@article{GrimmigMoenchKreckeletal.2016, author = {Grimmig, Tanja and Moench, Romana and Kreckel, Jennifer and Haack, Stephanie and Rueckert, Felix and Rehder, Roberta and Tripathi, Sudipta and Ribas, Carmen and Chandraker, Anil and Germer, Christoph T. and Gasser, Martin and Waaga-Gasser, Ana Maria}, title = {Toll Like Receptor 2, 4, and 9 Signaling Promotes Autoregulative Tumor Cell Growth and VEGF/PDGF Expression in Human Pancreatic Cancer}, series = {International Journal of Molecular Sciences}, volume = {17}, journal = {International Journal of Molecular Sciences}, number = {12}, doi = {10.3390/ijms17122060}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165743}, pages = {2060}, year = {2016}, abstract = {Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of inflammatory cells and cytokine milieu for autoregulative tumor growth signaling in pancreatic cancer. We analyzed the expression of TLR2, -4, and -9 in primary human cancers and their impact on tumor growth via induced activation in several established pancreatic cancers. TLR-stimulated pancreatic cancer cells were specifically investigated for activated signaling pathways of VEGF/PDGF and anti-apoptotic Bcl-xL expression as well as tumor cell growth. The primary pancreatic cancers and cell lines expressed TLR2, -4, and -9. TLR-specific stimulation resulted in activated MAP-kinase signaling, most likely via autoregulative stimulation of demonstrated TLR-induced VEGF and PDGF expression. Moreover, TLR activation prompted the expression of Bcl-xL and has been demonstrated for the first time to induce tumor cell proliferation in pancreatic cancer. These findings strongly suggest that pancreatic cancer cells use specific Toll like receptor signaling to promote tumor cell proliferation and emphasize the particular role of TLR2, -4, and -9 in this autoregulative process of tumor cell activation and proliferation in pancreatic cancer.}, language = {en} } @article{MorbachBeyersdorfKerkauetal.2021, author = {Morbach, Caroline and Beyersdorf, Niklas and Kerkau, Thomas and Ramos, Gustavo and Sahiti, Floran and Albert, Judith and Jahns, Roland and Ertl, Georg and Angermann, Christiane E. and Frantz, Stefan and Hofmann, Ulrich and St{\"o}rk, Stefan}, title = {Adaptive anti-myocardial immune response following hospitalization for acute heart failure}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258907}, pages = {3348-3353}, year = {2021}, abstract = {Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49\%) female, and 24 (51\%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45\%) to F6 (n = 36, 77\%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88\%) compared with patients with reduced ejection fraction (n = 14, 61\%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95\% confidence interval 1.13-20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression.}, language = {en} } @article{RajendranRajendranGiraldoVelasquezetal.2021, author = {Rajendran, Ranjithkumar and Rajendran, Vinothkumar and Giraldo-Velasquez, Mario and Megalofonou, Fevronia-Foivi and Gurski, Fynn and Stadelmann, Christine and Karnati, Srikanth and Berghoff, Martin}, title = {Oligodendrocyte-specific deletion of FGFR1 reduces cerebellar inflammation and neurodegeneration in MOG\(_{35-55}\)-induced EAE}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {17}, issn = {1422-0067}, doi = {10.3390/ijms22179495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284296}, year = {2021}, abstract = {Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS). MS commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs significantly contribute to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are difficult to treat. Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies such as MS. In autopsy tissue from patients with MS, increased expression of FGF1, FGF2, FGF9, and FGFR1 was found in lesion areas. Recent research using mouse models has focused on regions such as the spinal cord, and data on the expression of FGF/FGFR in the cerebellum are not available. In recent EAE studies, we detected that oligodendrocyte-specific deletion of FGFRs results in a milder disease course, less cellular infiltrates, and reduced neurodegeneration in the spinal cord. The objective of this study was to characterize the role of FGFR1 in oligodendrocytes in the cerebellum. Conditional deletion of FGFR1 in oligodendrocytes (Fgfr1\(^{ind-/-}\) was achieved by tamoxifen application, EAE was induced using the MOG\(_{35-55}\) peptide. The cerebellum was analyzed by histology, immunohistochemistry, and western blot. At day 62 p.i., Fgfr1\(^{ind-/-}\) mice showed less myelin and axonal degeneration compared to FGFR1-competent mice. Infiltration of CD3(+) T cells, Mac3(+) cells, B220(+) B cells and IgG(+) plasma cells in cerebellar white matter lesions (WML) was less in Fgfr1\(^{ind-/-}\)mice. There were no effects on the number of OPC or mature oligodendrocytes in white matter lesion (WML). Expression of FGF2 and FGF9 associated with less myelin and axonal degeneration, and of the pro-inflammatory cytokines IL-1β, IL-6, and CD200 was downregulated in Fgfr1\(^{ind-/-}\) mice. The FGF/FGFR signaling protein pAkt, BDNF, and TrkB were increased in Fgfr1\(^{ind-/-}\) mice. These data suggest that cell-specific deletion of FGFR1 in oligodendrocytes has anti-inflammatory and neuroprotective effects in the cerebellum in the EAE disease model of MS.}, language = {en} } @article{SchapovalovaGorlovadeMunteretal.2022, author = {Schapovalova, Olesia and Gorlova, Anna and de Munter, Johannes and Sheveleva, Elisaveta and Eropkin, Mikhail and Gorbunov, Nikita and Sicker, Michail and Umriukhin, Aleksei and Lyubchyk, Sergiy and Lesch, Klaus-Peter and Strekalova, Tatyana and Schroeter, Careen A.}, title = {Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.952977}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286301}, year = {2022}, abstract = {Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.}, language = {en} } @article{DresenPimientoPateletal.2023, author = {Dresen, Ellen and Pimiento, Jose M. and Patel, Jayshil J. and Heyland, Daren K. and Rice, Todd W. and Stoppe, Christian}, title = {Overview of oxidative stress and the role of micronutrients in critical illness}, series = {Journal of Parenteral and Enteral Nutrition}, volume = {47}, journal = {Journal of Parenteral and Enteral Nutrition}, doi = {10.1002/jpen.2421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318186}, pages = {S38 -- S49}, year = {2023}, abstract = {Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness.}, language = {en} } @article{KnopSpilgiesRuflietal.2019, author = {Knop, Janin and Spilgies, Lisanne M. and Rufli, Stefanie and Reinhart, Ramona and Vasilikos, Lazaros and Yabal, Monica and Owsley, Erika and Jost, Philipp J. and Marsh, Rebecca A. and Wajant, Harald and Robinson, Mark D. and Kaufmann, Thomas and W. Wei-Lynn, Wong}, title = {TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1938-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325946}, year = {2019}, abstract = {The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap-/- macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap-/- myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.}, language = {en} } @article{CzimmererDanielHorvathetal.2018, author = {Czimmerer, Zsolt and Daniel, Bence and Horvath, Attila and R{\"u}ckerl, Dominik and Nagy, Gergely and Kiss, Mate and Peloquin, Matthew and Budai, Marietta M. and Cuaranta-Monroy, Ixchelt and Simandi, Zoltan and Steiner, Laszlo and Nagy Jr., Bela and Poliska, Szilard and Banko, Csaba and Bacso, Zsolt and Schulman, Ira G. and Sauer, Sascha and Deleuze, Jean-Francois and Allen, Judith E. and Benko, Szilvia and Nagy, Laszlo}, title = {The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages}, series = {Immunity}, volume = {48}, journal = {Immunity}, doi = {10.1016/j.immuni.2017.12.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223380}, pages = {75-90}, year = {2018}, abstract = {The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.}, language = {en} } @article{StoreyStaplinHaynesetal.2018, author = {Storey, Benjamin C. and Staplin, Natalie and Haynes, Richard and Reith, Christina and Emberson, Jonathan and Herrington, William G. and Wheeler, David C. and Walker, Robert and Fellstr{\"o}m, Bengt and Wanner, Christoph and Landray, Martin J. and Baigent, Colin}, title = {Lowering LDL cholesterol reduces cardiovascular risk independently of presence of inflammation}, series = {Kidney International}, volume = {93}, journal = {Kidney International}, organization = {The SHARP Collaborative Group}, doi = {10.1016/j.kint.2017.09.011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240067}, pages = {1000-1007}, year = {2018}, abstract = {Markers of inflammation, including plasma C-reactive protein (CRP), are associated with an increased risk of cardiovascular disease, and it has been suggested that this association is causal. However, the relationship between inflammation and cardiovascular disease has not been extensively studied in patients with chronic kidney disease. To evaluate this, we used data from the Study of Heart and Renal Protection (SHARP) to assess associations between circulating CRP and LDL cholesterol levels and the risk of vascular and non-vascular outcomes. Major vascular events were defined as nonfatal myocardial infarction, cardiac death, stroke or arterial revascularization, with an expanded outcome of vascular events of any type. Higher baseline CRP was associated with an increased risk of major vascular events (hazard ratio per 3x increase 1.28; 95\% confidence interval 1.19-1.38). Higher baseline LDL cholesterol was also associated with an increased risk of major vascular events (hazard ratio per 0.6 mmol/L higher LDL cholesterol; 1.14, 1.06-1.22). Higher baseline CRP was associated with an increased risk of a range of non-vascular events (1.16, 1.12-1.21), but there was a weak inverse association between baseline LDL cholesterol and non-vascular events (0.96, 0.92-0.99). The efficacy of lowering LDL cholesterol with simvastatin/ezetimibe on major vascular events, in the randomized comparison, was similar irrespective of CRP concentration at baseline. Thus, decisions to offer statin-based therapy to patients with chronic kidney disease should continue to be guided by their absolute risk of atherosclerotic events. Estimation of such risk may include plasma biomarkers of inflammation, but there is no evidence that the relative beneficial effects of reducing LDL cholesterol depends on plasma CRP concentration.}, language = {en} }