda, Miroslav and Turner, Monica G. and Veblen, Thomas T. and Seidl, Rupert}, title = {Patterns and drivers of recent disturbances across the temperate forest biome}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06788-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239157}, year = {2018}, abstract = {Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.}, language = {en} } @article{ShumilovaLutoevIsaenkoetal.2018, author = {Shumilova, T. G. and Lutoev, V. P. and Isaenko, S. I. and Kovalchuk, N. S. and Makeev, B. A. and Lysiuk, A. Yu. and Zubov, A. A. and Ernstson, K.}, title = {Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-25037-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237983}, year = {2018}, abstract = {The state of substances under ultrahigh pressures and temperatures (UHPHT) now raises a special interest as a matter existing under extreme conditions and as potential new material. Under laboratory conditions only small amounts of micrometer-sized matter are produced at a pressure up to 100 GPa and at room temperature. Simultaneous combination of ultrahigh pressures and temperatures in a lab still requires serious technological effort. Here we describe the composition and structure of the UHPHT vein-like impact glass discovered by us in 2015 on the territory of the Kara astrobleme (Russia) and compare its properties with impact glass from the Ries crater (Germany). A complex of structural and spectroscopic methods presents unusual high pressure marks of structural elements in 8-fold co-ordination that had been described earlier neither in synthetic nor natural glasses. The Kara natural UHPHT glasses being about 70 Ma old have well preserved initial structure, presenting some heterogeneity as a result of partial liquation and crystallization differentiation where an amorphous component is proposed to originate from low level polymerization. Homogeneous parts of the UHPHT glasses can be used to deepened fundamental investigation of a substance under extreme PT conditions and to technological studies for novel material creations.}, language = {en} } @article{SolimandoBrandlMattenheimeretal.2018, author = {Solimando, A G and Brandl, A and Mattenheimer, K and Graf, C and Ritz, M and Ruckdeschel, A and St{\"u}hmer, T and Mokhtari, Z and Rudelius, M and Dotterweich, J and Bittrich, M and Desantis, V and Ebert, R and Trerotoli, P and Frassanito, M A and Rosenwald, A and Vacca, A and Einsele, H and Jakob, F and Beilhack, A}, title = {JAM-A as a prognostic factor and new therapeutic target in multiple myeloma}, series = {Leukemia}, volume = {32}, journal = {Leukemia}, doi = {10.1038/leu.2017.287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239069}, pages = {736-743}, year = {2018}, abstract = {Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.}, language = {en} } @article{SoltamovKasperPoshakinskiyetal.2019, author = {Soltamov, V. A. and Kasper, C. and Poshakinskiy, A. V. and Anisimov, A. N. and Mokhov, E. N. and Sperlich, A. and Tarasenko, S. A. and Baranov, P. G. and Astakhov, G. V. and Dyakonov, V.}, title = {Excitation and coherent control of spin qudit modes in silicon carbide at room temperature}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09429-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239149}, year = {2019}, abstract = {One of the challenges in the field of quantum sensing and information processing is to selectively address and coherently manipulate highly homogeneous qubits subject to external perturbations. Here, we present room-temperature coherent control of high-dimensional quantum bits, the so-called qudits, associated with vacancy-related spins in silicon carbide enriched with nuclear spin-free isotopes. In addition to the excitation of a spectrally narrow qudit mode at the pump frequency, several other modes are excited in the electron spin resonance spectra whose relative positions depend on the external magnetic field. We develop a theory of multipole spin dynamics and demonstrate selective quantum control of homogeneous spin packets with sub-MHz spectral resolution. Furthermore, we perform two-frequency Ramsey interferometry to demonstrate absolute dc magnetometry, which is immune to thermal noise and strain inhomogeneity.}, language = {en} } @article{SiegmundEhrenschwenderWajant2018, author = {Siegmund, Daniela and Ehrenschwender, Martin and Wajant, Harald}, title = {TNFR2 unlocks a RIPK1 kinase activity-dependent mode of proinflammatory TNFR1 signaling}, series = {Cell Death \& Disease}, volume = {9}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-018-0973-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238034}, year = {2018}, abstract = {TNF is not only a major effector molecule of PAMP/DAMP-activated macrophages, but also regulates macrophage function and viability. We recently demonstrated that TNFR2 triggers necroptosis in macrophages with compromised caspase activity by two cooperating mechanisms: induction of endogenous TNF with subsequent stimulation of TNFR1 and depletion of cytosolic TRAF2-cIAP complexes. Here we show that TNFR2 activation in caspase-inhibited macrophages results in the production of endogenous TNF and TNFR1 stimulation followed by upregulation of A20, TRAF1, IL-6, and IL-1β. Surprisingly, TNFR1-mediated induction of IL-6 and IL-1β was clearly evident in response to TNFR2 stimulation but occurred not or only weakly in macrophages selectively and directly stimulated via TNFR1. Moreover, TNFR2-induced TNFR1-mediated gene induction was largely inhibited by necrostatin-1, whereas upregulation of A20 and TRAF1 by direct and exclusive stimulation of TNFR1 remained unaffected by this compound. Thus, treatment with TNFR2/ZVAD enables TNFR1 in macrophages to stimulate gene induction via a pathway requiring RIPK1 kinase activity. TNFR2/ZVAD-induced production of IL-6 and IL-1β was largely blocked in necroptosis-resistant MLKL- and RIPK3-deficient macrophages, whereas induction of A20 and TRAF1 remained unaffected. In sum, our results show that in caspase-inhibited macrophages TNFR2 not only triggers TNF/TNFR1-mediated necroptosis but also TNF/TNFR1-mediated RIPK3/MLKL-dependent and -independent gene induction.}, language = {en} } @article{VaethWangEcksteinetal.2019, author = {Vaeth, Martin and Wang, Yin-Hu and Eckstein, Miriam and Yang, Jun and Silverman, Gregg J. and Lacruz, Rodrigo S. and Kannan, Kasthuri and Feske, Stefan}, title = {Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08959-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232148}, year = {2019}, abstract = {T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells.}, language = {en} } @article{SulzerCassidyHorgaetal.2018, author = {Sulzer, David and Cassidy, Clifford and Horga, Guillermo and Kang, Un Jung and Fahn, Stanley and Casella, Luigi and Pezzoli, Gianni and Langley, Jason and Hu, Xiaoping P. and Zucca, Fabio A. and Isaias, Ioannis U. and Zecca, Luigi}, title = {Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0047-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240207}, year = {2018}, abstract = {The diagnosis of Parkinson's disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM's avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.}, language = {en} }