@article{SnaebjornssonSchulze2018, author = {Snaebjornsson, Marteinn T and Schulze, Almut}, title = {Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways}, series = {Experimental \& Molecular Medicine}, volume = {50}, journal = {Experimental \& Molecular Medicine}, doi = {10.1038/s12276-018-0065-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238763}, pages = {1-16}, year = {2018}, abstract = {The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.}, language = {en} } @article{SirtlKnollDieuThuyetal.2018, author = {Sirtl, Simon and Knoll, Gertrud and Dieu Thuy, Trinh and Lang, Isabell and Siegmund, Daniela and Gross, Stefanie and Schuler-Thurner, Beatrice and Neubert, Patrick and Jantsch, Jonathan and Wajant, Harald and Ehrenschwender, Martin}, title = {Hypertonicity-enforced BCL-2 addiction unleashes the cytotoxic potential of death receptors}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0265-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238327}, pages = {4122-4136}, year = {2018}, abstract = {Attempts to exploit the cytotoxic activity of death receptors (DR) for treating cancer have thus far been disappointing. DR activation in most malignant cells fails to trigger cell death and may even promote tumor growth by activating cell death-independent DR-associated signaling pathways. Overcoming apoptosis resistance is consequently a prerequisite for successful clinical exploitation of DR stimulation. Here we show that hyperosmotic stress in the tumor microenvironment unleashes the deadly potential of DRs by enforcing BCL-2 addiction of cancer cells. Hypertonicity robustly enhanced cytotoxicity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and other DR ligands in various cancer entities. Initial events in TRAIL DR signaling remained unaffected, but hypertonic conditions unlocked activation of the mitochondrial death pathway and thus amplified the apoptotic signal. Mechanistically, we demonstrate that hyperosmotic stress imposed a BCL-2-addiction on cancer cells to safeguard the integrity of the outer mitochondrial membrane (OMM), essentially exhausting the protective capacity of BCL-2-like pro-survival proteins. Deprivation of these mitochondrial safeguards licensed DR-generated truncated BH3-interacting domain death agonist (tBID) to activate BCL-2-associated X protein (BAX) and initiated mitochondrial outer membrane permeabilization (MOMP). Our work highlights that hyperosmotic stress in the tumor environment primes mitochondria for death and lowers the threshold for DR-induced apoptosis. Beyond TRAIL-based therapies, our findings could help to strengthen the efficacy of other apoptosis-inducing cancer treatment regimens.}, language = {en} } @article{StegmannReichertsAndreattaetal.2019, author = {Stegmann, Yannik and Reicherts, Philipp and Andreatta, Marta and Pauli, Paul and Wieser, Matthias J.}, title = {The effect of trait anxiety on attentional mechanisms in combined context and cue conditioning and extinction learning}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-45239-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239394}, year = {2019}, abstract = {Sensory processing and attention allocation are shaped by threat, but the role of trait-anxiety in sensory processing as a function of threat predictability remains incompletely understood. Therefore, we measured steady-state visual evoked potentials (ssVEPs) as an index of sensory processing of predictable and unpredictable threat cues in 29 low (LA) and 29 high (HA) trait-anxious participants during a modified NPU-paradigm followed by an extinction phase. Three different contextual cues indicated safety (N), predictable (P) or unpredictable threat (U), while foreground cues signalled shocks in the P-condition only. All participants allocated increased attentional resources to the central P-threat cue, replicating previous findings. Importantly, LA individuals exhibited larger ssVEP amplitudes to contextual threat (U and P) than to contextual safety cues, while HA individuals did not differentiate among contextual cues in general. Further, HA exhibited higher aversive ratings of all contexts compared to LA. These results suggest that high trait-anxious individuals might be worse at discriminating contextual threat stimuli and accordingly overestimate the probability and aversiveness of unpredictable threat. These findings support the notion of aberrant sensory processing of unpredictable threat in anxiety disorders, as this processing pattern is already evident in individuals at risk of these disorders.}, language = {en} } @article{SommerfeldSenfBumaetal.2018, author = {Sommerfeld, Andreas and Senf, Cornelius and Buma, Brian and D'Amato, Anthony W. and Despr{\´e}s, Tiphaine and D{\´i}az-Hormaz{\´a}bal, Ignacio and Fraver, Shawn and Frelich, Lee E. and Guti{\´e}rrez, {\´A}lvaro G. and Hart, Sarah J. and Harvey, Brian J. and He, Hong S. and Hl{\´a}sny, Tom{\´a}š and Holz, Andr{\´e}s and Kitzberger, Thomas and Kulakowski, Dominik and Lindenmayer, David and Mori, Akira S. and M{\"u}ller, J{\"o}rg and Paritsis, Juan and Perry, George L. W. and Stephens, Scott L. and Svoboda, Miroslav and Turner, Monica G. and Veblen, Thomas T. and Seidl, Rupert}, title = {Patterns and drivers of recent disturbances across the temperate forest biome}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06788-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239157}, year = {2018}, abstract = {Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.}, language = {en} } @article{ShumilovaLutoevIsaenkoetal.2018, author = {Shumilova, T. G. and Lutoev, V. P. and Isaenko, S. I. and Kovalchuk, N. S. and Makeev, B. A. and Lysiuk, A. Yu. and Zubov, A. A. and Ernstson, K.}, title = {Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-25037-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237983}, year = {2018}, abstract = {The state of substances under ultrahigh pressures and temperatures (UHPHT) now raises a special interest as a matter existing under extreme conditions and as potential new material. Under laboratory conditions only small amounts of micrometer-sized matter are produced at a pressure up to 100 GPa and at room temperature. Simultaneous combination of ultrahigh pressures and temperatures in a lab still requires serious technological effort. Here we describe the composition and structure of the UHPHT vein-like impact glass discovered by us in 2015 on the territory of the Kara astrobleme (Russia) and compare its properties with impact glass from the Ries crater (Germany). A complex of structural and spectroscopic methods presents unusual high pressure marks of structural elements in 8-fold co-ordination that had been described earlier neither in synthetic nor natural glasses. The Kara natural UHPHT glasses being about 70 Ma old have well preserved initial structure, presenting some heterogeneity as a result of partial liquation and crystallization differentiation where an amorphous component is proposed to originate from low level polymerization. Homogeneous parts of the UHPHT glasses can be used to deepened fundamental investigation of a substance under extreme PT conditions and to technological studies for novel material creations.}, language = {en} } @article{SolimandoBrandlMattenheimeretal.2018, author = {Solimando, A G and Brandl, A and Mattenheimer, K and Graf, C and Ritz, M and Ruckdeschel, A and St{\"u}hmer, T and Mokhtari, Z and Rudelius, M and Dotterweich, J and Bittrich, M and Desantis, V and Ebert, R and Trerotoli, P and Frassanito, M A and Rosenwald, A and Vacca, A and Einsele, H and Jakob, F and Beilhack, A}, title = {JAM-A as a prognostic factor and new therapeutic target in multiple myeloma}, series = {Leukemia}, volume = {32}, journal = {Leukemia}, doi = {10.1038/leu.2017.287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239069}, pages = {736-743}, year = {2018}, abstract = {Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.}, language = {en} } @article{SoltamovKasperPoshakinskiyetal.2019, author = {Soltamov, V. A. and Kasper, C. and Poshakinskiy, A. V. and Anisimov, A. N. and Mokhov, E. N. and Sperlich, A. and Tarasenko, S. A. and Baranov, P. G. and Astakhov, G. V. and Dyakonov, V.}, title = {Excitation and coherent control of spin qudit modes in silicon carbide at room temperature}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09429-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239149}, year = {2019}, abstract = {One of the challenges in the field of quantum sensing and information processing is to selectively address and coherently manipulate highly homogeneous qubits subject to external perturbations. Here, we present room-temperature coherent control of high-dimensional quantum bits, the so-called qudits, associated with vacancy-related spins in silicon carbide enriched with nuclear spin-free isotopes. In addition to the excitation of a spectrally narrow qudit mode at the pump frequency, several other modes are excited in the electron spin resonance spectra whose relative positions depend on the external magnetic field. We develop a theory of multipole spin dynamics and demonstrate selective quantum control of homogeneous spin packets with sub-MHz spectral resolution. Furthermore, we perform two-frequency Ramsey interferometry to demonstrate absolute dc magnetometry, which is immune to thermal noise and strain inhomogeneity.}, language = {en} } @article{SiegmundEhrenschwenderWajant2018, author = {Siegmund, Daniela and Ehrenschwender, Martin and Wajant, Harald}, title = {TNFR2 unlocks a RIPK1 kinase activity-dependent mode of proinflammatory TNFR1 signaling}, series = {Cell Death \& Disease}, volume = {9}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-018-0973-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238034}, year = {2018}, abstract = {TNF is not only a major effector molecule of PAMP/DAMP-activated macrophages, but also regulates macrophage function and viability. We recently demonstrated that TNFR2 triggers necroptosis in macrophages with compromised caspase activity by two cooperating mechanisms: induction of endogenous TNF with subsequent stimulation of TNFR1 and depletion of cytosolic TRAF2-cIAP complexes. Here we show that TNFR2 activation in caspase-inhibited macrophages results in the production of endogenous TNF and TNFR1 stimulation followed by upregulation of A20, TRAF1, IL-6, and IL-1β. Surprisingly, TNFR1-mediated induction of IL-6 and IL-1β was clearly evident in response to TNFR2 stimulation but occurred not or only weakly in macrophages selectively and directly stimulated via TNFR1. Moreover, TNFR2-induced TNFR1-mediated gene induction was largely inhibited by necrostatin-1, whereas upregulation of A20 and TRAF1 by direct and exclusive stimulation of TNFR1 remained unaffected by this compound. Thus, treatment with TNFR2/ZVAD enables TNFR1 in macrophages to stimulate gene induction via a pathway requiring RIPK1 kinase activity. TNFR2/ZVAD-induced production of IL-6 and IL-1β was largely blocked in necroptosis-resistant MLKL- and RIPK3-deficient macrophages, whereas induction of A20 and TRAF1 remained unaffected. In sum, our results show that in caspase-inhibited macrophages TNFR2 not only triggers TNF/TNFR1-mediated necroptosis but also TNF/TNFR1-mediated RIPK3/MLKL-dependent and -independent gene induction.}, language = {en} } @article{VaethWangEcksteinetal.2019, author = {Vaeth, Martin and Wang, Yin-Hu and Eckstein, Miriam and Yang, Jun and Silverman, Gregg J. and Lacruz, Rodrigo S. and Kannan, Kasthuri and Feske, Stefan}, title = {Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08959-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232148}, year = {2019}, abstract = {T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells.}, language = {en} } @article{SulzerCassidyHorgaetal.2018, author = {Sulzer, David and Cassidy, Clifford and Horga, Guillermo and Kang, Un Jung and Fahn, Stanley and Casella, Luigi and Pezzoli, Gianni and Langley, Jason and Hu, Xiaoping P. and Zucca, Fabio A. and Isaias, Ioannis U. and Zecca, Luigi}, title = {Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0047-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240207}, year = {2018}, abstract = {The diagnosis of Parkinson's disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM's avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.}, language = {en} } @article{UllrichWeberPostetal.2018, author = {Ullrich, M and Weber, M and Post, A M and Popp, S and Grein, J and Zechner, M and Gonz{\´a}lez, H Guerrero and Kreis, A and Schmitt, A G and {\"U}ҫeyler, N and Lesch, K-P and Schuh, K}, title = {OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency}, series = {Molecular Psychiatry}, volume = {23}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2016.232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232096}, pages = {444-458}, year = {2018}, abstract = {Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2\% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.}, language = {en} } @article{TrautzFrankeBohnertetal.2019, author = {Trautz, Florian and Franke, Heike and Bohnert, Simone and Hammer, Niels and M{\"u}ller, Wolf and Stassart, Ruth and Tse, Rexson and Zwirner, Johann and Dreßler, Jan and Ondruschka, Benjamin}, title = {Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48145-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229037}, year = {2019}, abstract = {Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.}, language = {en} } @article{TylekSchillingSchlegelmilchetal.2019, author = {Tylek, Tina and Schilling, Tatjana and Schlegelmilch, Katrin and Ries, Maximilian and Rudert, Maximilian and Jakob, Franz and Groll, J{\"u}rgen}, title = {Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40190-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229174}, year = {2019}, abstract = {In vitro co-cultures of different primary human cell types are pivotal for the testing and evaluation of biomaterials under conditions that are closer to the human in vivo situation. Especially co-cultures of macrophages and mesenchymal stem cells (MSCs) are of interest, as they are both present and involved in tissue regeneration and inflammatory reactions and play crucial roles in the immediate inflammatory reactions and the onset of regenerative processes, thus reflecting the decisive early phase of biomaterial contact with the host. A co-culture system of these cell types might thus allow for the assessment of the biocompatibility of biomaterials. The establishment of such a co-culture is challenging due to the different in vitro cell culture conditions. For human macrophages, medium is usually supplemented with human serum (hS), whereas hMSC culture is mostly performed using fetal calf serum (FCS), and these conditions are disadvantageous for the respective other cell type. We demonstrate that human platelet lysate (hPL) can replace hS in macrophage cultivation and appears to be the best option for co-cultivation of human macrophages with hMSCs. In contrast to FCS and hS, hPL maintained the phenotype of both cell types, comparable to that of their respective standard culture serum, as well as the percentage of each cell population. Moreover, the expression profile and phagocytosis activity of macrophages was similar to hS.}, language = {en} } @article{StraubFreudenbergSchleicheretal.2018, author = {Straub, Tobias and Freudenberg, Marina A. and Schleicher, Ulrike and Bogdan, Christian and Gasteiger, Georg and Pircher, Hanspeter}, title = {Bacterial coinfection restrains antiviral CD8 T-cell response via LPS-induced inhibitory NK cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06609-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240075}, year = {2018}, abstract = {Infection of specific pathogen-free mice with lymphocytic choriomeningitis virus (LCMV) is a widely used model to study antiviral T-cell immunity. Infections in the real world, however, are often accompanied by coinfections with unrelated pathogens. Here we show that in mice, systemic coinfection with E. coli suppresses the LCMV-specific cytotoxic T-lymphocyte (CTL) response and virus elimination in a NK cell- and TLR2/4-dependent manner. Soluble TLR4 ligand LPS also induces NK cell-mediated negative CTL regulation during LCMV infection. NK cells in LPS-treated mice suppress clonal expansion of LCMV-specific CTLs by a NKG2D- or NCR1-independent but perforin-dependent mechanism. These results suggest a TLR4-mediated immunoregulatory role of NK cells during viral-bacterial coinfections.}, language = {en} } @article{VujanićGesslerOomsetal.2018, author = {Vujanić, Gordan M. and Gessler, Manfred and Ooms, Ariadne H. A. G. and Collini, Paola and Coulomb-l'Hermine, Aurore and D'Hooghe, Ellen and de Krijger, Ronald R. and Perotti, Daniela and Pritchard-Jones, Kathy and Vokuhl, Christian and van den Heuvel-Eibrink, Marry M. and Graf, Norbert}, title = {The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol}, series = {Nature Reviews Urology}, volume = {15}, journal = {Nature Reviews Urology}, organization = {International Society of Paediatric Oncology-Renal Tumour Study Group (SIOP-RTSG)}, doi = {10.1038/s41585-018-0100-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233265}, pages = {693-701}, year = {2018}, abstract = {On the basis of the results of previous national and international trials and studies, the Renal Tumour Study Group of the International Society of Paediatric Oncology (SIOP-RTSG) has developed a new study protocol for paediatric renal tumours: the UMBRELLA SIOP-RTSG 2016 protocol (the UMBRELLA protocol). Currently, the overall outcomes of patients with Wilms tumour are excellent, but subgroups with poor prognosis and increased relapse rates still exist. The identification of these subgroups is of utmost importance to improve treatment stratification, which might lead to reduction of the direct and late effects of chemotherapy. The UMBRELLA protocol aims to validate new prognostic factors, such as blastemal tumour volume and molecular markers, to further improve outcome. To achieve this aim, large, international, high-quality databases are needed, which dictate optimization and international harmonization of specimen handling and comprehensive sampling of biological material, refine definitions and improve logistics for expert review. To promote broad implementation of the UMBRELLA protocol, the updated SIOP-RTSG pathology and molecular biology protocol for Wilms tumours has been outlined, which is a consensus from the SIOP-RTSG pathology panel.}, language = {en} } @article{TanEloPuskaetal.2018, author = {Tan, Z. B. and Elo, T. and Puska, A. and Sarkar, J. and L{\"a}hteenm{\"a}ki, P. and Duerr, F. and Gould, C. and Molenkamp, L. W. and Nagaev, K. E. and Hakonen, P. J.}, title = {Hanbury-Brown and Twiss exchange and non-equilibrium-induced correlations in disordered, four-terminal graphene-ribbon conductor}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-32777-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240348}, year = {2018}, abstract = {We have investigated current-current correlations in a cross-shaped conductor made of graphene. The mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor where there is diffusive transport in the device arms while the central connection region displays near ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-B{\"u}ttiker theory, and agreement can be obtained only by taking into account contributions from non-thermal electron distributions at the inlets to the semiballistic center, in which the partition noise becomes strongly modified. The experimental results display distinct Hanbury - Brown and Twiss (HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron coherence along atomically-thin, two-dimensional conductors has significant implications on their noise and cross correlation properties.}, language = {en} } @article{WoodcockGarrattPowneyetal.2019, author = {Woodcock, B. A. and Garratt, M. P. D. and Powney, G. D. and Shaw, R. F. and Osborne, J. L. and Soroka, J. and Lindstr{\"o}m, S. A. M. and Stanley, D. and Ouvrard, P. and Edwards, M. E. and Jauker, F. and McCracken, M. E. and Zou, Y. and Potts, S. G. and Rundl{\"o}f, M. and Noriega, J. A. and Greenop, A. and Smith, H. G. and Bommarco, R. and van der Werf, W. and Stout, J. C. and Steffan-Dewenter, I. and Morandin, L. and Bullock, J. M. and Pywell, R. F.}, title = {Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09393-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233787}, year = {2019}, abstract = {How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.}, language = {en} } @article{WentSudSpeedyetal.2018, author = {Went, Molly and Sud, Amit and Speedy, Helen and Sunter, Nicola J. and F{\"o}rsti, Asta and Law, Philip J. and Johnson, David C. and Mirabella, Fabio and Holroyd, Amy and Li, Ni and Orlando, Giulia and Weinhold, Niels and van Duin, Mark and Chen, Bowang and Mitchell, Jonathan S. and Mansouri, Larry and Juliusson, Gunnar and Smedby, Karin E and Jayne, Sandrine and Majid, Aneela and Dearden, Claire and Allsup, David J. and Bailey, James R. and Pratt, Guy and Pepper, Chris and Fegan, Chris and Rosenquist, Richard and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Einsele, Hermann and Gregory, Walter M. and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and J{\"o}ckel, Karl-Heinz and Nickel, Jolanta and N{\"o}then, Markus M. and da Silva Filho, Miguel Inacio and Thomsen, Hauke and Walker, Brian A. and Broyl, Annemiek and Davies, Faith E. and Hansson, Markus and Goldschmidt, Hartmut and Dyer, Martin J. S. and Kaiser, Martin and Sonneveld, Pieter and Morgan, Gareth J. and Hemminki, Kari and Nilsson, Bj{\"o}rn and Catovsky, Daniel and Allan, James M. and Houlston, Richard S.}, title = {Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology}, series = {Blood Cancer Journal}, volume = {9}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-018-0162-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233627}, year = {2018}, abstract = {The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies.}, language = {en} } @article{WenFeilWoltersetal.2018, author = {Wen, Lai and Feil, Susanne and Wolters, Markus and Thunemann, Martin and Regler, Frank and Schmidt, Kjestine and Friebe, Andreas and Olbrich, Marcus and Langer, Harald and Gawaz, Meinrad and de Wit, Cor and Feil, Robert}, title = {A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06638-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233616}, year = {2018}, abstract = {Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear.}, language = {en} } @article{WelzEickhoffAbdullahetal.2018, author = {Welz, M. and Eickhoff, S. and Abdullah, Z. and Trebicka, J. and Gartlan, K. H. and Spicer, J. A. and Demetris, A. J. and Akhlaghi, H. and Anton, M. and Manske, K. and Zehn, D. and Nieswandt, B. and Kurts, C. and Trapani, J. A. and Knolle, P. and Wohlleber, D. and Kastenm{\"u}ller, W.}, title = {Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07213-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233593}, year = {2018}, abstract = {CD8 T cells protect the liver against viral infection, but can also cause severe liver damage that may even lead to organ failure. Given the lack of mechanistic insights and specific treatment options in patients with acute fulminant hepatitis, we develop a mouse model reflecting a severe acute virus-induced CD8 T cell-mediated hepatitis. Here we show that antigen-specific CD8 T cells induce liver damage in a perforin-dependent manner, yet liver failure is not caused by effector responses targeting virus-infected hepatocytes alone. Additionally, CD8 T cell mediated elimination of cross-presenting liver sinusoidal endothelial cells causes endothelial damage that leads to a dramatically impaired sinusoidal perfusion and indirectly to hepatocyte death. With the identification of perforin-mediated killing as a critical pathophysiologic mechanism of liver failure and the protective function of a new class of perforin inhibitor, our study opens new potential therapeutic angles for fulminant viral hepatitis.}, language = {en} } @article{WalkerMavrommatisWardelletal.2019, author = {Walker, Brian A. and Mavrommatis, Konstantinos and Wardell, Christopher P. and Ashby, T. Cody and Bauer, Michael and Davies, Faith and Rosenthal, Adam and Wang, Hongwei and Qu, Pingping and Hoering, Antje and Samur, Mehmet and Towfic, Fadi and Ortiz, Maria and Flynt, Erin and Yu, Zhinuan and Yang, Zhihong and Rozelle, Dan and Obenauer, John and Trotter, Matthew and Auclair, Daniel and Keats, Jonathan and Bolli, Niccolo and Fulciniti, Mariateresa and Szalat, Raphael and Moreau, Phillipe and Durie, Brian and Stewart, A. Keith and Goldschmidt, Hartmut and Raab, Marc S. and Einsele, Hermann and Sonneveld, Pieter and San Miguel, Jesus and Lonial, Sagar and Jackson, Graham H. and Anderson, Kenneth C. and Avet-Loiseau, Herve and Munshi, Nikhil and Thakurta, Anjan and Morgan, Gareth}, title = {A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis}, series = {Leukemia}, volume = {33}, journal = {Leukemia}, doi = {10.1038/s41375-018-0196-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233299}, pages = {159-170}, year = {2019}, abstract = {Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4\% and 25.2\%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3\% for PFS and 46.5\% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1\% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches.}, language = {en} } @article{WegertVokuhlCollordetal.2018, author = {Wegert, Jenny and Vokuhl, Christian and Collord, Grace and Del Castillo Velasco-Herrera, Martin and Farndon, Sarah J. and Guzzo, Charlotte and Jorgensen, Mette and Anderson, John and Slater, Olga and Duncan, Catriona and Bausenwein, Sabrina and Streitenberger, Heike and Ziegler, Barbara and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Stratton, Michael R. and Campbell, Peter J. and Jones, David TW and Koelsche, Christian and Pfister, Stefan M. and Mifsud, William and Sebire, Neil and Sparber-Sauer, Monika and Koscielniak, Ewa and Rosenwald, Andreas and Gessler, Manfred and Behjati, Sam}, title = {Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233446}, year = {2018}, abstract = {Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose unique diagnostic and clinical challenges. We studied genomes and transcriptomes of cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS), nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore, we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of isolated intragenic rearrangements as drivers of infant tumors.}, language = {en} } @article{WaldherrLundtKlaasetal.2018, author = {Waldherr, Max and Lundt, Nils and Klaas, Martin and Betzold, Simon and Wurdack, Matthias and Baumann, Vasilij and Estrecho, Eliezer and Nalitov, Anton and Cherotchenko, Evgenia and Cai, Hui and Ostrovskaya, Elena A. and Kavokin, Alexey V. and Tongay, Sefaattin and Klembt, Sebastian and H{\"o}fling, Sven and Schneider, Christian}, title = {Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05532-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233280}, year = {2018}, abstract = {Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.}, language = {en} } @article{AnnunziatavandeVlekkertWolfetal.2019, author = {Annunziata, Ida and van de Vlekkert, Diantha and Wolf, Elmar and Finkelstein, David and Neale, Geoffrey and Machado, Eda and Mosca, Rosario and Campos, Yvan and Tillman, Heather and Roussel, Martine F. and Weesner, Jason Andrew and Fremuth, Leigh Ellen and Qiu, Xiaohui and Han, Min-Joon and Grosveld, Gerard C. and d'Azzo, Alessandra}, title = {MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11568-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221189}, year = {2019}, abstract = {Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.}, language = {en} } @article{AnanyKreckelFuellsacketal.2018, author = {Anany, Mohamed A. and Kreckel, Jennifer and F{\"u}llsack, Simone and Rosenthal, Alevtina and Otto, Christoph and Siegmund, Daniela and Wajant, Harald}, title = {Soluble TNF-like weak inducer of apoptosis (TWEAK) enhances poly(I:C)-induced RIPK1-mediated necroptosis}, series = {Cell Death \& Disease}, volume = {9}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-018-1137-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221104}, year = {2018}, abstract = {TNF-like weak inducer of apoptosis (TWEAK) and inhibition of protein synthesis with cycloheximide (CHX) sensitize for poly(I:C)-induced cell death. Notably, although CHX preferentially enhanced poly(I:C)-induced apoptosis, TWEAK enhanced primarily poly(I:C)-induced necroptosis. Both sensitizers of poly(I:C)-induced cell death, however, showed no major effect on proinflammatory poly(I:C) signaling. Analysis of a panel of HeLa-RIPK3 variants lacking TRADD, RIPK1, FADD, or caspase-8 expression revealed furthermore similarities and differences in the way how poly(I:C)/TWEAK, TNF, and TRAIL utilize these molecules for signaling. RIPK1 turned out to be essential for poly(I:C)/TWEAK-induced caspase-8-mediated apoptosis but was dispensable for this response in TNF and TRAIL signaling. TRADD-RIPK1-double deficiency differentially affected poly(I:C)-triggered gene induction but abrogated gene induction by TNF completely. FADD deficiency abrogated TRAIL- but not TNF- and poly(I:C)-induced necroptosis, whereas TRADD elicited protective activity against all three death inducers. A general protective activity against poly(I:C)-, TRAIL-, and TNF-induced cell death was also observed in FLIPL and FLIPS transfectrants.}, language = {en} } @article{LeeLiRuanetal.2019, author = {Lee, Hong-Jen and Li, Chien-Feng and Ruan, Diane and He, Jiabei and Montal, Emily D. and Lorenz, Sonja and Girnun, Geoffrey D. and Chan, Chia-Hsin}, title = {Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10374-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236445}, year = {2019}, abstract = {Enormous efforts have been made to target metabolic dependencies of cancer cells for developing new therapies. However, the therapeutic efficacy of glycolysis inhibitors is limited due to their inability to elicit cell death. Hexokinase 2 (HK2), via its mitochondrial localization, functions as a central nexus integrating glycolysis activation and apoptosis resilience. Here we identify that K63-linked ubiquitination by HectH9 regulates the mitochondrial localization and function of HK2. Through stable isotope tracer approach and functional metabolic analyses, we show that HectH9 deficiency impedes tumor glucose metabolism and growth by HK2 inhibition. The HectH9/HK2 pathway regulates cancer stem cell (CSC) expansion and CSC-associated chemoresistance. Histological analyses show that HectH9 expression is upregulated and correlated with disease progression in prostate cancer. This work uncovers that HectH9 is a novel regulator of HK2 and cancer metabolism. Targeting HectH9 represents an effective strategy to achieve long-term tumor remission by concomitantly disrupting glycolysis and inducing apoptosis.}, language = {en} } @article{LanghauserCasasDaoetal.2018, author = {Langhauser, Friederike and Casas, Ana I. and Dao, Vu-Thao-Vi and Guney, Emre and Menche, J{\"o}rg and Geuss, Eva and Kleikers, Pamela W. M. and L{\´o}pez, Manuela G. and Barab{\´a}si, Albert-L. and Kleinschnitz, Christoph and Schmidt, Harald H. H. W.}, title = {A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection}, series = {npj Systems Biology and Applications}, volume = {4}, journal = {npj Systems Biology and Applications}, doi = {10.1038/s41540-017-0039-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236381}, year = {2018}, abstract = {Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy.}, language = {en} } @article{LiaoTtofaliSlotkowskietal.2019, author = {Liao, Chunyu and Ttofali, Fani and Slotkowski, Rebecca A. and Denny, Steven R. and Cecil, Taylor D. and Leenay, Ryan T. and Keung, Albert J. and Beisel, Chase L.}, title = {Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10747-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236843}, year = {2019}, abstract = {CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis.}, language = {en} } @article{LevyBoulleEmeritetal.2019, author = {Levy, Marion J. F. and Boulle, Fabien and Emerit, Michel Boris and Poilbout, Corinne and Steinbusch, Harry W. M. and Van den Hove, Daniel L. A. and Kenis, Gunter and Lanfumey, Laurence}, title = {5-HTT independent effects of fluoxetine on neuroplasticity}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-42775-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236759}, year = {2019}, abstract = {Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.}, language = {en} } @article{LeeImhofBergeretal.2018, author = {Lee, Ching Hua and Imhof, Stefan and Berger, Christian and Bayer, Florian and Brehm, Johannes and Molenkamp, Laurens W. and Kiessling, Tobias and Thomale, Ronny}, title = {Topolectrical Circuits}, series = {Communications Physics}, volume = {1}, journal = {Communications Physics}, doi = {10.1038/s42005-018-0035-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236422}, year = {2018}, abstract = {Invented by Alessandro Volta and F{\´e}lix Savary in the early 19th century, circuits consisting of resistor, inductor and capacitor (RLC) components are omnipresent in modern technology. The behavior of an RLC circuit is governed by its circuit Laplacian, which is analogous to the Hamiltonian describing the energetics of a physical system. Here we show that topological insulating and semimetallic states can be realized in a periodic RLC circuit. Topological boundary resonances (TBRs) appear in the impedance read-out of a topolectrical circuit, providing a robust signal for the presence of topological admittance bands. For experimental illustration, we build the Su-Schrieffer-Heeger circuit, where our impedance measurement detects the TBR midgap state. Topolectrical circuits establish a bridge between electrical engineering and topological states of matter, where the accessibility, scalability, and operability of electronics synergizes with the intricate boundary properties of topological phases.}, language = {en} } @article{KuegelKarolakKroenleinetal.2018, author = {K{\"u}gel, Jens and Karolak, Michael and Kr{\"o}nlein, Andreas and Serrate, David and Bode, Matthias and Sangiovanni, Giorgio}, title = {Reversible magnetic switching of high-spin molecules on a giant Rashba surface}, series = {npj Quantum Materials}, volume = {3}, journal = {npj Quantum Materials}, doi = {10.1038/s41535-018-0126-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230866}, year = {2018}, abstract = {The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an "on demand" control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on "switchable" molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular "habitat" offered by an antiphase boundary of the Rashba system BiAg2 stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.}, language = {en} } @article{KurabiSchaererNoacketal.2018, author = {Kurabi, Arwa and Schaerer, Daniel and Noack, Volker and Bernhardt, Marlen and Pak, Kwang and Alexander, Thomas and Husseman, Jacob and Nguyen, Quyen and Harris, Jeffrey P. and Ryan, Allen F.}, title = {Active Transport of Peptides Across the Intact Human Tympanic Membrane}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-30031-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230929}, year = {2018}, abstract = {We previously identified peptides that are actively transported across the intact tympanic membrane (TM) of rats with infected middle ears. To assess the possibility that this transport would also occur across the human TM, we first developed and validated an assay to evaluate transport in vitro using fragments of the TM. Using this assay, we demonstrated the ability of phage bearing a TM-transiting peptide to cross freshly dissected TM fragments from infected rats or from uninfected rats, guinea pigs and rabbits. We then evaluated transport across fragments of the human TM that were discarded during otologic surgery. Human trans-TM transport was similar to that seen in the animal species. Finally, we found that free peptide, unconnected to phage, was transported across the TM at a rate comparable to that seen for peptide-bearing phage. These studies provide evidence supporting the concept of peptide-mediated drug delivery across the intact TM and into the middle ears of patients.}, language = {en} } @article{LiuWangSatoetal.2019, author = {Liu, Yuhai and Wang, Zhenjiu and Sato, Toshihiro and Hohenadler, Martin and Wang, Chong and Guo, Wenan and Assaad, Fakher F.}, title = {Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10372-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237024}, year = {2019}, abstract = {The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed matter physics. While a QSH state from spin-orbit coupling can be fully understood in terms of band theory, fascinating many-body effects are expected if it instead results from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac fermions where a QSH state is dynamically generated. Our tuning parameter further allows us to destabilize the QSH state in favour of a superconducting state through proliferation of charge-2e topological defects. This route to superconductivity put forward by Grover and Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the possibility to study DQCPs without a second length scale associated with the reduced symmetry between field theory and lattice realization and, by construction, is amenable to large-scale fermion quantum Monte Carlo simulations.}, language = {en} } @phdthesis{Starz2024, author = {Starz, Katharina Theresa}, title = {Das Sharenting in der Zivilrechtsdogmatik : zu den Grenzen elterlicher Dispositionsbefugnis {\"u}ber das Pers{\"o}nlichkeitsrecht des Kindes}, publisher = {Mohr Siebeck}, address = {T{\"u}bingen}, doi = {10.25972/OPUS-36966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369667}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {256}, year = {2024}, abstract = {Im Zeitalter der sozialen Medien ist es f{\"u}r viele Eltern zur Gewohnheit geworden, nicht nur sich selbst, sondern auch das eigene Kind der Internetgemeinschaft zu pr{\"a}sentieren. Diese Praxis wird als "Sharenting" ("to share" + "parenting") bezeichnet. So kommt es, dass mittlerweile ein Großteil der Kinder bereits in sehr jungen Jahren einen - unfreiwilligen - digitalen Fußabdruck hinterl{\"a}sst. Der freiz{\"u}gige Umgang mit den Daten des Kindes bringt zahlreiche rechtliche Probleme mit sich, welche an den Schnittstellen des Rechts zum Schutz der Pers{\"o}nlichkeit, des Datenschutzrechts und des Familienrechts zu verorten sind. Am Beispiel der Plattformen Facebook, Instagram und WhatsApp lotet Katharina Theresa Starz die Grenzen des rechtlich Zul{\"a}ssigen aus und zeigt auf, welche Konsequenzen sich ergeben k{\"o}nnen, wenn ebendiese Grenzen von den Eltern {\"u}berschritten werden.}, language = {de} } @article{LopezKleinheinzAukemaetal.2019, author = {L{\´o}pez, Cristina and Kleinheinz, Kortine and Aukema, Sietse M. and Rohde, Marius and Bernhart, Stephan H. and H{\"u}bschmann, Daniel and Wagener, Rabea and Toprak, Umut H. and Raimondi, Francesco and Kreuz, Markus and Waszak, Sebastian M. and Huang, Zhiqin and Sieverling, Lina and Paramasivam, Nagarajan and Seufert, Julian and Sungalee, Stephanie and Russell, Robert B. and Bausinger, Julia and Kretzmer, Helene and Ammerpohl, Ole and Bergmann, Anke K. and Binder, Hans and Borkhardt, Arndt and Brors, Benedikt and Claviez, Alexander and Doose, Gero and Feuerbach, Lars and Haake, Andrea and Hansmann, Martin-Leo and Hoell, Jessica and Hummel, Michael and Korbel, Jan O. and Lawerenz, Chris and Lenze, Dido and Radlwimmer, Bernhard and Richter, Julia and Rosenstiel, Philip and Rosenwald, Andreas and Schilhabel, Markus B. and Stein, Harald and Stilgenbauer, Stephan and Stadler, Peter F. and Szczepanowski, Monika and Weniger, Marc A. and Zapatka, Marc and Eils, Roland and Lichter, Peter and Loeffler, Markus and M{\"o}ller, Peter and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Hoffmann, Steve and K{\"u}ppers, Ralf and Burkhardt, Birgit and Schlesner, Matthias and Siebert, Reiner}, title = {Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {ICGC MMML-Seq Consortium}, doi = {10.1038/s41467-019-08578-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237281}, year = {2019}, abstract = {Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.}, language = {en} } @article{LuBoswellBoswelletal.2019, author = {Lu, Yuan and Boswell, Wiliam and Boswell, Mikki and Klotz, Barbara and Kneitz, Susanne and Regneri, Janine and Savage, Markita and Mendoza, Cristina and Postlethwait, John and Warren, Wesley C. and Schartl, Manfred and Walter, Ronald B.}, title = {Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-36656-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237322}, year = {2019}, abstract = {Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100\% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.}, language = {en} } @article{MercierWolmaransSchubertetal.2019, author = {Mercier, Rebecca and Wolmarans, Annemarie and Schubert, Jonathan and Neuweiler, Hannes and Johnson, Jill L. and LaPointe, Paul}, title = {The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09299-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224007}, year = {2019}, abstract = {Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.}, language = {en} } @article{MeralProvasiPradaGraciaetal.2018, author = {Meral, Derya and Provasi, Davide and Prada-Gracia, Diego and M{\"o}ller, Jan and Marino, Kristen and Lohse, Martin J. and Filizola, Marta}, title = {Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-26070-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223995}, year = {2018}, abstract = {Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.}, language = {en} } @article{MedlerNelkeWeisenbergeretal.2019, author = {Medler, Juliane and Nelke, Johannes and Weisenberger, Daniela and Steinfatt, Tim and Rothaug, Moritz and Berr, Susanne and H{\"u}nig, Thomas and Beilhack, Andreas and Wajant, Harald}, title = {TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1456-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223948}, year = {2019}, abstract = {Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed.}, language = {en} } @article{LuebckeEbbersVolzkeetal.2019, author = {L{\"u}bcke, Paul M. and Ebbers, Meinolf N. B. and Volzke, Johann and Bull, Jana and Kneitz, Susanne and Engelmann, Robby and Lang, Hermann and Kreikemeyer, Bernd and M{\"u}ller-Hilke, Brigitte}, title = {Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44512-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237355}, year = {2019}, abstract = {Recent studies indicate a causal relationship between the periodontal pathogen P. gingivalis and rheumatoid arthritis involving the production of autoantibodies against citrullinated peptides. We therefore postulated that therapeutic eradication P. gingivalis may ameliorate rheumatoid arthritis development and here turned to a mouse model in order to challenge our hypothesis. F1 (DBA/1 x B10.Q) mice were orally inoculated with P. gingivalis before collagen-induced arthritis was provoked. Chlorhexidine or metronidazole were orally administered either before or during the induction phase of arthritis and their effects on arthritis progression and alveolar bone loss were compared to intraperitoneally injected methotrexate. Arthritis incidence and severity were macroscopically scored and alveolar bone loss was evaluated via microcomputed tomography. Serum antibody titres against P. gingivalis were quantified by ELISA and microbial dysbiosis following oral inoculation was monitored in stool samples via microbiome analyses. Both, oral chlorhexidine and metronidazole reduced the incidence and ameliorated the severity of collagen-induced arthritis comparable to methotrexate. Likewise, all three therapies attenuated alveolar bone loss. Relative abundance of Porphyromonadaceae was increased after oral inoculation with P. gingivalis and decreased after treatment. This is the first study to describe beneficial effects of non-surgical periodontal treatment on collagen-induced arthritis in mice and suggests that mouthwash with chlorhexidine or metronidazole may also be beneficial for patients with rheumatoid arthritis and a coexisting periodontitis. Methotrexate ameliorated periodontitis in mice, further raising the possibility that methotrexate may also positively impact on the tooth supporting tissues of patients with rheumatoid arthritis.}, language = {en} } @phdthesis{Kumar2024, author = {Kumar, Manish}, title = {Structural and compositional effects on tree-water relation}, doi = {10.25972/OPUS-32624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Forests are essential sources of tangible and intangible benefits, but global climate change associated with recurrent extreme drought episodes severely affects forest productivity due to extensive tree die-back. On that, it appeals to an urgency for large-scale reforestation efforts to mitigate the impact of climate change worldwide; however, there is a lack of understanding of drought-effect on sapling growth and survival mechanisms. It is also challenging to anticipate how long trees can survive and when they succumb to drought. Hence, to ensure success of reforestation programs and sustainable forest productivity, it is essential to identify drought-resistant saplings. For that, profound knowledge of hydraulic characteristics is needed. To achieve this, the study was split into two phases which seek to address (1) how the hydraulic and anatomical traits influence the sapling's growth rate under drought stress. (2) how plant water potential regulation and physiological traits are linked to species' water use strategies and their drought tolerance. The dissertation is assembled of two study campaigns carried out on saplings at the Chair of Botany II, University of W{\"u}rzburg, Germany. The first study involved three ecologically important temperate broadleaved tree species — saplings of 18-month (Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia) — grown from seeds in contrasting conditions (inside a greenhouse and outside), with the latter being subjected to severe natural heat waves. In the second study, two additional temperate species (Fagus sylvatica and Tilia cordata) were added. The drying-out event was conducted using a randomised blocked design by monitoring plant water status in a climate-controlled chamber and a greenhouse. In campaign I, I present the result based on analysed data of 82 plants of temperate deciduous species and address the juvenile growth rate trade-off with xylem safety-efficiency. Our results indicate biomass production varies considerably due to the contrasted growing environment. High hydraulic efficiency is necessary for increased biomass production, while safety-efficiency traits are decoupled and species-specific. Furthermore, productivity was linked considerably to xylem safety without revealing a well-defined pattern among species. Moreover, plasticity in traits differed between stressed and non-stressed plants. For example, safety-related characteristics were more static than efficiency-related traits, which had higher intra-specific variation. Moreover, we recorded anatomical and leaf traits adjustments in response to a stress condition, but consistency among species is lacking. In campaign II, I combined different ways to estimate the degree of isohydry based on water potential regulation and connected the iso-anisohydric spectrum (i.e., hydroscape area, HSA) to hydraulic traits to elucidate actual plant performance during drought. We analysed plant water potential regulation (Ψpd and Ψmd) and stomatal conductance of 28-29 month saplings of five species. I used a linear mixed modelling approach that allowed to control individual variations to describe the water potential regulation and tested different conceptual definitions of isohydricity. The combined methods allowed us to estimate species' relative degree of isohydry. Further, we examined the traits coordination, including hydraulic safety margin, HSM; embolism resistance, P88; turgor loss, Ψtlp; stomata closure, Ps90; capacitance, C; cuticular conductance, gmin, to determine time to hydraulic failure (Thf). Thf is the cumulative effect of time to stomata closure (Tsc) and time after stomatal closure to catastrophic hydraulic failure (Tcrit). Our results show the species' HSA matches their stomatal stringency, which confirms the relationship between stomatal response and leaf water potential decline. Species that close stomata at lower water potential notably had a larger HSA. Isohydric behaviour was mostly associated with leaf hydraulic traits and poorly to xylem safety traits. Species' degree of isohydry was also unrelated to the species' time to death during drying-out experiments. This supports the notion that isohydry behaviours are linked to water use rather than drought survival strategies. Further, consistent with our assumptions, more isohydric species had larger internal water storage and lost their leaf turgor at less negative water potentials. Counter to our expectations, neither embolism resistance nor the associated hydraulic safety margins were related to metrics of isohydry. Instead, our results indicate traits associated with plant drought response to cluster along two largely independent axes of variation (i.e., stomatal stringency and xylem safety). Furthermore, on the temporal progression of plant drought responses, stomatal closure is critical in coordinating various traits to determine species' hydraulic strategies. Desiccation avoidance strategy was linked to Tsc and coordinated traits response of Ps90, Ψtlp, and HSA, whereas desiccation tolerance was related to Tcrit and traits such as lower P88 value, high HSM, and lower gmin. Notably, the shoot capacitance (C) is crucial in Thf and exhibits dichotomous behaviour linked to both Tsc and Tcrit. In conclusion, knowledge of growth rate trade-offs with xylem safety-efficiency combined with traits linked to species' hydraulic strategies along the isohydry could substantially enhance our ability to identify drought-resistant saplings to ensure the success of reforestation programs and predicting sensitivity to drought for achieving sustainable forest ecosystems.}, subject = {Wachstumsrate}, language = {en} } @phdthesis{Jorgacevic2024, author = {Jorgacevic, Ivana}, title = {Elucidating the interconnection of GvHD and Western diet-induced atherosclerosis}, doi = {10.25972/OPUS-32579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325792}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Allogeneic hematopoietic cell transplantation (Allo-HCT) is the main and only treatment for many malignant and non-malignant haematological disorders. Even though the treatment has improved through the years and patient life expectancy has increased, graft versus host disease (GvHD) is still considered the main obstacle and one of the main reasons for increased mortality. Furthermore, improved patient's survival and life expectancy brought into question the late post-HCT complications. The leading cause of late death after allo-HCT is the relapse of primary disease as well as chronic GvHD (cGvHD). However, a clear relationship was also described with pulmonary complications, endocrine dysfunction and infertility, and cataracts in post-HCT patients. In the last years big concern regarding a cumulative cardiovascular incidence in long-term survivors has been raised. Severe cardiovascular disease (CVD) is caused by atherosclerosis which is considered a chronic inflammatory disease of blood vessels. As such, it takes a long time from endothelial damage, as the onset event, and followed plaque formation to a manifestation of severe consequences, such as stroke, coronary heart disease, or peripheral arterial disease. Endothelial damage is well documented in patients post-HCT. In the context of allo-HCT, the endothelial damage is induced by the conditioning regimen with or without total body irradiation (TBI). Furthermore, endothelial cells (ECs) have been documented as a target of GvHD and increased concentration of circulating endothelial cells (CEC) coinciding with an increase in the number of circulating alloreactive T cells. According to 2021 ESC Guidelines on CVD prevention, the main atherosclerotic CVD (ASCVD) risk factors are blood apolipoprotein B (ApoB)-containing lipoproteins (of which low-density lipoprotein (LDL) is the most abundant), high blood pressure, cigarette smoking and diabetes mellitus (DM). GvHD is considered a high-risk factor for the onset of dyslipidaemia, hypertension, and DM. Overall, the risk of premature cardiovascular death is 2.7 fold increased in comparison to the general population, while the cumulative incidence of cardiovascular complications was shown to be up to 47\% at ten years after reduced intensity conditioning (RIC), post-HCT. However, up to date, there are no available studies elucidating the interconnection between GvHD and atherosclerosis. The goal of this study was, therefore, to investigate the involvement of GvHD in the progression of atherosclerosis as well as to elucidate whether cytotoxic, CD8+ T cells that were shown to play a significant role in endothelial damage during the course of skin GvHD on one hand, and inducers of formation of unstable plaque on the other, are involved in this interconnection. For that purpose we established a novel minor histocompatibility anti gens (miHAg) allo-HCT Western diet (WD)-induced atherosclerosis mouse model. We were able to show that GvHD has a significant impact on atherosclerosis development in B6.Ldlr-/- recipient mice even in the absence of overt clinical disease activity. It seems that the impact is at least partly induced by CD8+ T cells, that showed significantly increased infiltration of aortic lesions in mice facing subclinical GvHD. As studies have shown in regular atherosclerotic mouse models as well as in humans, these CD8+ T cells exhibited not only increased expression of genes involved in activation, survival and differentiation to cytotoxic phenotype, but also some genes pointing out their exhaustion, that were absent in CD4+ T cell cluster. When anti-CD8β antibody was applied once per week along with WD feeding for eight weeks, the plaque formation was significantly reduced in aorta and aortic root pointing out the importance of these cells in an alloreactivity induced lesion formation. Furthermore, anti-CD8β treatment led to significantly decreased necrotic core formation followed by overall increase in plaque stability. Strikingly, bone marrow plus T cells (BMT) recipients fed WD showed significantly increased serum cholesterol levels in comparison to bone marrow (BM) (a group lacking alloreactive T cells that induce GvHD). This effect was reversed when anti-CD8β treatment was applied, suggesting, at least partly, an impact of alloreactive CD8+ T cells on cholesterol levels. Expression of genes responsible for lipid metabolism pointed out the tendency of the liver to regulate the increased cholesterol levels, however, the mechanism behind this phenotype still remains to be revealed. On the other hand, the impact of obesity, induced by chronic high-fat diet (HFD) feeding, has been shown to be an independent risk factor for gastrointestinal GvHD. Similarly, in major histocompatibility complex (MHC) disparate allo-HCT mouse model, we have noticed that even short-term WD intake leads to a significant decrease in survival of mice post-HCT. When the concentration of transplanted alloreactive T cells was reduced, the survival was improved, pointing out the involvement of these cells in the pathogenesis. Additionally, bioluminescence imaging (BLI) during initiation and effector phase of acute GvHD (aGvHD) revealed increased infiltration of alloreactive T cells in mice fed WD. Studies in an obesity model, we could confirm the involvement of specifically CD4+ T cells in WD induced impact, as the relative number of these cells was significantly increased in small intestine on day six post-HCT in mice fed WD. This increased intestinal infiltration was preceded by increase in the number of alloreactive T cells expressing intestine homing receptor (α4β7 integrin) in peripheral lymph nodes (LNs). Even though the number of T cells was not changed in the spleen of WD fed mice, the subset of CD4+ and CD8+ T cells that were highly secreting TNFα was increased as well as the expression of genes regulating pro-inflammatory cytokines such as IL-6 and interferon (IFN)γ pointing out significant WD-induced inflammation. Moreover, slight tendency towards increased intestinal permeability and load of translocated luminal bacteria, that we observed, could induce severe endotoxemia and dysregulated systemic immune response that could lead to detrimental induction of cell death. Justifying our speculations, we noted increased levels of transaminases and an increase in lactate dehydrogenase (LDH) levels (pointing out significant tissue damages). However, the exact mechanism behind this detrimental WD impact still remains to be elucidated.}, subject = {Periphere Stammzellentransplantation}, language = {en} } @phdthesis{Waltmann2024, author = {Waltmann, Maria}, title = {Neurocognitive mechanisms of loss of control in Binge Eating Disorder}, doi = {10.25972/OPUS-36430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-364300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Binge Eating Disorder (BED) is a common, early-onset mental health condition characterised by uncontrollable episodes of overeating followed by negative emotions such as guilt and shame. An improved understanding of the neurocognitive mechanisms underlying BED is central to the development of more targeted and effective treatments. This thesis comprises a systematic review and three empirical studies contributing to this endeavour. BED can be thought of as a disorder of cognitive-behavioural control. Indeed, self-report evidence points towards enhanced impulsivity and compulsivity in BED. However, retrospective self-reports do not capture the mechanisms underlying impulsive and compulsive lapses of control in the moment. The systematic review therefore focussed on the experimental literature on impulsivity and compulsivity in BED. The evidence was very mixed, although there was some indication of altered goal-directed control and behavioural flexibility in BED. We highlight poor reliability of experimental paradigms and the failure to properly account for weight status as potential reasons for inconsistencies between studies. Moreover, we propose that impulsivity and/or compulsivity may be selectively enhanced in negative mood states in BED and may therefore not be consistently detected in lab-based studies. In the empirical studies, we explored the role of behavioural flexibility in BED using experimental and neuroimaging methods in concert with computational modelling. In the first empirical study, we assessed the reliability of a common measure of behavioural flexibility, the Probabilistic Reversal Learning Task (PRLT). We demonstrate that the behavioural and computational metrics of the PRLT have sufficient reliability to justify past and future applications if calculated using hierarchical modelling. This substantially improves reliability by reducing error variance. The results support the use of the PRLT in the second and third empirical studies on development and BED. Because a majority of patients develop BED as adolescents or young adults, we speculated that it may emerge as a consequence of disrupted or deficient maturation of behavioural flexibility. Little is known about typical development in this domain. We therefore investigated normative development of reversal learning from adolescence to adulthood in the second empirical study. Typically- developing adolescents exhibited less adaptive and more erratic and explorative behaviour than adults. This behaviour was accounted for by reduced sensitivity to positive feedback in a reinforcement learning model, and partially mediated by reduced activation reflecting uncertainty in the medial prefrontal cortex, a region known to mature substantially during adolescence. In the third empirical study, we investigated reversal learning in BED, paying special attention to potential biases associated with learning from wins vs learning from losses. We speculated that negative urgency could make it more difficult for BED patients to learn and make decisions under pressure to avoid losses. To dissociate between effects of excess weight and BED, we collected data from obese individuals with and without BED as well as normal-weight controls. As hypothesised, there were subtle neurocognitive differences between obese participants with and without BED with regard to learning to obtain rewards and to avoid losses. Obese individuals showed relatively impaired learning to obtain rewards, while BED patients showed relatively impaired learning to avoid losses. This was reflected in differential learning signals in the brain and associated with BED symptom severity. In sum, this thesis shows that the evidence on impulsivity and compulsivity in BED is inconsistent and offers potential explanations for this inconsistency. It highlights the need for reliability in interindividual difference research and indicates ways to improve it. Further, it charts the typical development of reversal learning from adolescence to adulthood and underscores the relevance of exploration in the context of learning and decision-making in adolescence. Finally, it demonstrates qualitative differences between BED and obesity, hinting at a pivotal role of aversive states in loss of control in BED.}, subject = {Binge-eating Disorder}, language = {en} } @phdthesis{Steinmueller2024, author = {Steinm{\"u}ller, Sophie Anna Maria}, title = {Benzimidazole-Based Photoswitches and Photoswitchable Cannabinoid 2 Receptor Ligands}, doi = {10.25972/OPUS-34894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348943}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The field of photopharmacology has attracted considerable attention due to applying the spatial and temporal precision of light to pharmacological systems. Photoswitchable biologically active compounds have proven useful in the field of G protein-coupled receptors (GPCRs), which are of tremendous therapeutic relevance. Generally, the pharmacology of GPCRs is complex, perhaps even more complex than originally thought. Suitable tools are required to dissect the different signalling pathways and mechanisms and to unravel how they are connected in a holistic image. This is reflected in the enormous scientific interest in CB2R, as the neuroprotective and immunomodulatory effects attributed to CB2R agonists have not yet translated into effective therapeutics. This work focused on the development of a novel photoswitchable scaffold based on the privileged structure of benzimidazole and its application in photoswitchable CB2R ligands as photopharmacological tools for studying the CB2R. The visible-light photoswitchable ligand 10d enables the investigation of CB2R activation with regard to βarr2 bias, exhibiting a unique pharmacological profile as a "cis-on" affinity switch at receptor level and as a "trans-on" efficacy-switch in βarr2-mediated receptor internalization. The novel photoswitchable scaffold developed in this work further serves as a guide for the development of novel photoswitchable GPCR ligands based on the privileged structure of benzimidazole. To obtain a different tool compound for studying CB2R activation and signalling mechanisms, a previously reported putatively dualsteric CB2R ligand was rendered photoswitchable, by linking the orthosteric agonist to a CB2R-selective PAM via photoswitchable azobenzene. Compound 27-para exhibits a desirable "cis-on" behaviour across all investigated assays with >10-fold higher potency compared to its trans-isomer and can be used as an efficacy-switch employing specific concentrations.}, subject = {Cannabinoide}, language = {en} } @phdthesis{Kreisz2024, author = {Kreisz, Philipp}, title = {Group S1 bZIP transcription factors regulate sink tissue development by controlling carbon and nitrogen resource allocation in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321925}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The evolutionary success of higher plants is largely attributed to their tremendous developmental plasticity, which allows them to cope with adverse conditions. However, because these adaptations require investments of resources, they must be tightly regulated to avoid unfavourable trade-offs. Most of the resources required are macronutrients based on carbon and nitrogen. Limitations in the availability of these nutrients have major effects on gene expression, metabolism, and overall plant morphology. These changes are largely mediated by the highly conserved master kinase SNF1-RELATED PROTEIN KINASE1 (SnRK1), which represses growth and induces catabolic processes. Downstream of SnRK1, a hub of heterodimerising group C and S1 BASIC LEUCINE ZIPPER (bZIP) transcription factors has been identified. These bZIPs act as regulators of nutrient homeostasis and are highly expressed in strong sink tissues, such as flowers or the meristems that initiate lateral growth of both shoots and roots. However, their potential involvement in controlling developmental responses through their impact on resource allocation and usage has been largely neglected so far. Therefore, the objective of this work was to elucidate the impact of particularly S1 bZIPs on gene expression, metabolism, and plant development. Due to the high homology and suspected partial redundancy of S1 bZIPs, higher order loss-of-function mutants were generated using CRISPR-Cas9. The triple mutant bzip2/11/44 showed a variety of robust morphological changes but maintained an overall growth comparable to wildtype plants. In detail however, seedlings exhibited a strong reduction in primary root length. In addition, floral transition was delayed, and siliques and seeds were smaller, indicating a reduced supply of resources to the shoot and root apices. However, lateral root density and axillary shoot branching were increased, suggesting an increased ratio of lateral to apical growth in the mutant. The full group S1 knockout bzip1/2/11/44/53 showed similar phenotypes, albeit far more pronounced and accompanied by growth retardation. Metabolomic approaches revealed that these architectural changes were accompanied by reduced sugar levels in distal sink tissues such as flowers and roots. Sugar levels were also diminished in leaf apoplasts, indicating that long distance transport of sugars by apoplastic phloem loading was impaired in the mutants. In contrast, an increased sugar supply to the proximal axillary buds and elevated starch levels in the leaves were measured. In addition, free amino acid levels were increased in bzip2/11/44 and bzip1/2/11/44/53, especially for the important transport forms asparagine and glutamine. The increased C and N availability in the proximal tissues could be the cause of the increased axillary branching in the mutants. To identify bZIP target genes that might cause the observed shifts in metabolic status, RNAseq experiments were performed. Strikingly, clade III SUGARS WILL EVENTUALLY BE EXPORTED (SWEET) 8 genes were abundant among the differentially expressed genes. As SWEETs are crucial for sugar export to the apoplast and long-distance transport through the phloem, their reduced expression is likely to be the cause of the observed changes in sugar allocation. Similarly, the reduced expression of GLUTAMINE AMIDOTRANSFERASE 1_2.1 (GAT1_2.1), which exhibits glutaminase activity, could be an explanation for the abundance of glutamine in the mutants. Additional experiments (ATAC-seq, DAP� seq, PTA, q-RT-PCR) supported the direct induction of SWEETs and GAT1_2.1 by S1 bZIPs. To confirm the involvement of these target genes in the observed S1 bZIP mutant phenotypes, loss-of-function mutants were obtained, which showed moderately increased axillary branching. At the same time, the induced overexpression of bZIP11 in axillary meristems had the opposite effect. Collectively, a model is proposed for the function of S1 bZIPs in regulating sink tissue development. For efficient long-distance sugar transport, bZIPs may be required to induce the expression of clade III SWEETs. Thus, reduced SWEET expression in the S1 bZIP mutants would lead to a decrease in apoplastic sugar loading and a reduced supply to distal sinks such as shoot or root apices. The reduction in long� distance transport could lead to sugar accumulation in the leaves, which would then increasingly be transported via symplastic routes towards proximal sinks such as axillary branches and lateral roots or sequestered as starch. The reduced GAT1_2.1 levels lead to an abundance of glutamine, a major nitrogen transport form. The combined effect on C and N allocation results in increased nutrient availability in proximal tissues, promoting the formation of lateral plant organs. Alongside emerging evidence highlighting the power of bZIPs to steer nutrient allocation in other species, a novel but evolutionary conserved role for S1 bZIPs as regulators of developmental plasticity is proposed, while the generation of valuable data sets and novel genetic resources will help to gain a deeper understanding of the molecular mechanisms involved}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Papay2024, author = {Papay, Marion}, title = {Notwendigkeit der pr{\"a}operativen Reposition von distalen, nach dorsal dislozierten Radiusfrakturen bei bestehender Operationsindikation im Hinblick auf das Schmerzniveau sowie postoperative Ergebnisse}, doi = {10.25972/OPUS-36388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die distale Radiusfraktur geh{\"o}rt zu den h{\"a}ufigsten Frakturen in Deutschland mit einem Inzidenzanstieg im Alter unter Betonung des weiblichen Geschlechts. Dabei zeigt sich ein zunehmender Trend in Richtung operative Versorgung, allen voran die Versorgung mittels winkelstabiler Plattensysteme. Instabile, distale Radiusfrakturen werden dabei vor geplanter operativer Versorgung im Rahmen der Initialbehandlung {\"u}blicherweise geschlossen reponiert und im Gipsverband retiniert. Ziel der vorliegenden monozentrischen, prospektiv randomisierten Studie mit zwei Studiengruppen war es herauszufinden, ob sich das Unterlassen der Reposition vor geplanter Operation nachteilig auf das Schmerzniveau in der pr{\"a}operativen Phase auswirkt und ob sich durch die Dislokation Nachteile in Bezug auf den Nervus medianus im Sinne eines Traktionsschadens sowie bez{\"u}glich des klinisch-radiologischen Ausheilungsergebnisses zeigen. Die Studie zeigte, dass das Schmerzempfinden w{\"a}hrend der pr{\"a}operativen Gipsbehandlung unabh{\"a}ngig von einer vorherigen Reposition war. F{\"u}r den prim{\"a}ren Endpunkt an Tag 1 nach der Akutbehandlung konnte statistisch signifikante Nichtunterlegenheit der Gruppe ohne Reposition gegen{\"u}ber der Gruppe mit Reposition nachgewiesen werden. Gleiches galt f{\"u}r Tag 2, sowohl f{\"u}r die absoluten Schmerzniveaus als auch f{\"u}r die Schmerzlinderung. Das Unterlassen der Reposition hatte zudem keine nachteiligen Effekte auf den Nervus medianus. Gleiches zeigte sich f{\"u}r das klinische und radiologische Ausheilungsergebnis. F{\"u}r die funktionellen DASH- und Krimmer-Scores konnte ein Jahr postoperativ ebenfalls statistisch signifikante Nichtunterlegenheit der Gruppe ohne Reposition nachgewiesen werden. Diese Erkenntnisse best{\"a}tigen die in der Literatur vorhandenen Ergebnisse verschiedener Studien dahingehend, dass das Unterlassen der Reposition keine nachteiligen Effekte auf das postoperative Outcome hat. Einige Studien verdeutlichen zudem, dass es nach Reposition, insbesondere bei Vorliegen gewisser Risiko- und Instabilit{\"a}tsfaktoren, ohnehin zur sekund{\"a}ren Dislokation kommt, sodass die generelle Notwendigkeit der Reposition vor Gipsanlage sowohl vor einer operativen als auch vor einer konservativen Weiterbehandlung angezweifelt werden muss.}, subject = {distale Radiusfraktur}, language = {de} } @article{OPUS4-31269, title = {Measurement of prompt photon production in √ s(NN) = 8.16 TeV \(p\) Pb collisions with ATLAS}, series = {Physics letters B}, volume = {796}, journal = {Physics letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2019.07.031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312697}, pages = {230-252}, year = {2019}, abstract = {The inclusive production rates of isolated, prompt photons in p Pb collisions at root s(NN) = 8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb(-1) recorded in 2016. The cross-section and nuclear modification factor R-p pb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83, -2.02), (-1.84, 0.91), and (1.09, 1.90). The cross-section and R-p pb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei. (C) 2019 The Author. Published by Elsevier B.V.}, language = {en} } @phdthesis{vonderHeide2024, author = {von der Heide, Julia Magdalena}, title = {Ist eine Berechnung der Geometrie der Halswirbelk{\"o}rper anhand ihrer Morphologie im Kindesalter und somit eine Individualisierung der CVM-Methode m{\"o}glich?}, doi = {10.25972/OPUS-36075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360753}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ziel der vorliegenden Studie war es zu untersuchen, ob anhand geometrischer Merkmale der HWK im Kindesalter eine sichere individuelle Vorhersage der Morphologie der HWK zum Ende der Entwicklung m{\"o}glich ist. Hierdurch k{\"o}nnte eine Individualisierung der CVM-Methode und somit eine Einsch{\"a}tzung des bereits verstrichenen Wachstums erfolgen. Zu diesem Zweck wurden insgesamt 1377 FRS-Aufnahmen von 267 Patienten - 110 weibliche und 157 m{\"a}nnliche - aus dem Archiv der Poliklinik f{\"u}r Kieferorthop{\"a}die des Universit{\"a}tsklinikums W{\"u}rzburg digitalisiert und untersucht. Die HWK wurden im Programm OnyxCeph (Herst.: Image Instruments GmbH) quantifiziert und die berechneten Werte mit der Software SPSS statistisch ausgewertet. Mittels linearer Regressionen wurde versucht, anhand der Morphologie der Wirbelk{\"o}rper vor dem puberalen Wachstumsschub auf die Geometrie der HWK im Erwachsenenalter zu schließen. Zur Illustrierung wurden Streudiagramm und die dazugeh{\"o}rigen Abfolgen von R{\"o}ntgenbildern dargestellt. Eine Sch{\"a}tzung der Geometrie der HWK im Erwachsenenalter w{\"u}rde bei den separat betrachteten Parametern und bei einer gemeinsamen Betrachtung der Parameter kaum zu korrekten Einsch{\"a}tzungen f{\"u}hren. Die Streudiagramme mit den Bilderabfolgen st{\"u}tzen diese These ebenfalls und illustrieren die m{\"o}gliche Fehleinsch{\"a}tzung der Geometrie. Die Ergebnisse der Studie zeigen erneut, dass die Geometrie der HWK im Erwachsenenalter sehr variabel ist, wie komplex die Entwicklung der HWK ist und dass anhand ihrer Geometrie im Kindesalter keine sichere Einsch{\"a}tzung der skelettalen Reife m{\"o}glich ist. Eine Individualisierung der CVM-Methode ist anhand der in dieser Studie untersuchten Parameter nicht m{\"o}glich. Somit l{\"a}sst sich schlussfolgern, dass die CVM-Methode nicht als alleinige Methode zur pr{\"a}zisen skelettalen Alterseinsch{\"a}tzung verl{\"a}sslich genutzt werden kann, sondern f{\"u}r eine sichere Beurteilung weitere Reifeindikatoren hinzugezogen werden sollten. Allerdings sollten hierzu zus{\"a}tzliche radiologische Untersuchungen, wie beispielsweise die Handr{\"o}ntgenaufnahme, nur dann durchgef{\"u}hrt werden, wenn diese dem ALARA-Prinzip entsprechen.}, subject = {Skelett}, language = {de} } @phdthesis{Roger2024, author = {Roger, Chantal}, title = {Photophysics and Spin Chemistry of Triptycene Bridge Donor-Acceptor-Triads}, doi = {10.25972/OPUS-36303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The goal of this thesis was to investigate the influence of rotational restriction between individual parts and of the varying electron density in the bridging unit of D B A systems on the exchange interaction 2J, and thus the electronic coupling between a donor state and an acceptor state. A better understanding of how to influence the underlaying spin dynamics in such donor acceptor systems can open up the door to new technologies, such as modern molecular electronics or optoelectronic devices. Therefore, three series of molecules consisting of a TAA electron donor, a TTC or ATC bridging unit and a PDI electron acceptor were studied. To investigate the influence of rotational restriction on 2J and the electronic coupling, a series of four rotationally hindered triads (chapter 6) was synthesised. The dihedral angle between the TAA and the TTC as well as between the TTC and the PDI was restricted by ortho methyl groups at the phenylene linkers of the connecting ends to the TTC bridge, producing a twist around the linking single bond which minimises the π overlap. The triads exhibit varying numbers of ortho methyl groups and therefore different degrees of rotational restriction. In order to shine light on the influence of varying electron density on 2J and the electronic coupling, a series of four substituted triptycene triads (chapter 7) was synthesised. The electron density in the TTC bridging unit was varied by electron donating and electron withdrawing groups in 12,13 position of the TTC bridging unit and thus varying its HOMO/LUMO energy. The last series of two anthracene bridge triads (chapter 8) connected both approaches by restricting the rotation with ortho methyl groups and simultaneously by varying the bridge energies. In order to obtain the electronic properties, steady state absorption and emission spectra of all triads were investigated (chapter 4). Here, all triads show spectral features associated with the separate absorption bands of TAA and the PDI moiety. The reduced QYs, compared to the unsubstituted PDI acceptor, indicate a non radiative quenching mechanism in all triads. The CV data (chapter 5) were used to calculate the energies of possible CSSs and those results were used to assign the CR dynamics into the different Marcus regions. fs TA measurements reveal that all triads form a CSS upon excitation of the PDI moiety. The lifetimes of the involved states and the rate constants were determined by global exponential fits and global target analysis. The CR dynamics upon depopulation of the CSSs were investigated using external magnetic field dependent ns TA spectroscopy. The ns TA maps show that all triads recombine via CRT pathway populating the local 3PDI state in toluene and provided the respective lifetimes. The approximate QYs of triplet formation were determined using actinometry. The magnetic field dependent ns TA data reveal the exchange interaction 2J between singlet and triplet CSS for each triad. Those magnetic field dependent ns TA data in toluene were furthermore treated using a quantum mechanical simulation (done by U.E. Steiner) to extract the rate constants kT and kS for CRT and CRS, respectively. However, the error margins of kS were rather wide. Finally, the electronic couplings between the donor and the acceptor states were obtained by combining the aforementioned experimental results of the rate constants and applying the Bixon Jortner theoretical description of diabatic ET and Andersons perturbative theory of the exchange coupling. Therefore, the experimentally determined values of 2J and the calculated values of kCS and kT were used. The rate constant kS was calculated based on the electronic coupling V1CSS 1S0. The rotationally hindered triads (chapter 6) show a strong influence of the degree of rotational restriction on the lifetimes and rate constants of the CS processes. The rate constants of CS are increasing with increasing rotational freedom. The magnetic field dependent decay data show that the exchange interactions increase with increasing rotational freedom. Based on the CR dynamics, the calculated electronic couplings of the ET processes reflect the same trend along the series. Here, only singlet couplings turned out to be strongly influenced while the triplet couplings are not. Therefore, this series shows that the ET dynamics of donor acceptor systems can strongly be influenced by restricting the rotational freedom. In the substituted triptycene triads (chapter 7), decreasing electron density in the bridging unit causes a decrease of the CS rate constants. The magnetic field dependent decay data show that with decreasing electron density in the bridge the exchange interaction decreases. The CR dynamics-based rate constants and the electronic couplings follow the same trend as the exchange interaction. This series shows that varying the HOMO/LUMO levels of the connecting bridge between donor and acceptor strongly influences the ET processes. In the anthracene bridge triads (chapter 8), the CS process is slow in both triads. The CR was fast in the anthracene triad and is slowed down in the methoxy substituted anthracene bridge triad. The increase of the exchange interaction with increasing electron density in the bridge was more pronounced than in the substituted triptycene triads. Thus, the variation of electron density in the bridge strongly influences the ET processes even though the rotation is restricted. In this thesis, it was shown that the influence of the rotational hindrance as well as the electron density in a connecting bridge have strong influence on all ET processes and the electronic coupling in donor acceptor systems. These approaches can therefore be used to modify magnetic properties of new materials.}, subject = {Rotation}, language = {en} } @phdthesis{Krings2024, author = {Krings, Moritz}, title = {Universit{\"a}re Psychiatrie um 1900 : Die Anfangsjahre der psychiatrischen Klinik in W{\"u}rzburg}, doi = {10.25972/OPUS-36140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361407}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ende des 19. Jahrhunderts standen sich in Deutschland zwei verschiedene Arten psychiatrischer Institutionen gegen{\"u}ber, die Anstaltspsychiatrien auf der einen, die universit{\"a}ren psychiatrischen Kliniken auf der anderen Seite. Die psychiatriehistorische Forschung widmete sich {\"u}berwiegend psychiatrischen Anstalten w{\"a}hrend Kliniken hier unterrepr{\"a}sentiert sind. Die vorliegende Arbeit m{\"o}chte zur historischen Kenntnis universit{\"a}rer psychiatrischer Einrichtungen beitragen. Hierzu werden die Charakteristika einer psychiatrischen Klinik um 1900 anhand des Beispiels der psychiatrischen Klinik der Universit{\"a}t W{\"u}rzburg betrachtet. Der Fokus liegt hierbei neben Lage und Aufbau der Klinik sowie deren Personal auf den drei Bereichen Patient*innen, Forschung und Lehre.}, subject = {Julius-Maximilians-Universit{\"a}t W{\"u}rzburg}, language = {de} }