@article{UeceylerKewenigKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Kewenig, Susanne and Kafke, Waldemar and Kittel-Schneider, Sarah and Sommer, Claudia}, title = {Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls}, doi = {10.1186/s12883-014-0185-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110624}, year = {2014}, abstract = {Background Fibromyalgia syndrome (FMS) is a chronic pain syndrome of unknown etiology. There is increasing evidence for small nerve fiber impairment in a subgroup of patients with FMS. We investigated whether skin cytokine and delta opioid receptor (DOR) gene expression in FMS patients differs from controls as one potential contributor to small nerve fiber sensitization. Methods We investigated skin punch biopsies of 25 FMS patients, ten patients with monopolar depression but no pain, and 35 healthy controls. Biopsies were obtained from the lateral upper thigh and lower calf. Gene expression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF), interleukin (IL)-6, and IL-8 and of the anti-inflammatory cytokine IL-10 was analyzed using quantitative real-time PCR and normalizing data to 18sRNA as housekeeping gene. Additionally, we assessed DOR gene expression. Results All cytokines and DOR were detectable in skin samples of FMS patients, patients with depression, and healthy controls without intergroup difference. Also, gene expression was not different in skin of the upper and lower leg within and between the groups and in FMS patient subgroups. Conclusions Skin cytokine and DOR gene expression does not differ between patients with FMS and controls. Our results do not support a role of the investigated cytokines in sensitization of peripheral nerve fibers as a potential mechanism of small fiber pathology in FMS.}, language = {en} } @article{UeceylerKahnKrameretal.2013, author = {{\"U}{\c{c}}eyler, Nurcan and Kahn, Ann-Kathrin and Kramer, Daniela and Zeller, Daniel and Casanova-Molla, Jordi and Wanner, Christoph and Weidemann, Frank and Katsarava, Zaza and Sommer, Claudia}, title = {Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study}, series = {BMC Neurology}, journal = {BMC Neurology}, doi = {10.1186/1471-2377-13-47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96527}, year = {2013}, abstract = {Background Fabry disease is an inborn lysosomal storage disorder which is associated with small fiber neuropathy. We set out to investigate small fiber conduction in Fabry patients using pain-related evoked potentials (PREP). Methods In this case-control study we prospectively studied 76 consecutive Fabry patients for electrical small fiber conduction in correlation with small fiber function and morphology. Data were compared with healthy controls using non-parametric statistical tests. All patients underwent neurological examination and were investigated with pain and depression questionnaires. Small fiber function (quantitative sensory testing, QST), morphology (skin punch biopsy), and electrical conduction (PREP) were assessed and correlated. Patients were stratified for gender and disease severity as reflected by renal function. Results All Fabry patients (31 men, 45 women) had small fiber neuropathy. Men with Fabry disease showed impaired cold (p < 0.01) and warm perception (p < 0.05), while women did not differ from controls. Intraepidermal nerve fiber density (IENFD) was reduced at the lower leg (p < 0.001) and the back (p < 0.05) mainly of men with impaired renal function. When investigating A-delta fiber conduction with PREP, men but not women with Fabry disease had lower amplitudes upon stimulation at face (p < 0.01), hands (p < 0.05), and feet (p < 0.01) compared to controls. PREP amplitudes further decreased with advance in disease severity. PREP amplitudes and warm (p < 0.05) and cold detection thresholds (p < 0.01) at the feet correlated positively in male patients. Conclusion Small fiber conduction is impaired in men with Fabry disease and worsens with advanced disease severity. PREP are well-suited to measure A-delta fiber conduction.}, language = {en} } @article{UeceylerHomolaGonzalezetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Homola, Gy{\"o}rgy A. and Gonz{\´a}lez, Hans Guerrero and Kramer, Daniela and Wanner, Christoph and Weidemann, Frank and Solymosi, L{\´a}szl{\´o} and Sommer, Claudia}, title = {Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease}, doi = {10.1371/journal.pone.0087054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112614}, year = {2014}, abstract = {A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males - females; normal - impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13\%) and 5/57 (9\%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1\%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87\%, specificity: 86\%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity.}, language = {en} } @article{UeceylerBuchholzKewenigetal.2020, author = {{\"U}{\c{c}}eyler, Nurcan and Buchholz, Hans-Georg and Kewenig, Susanne and Ament, Stephan-Johann and Birklein, Frank and Schreckenberger, Mathias and Sommer, Claudia}, title = {Cortical Binding Potential of Opioid Receptors in Patients With Fibromyalgia Syndrome and Reduced Systemic Interleukin-4 Levels - A Pilot Study}, series = {Frontiers in Neuroscience}, volume = {14}, journal = {Frontiers in Neuroscience}, issn = {1662-453X}, doi = {10.3389/fnins.2020.00512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204457}, year = {2020}, abstract = {Objective: We investigated cerebral opioid receptor binding potential in patients with fibromyalgia syndrome (FMS) using positron-emission-tomography (PET) and correlated our results with patients' systemic interleukin-4 (IL-4) gene expression. Methods: In this pilot study, seven FMS patients (1 man, 6 women) agreed to participate in experimental PET scans. All patients underwent neurological examination, were investigated with questionnaires for pain, depression, and FMS symptoms. Additionally, blood for IL-4 gene expression analysis was withdrawn at two time points with a median latency of 1.3 years. Patients were investigated in a PET scanner using the opioid receptor ligand F-18-fluoro-ethyl-diprenorphine ([18F]FEDPN) and results were compared with laboratory normative values. Results: Neurological examination was normal in all FMS patients. Reduced opioid receptor binding was found in mid cingulate cortex compared to healthy controls (p < 0.005). Interestingly, three patients with high systemic IL-4 gene expression had increased opioid receptor binding in the fronto-basal cortex compared to those with low IL-4 gene expression (p < 0.005). Conclusion: Our data give further evidence for a reduction in cortical opioid receptor availability in FMS patients as another potential central nervous system contributor to pain in FMS.}, language = {en} } @article{UeceylerBikoHoseetal.2016, author = {{\"U}{\c{c}}eyler, Nurcan and Biko, Lydia and Hose, Dorothea and Hoffmann, Lukas and Sommer, Claudia}, title = {Comprehensive and differential long-term characterization of the alpha-galactosidase A deficient mouse model of Fabry disease focusing on the sensory system and pain development}, series = {Molecular Pain}, volume = {12}, journal = {Molecular Pain}, number = {1744806916646370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147562}, year = {2016}, abstract = {Fabry disease is an X-linked lysosomal storage disorder due to impaired activity of alpha-galactosidase A with intracellular accumulation of globotriaosylceramide. Associated small fiber pathology leads to characteristic pain in Fabry disease. We systematically assessed sensory system, physical activity, metabolic parameters, and morphology of male and female mice with alpha-galactosidase A deficiency (Fabry ko) from 2 to 27 months of age and compared results with those of age- and gender-matched wild-type littermates of C57Bl/6J background. Results From the age of two months, male and female Fabry mice showed mechanical hypersensitivity (p < 0.001 each) compared to wild-type littermates. Young Fabry ko mice of both genders were hypersensitive to heat stimulation (p < 0.01) and developed heat hyposensitivity with aging (p < 0.05), while cold hyposensitivity was present constantly in young (p < 0.01) and old (p < 0.05) Fabry ko mice compared to wild-type littermates. Stride angle increased only in male Fabry ko mice with aging (p < 0.01) in comparison to wild-type littermates. Except for young female mice, male (p < 0.05) and female (p < 0.01) Fabry ko mice had a higher body weight than wild-type littermates. Old male Fabry ko mice were physically less active than their wild-type littermates (p < 0.05), had lower chow intake (p < 0.001), and lost more weight (p < 0.001) in a one-week treadmill experiment than wild-type littermates. Also, Fabry ko mice showed spontaneous pain protective behavior and developed orofacial dysmorphism resembling patients with Fabry disease. Conclusions. Mice with alpha-galactosidase A deficiency show age-dependent and distinct deficits of the sensory system. alpha-galactosidase A-deficient mice seem to model human Fabry disease and may be helpful when studying the pathophysiology of Fabry-associated pain.}, language = {en} } @phdthesis{Uereyen2022, author = {{\"U}reyen, Soner}, title = {Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins}, doi = {10.25972/OPUS-29194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.}, subject = {Multivariate Analyse}, language = {en} } @phdthesis{Uenzelmann2022, author = {{\"U}nzelmann, Maximilian}, title = {Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling - From the Rashba Effect to Weyl Semimetals}, doi = {10.25972/OPUS-28310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs.}, subject = {Rashba-Effekt}, language = {en} } @article{UenzelmannBentmannFiggemeieretal.2021, author = {{\"U}nzelmann, M. and Bentmann, H. and Figgemeier, T. and Eck, P. and Neu, J. N. and Geldiyev, B. and Diekmann, F. and Rohlf, S. and Buck, J. and Hoesch, M. and Kall{\"a}ne, M. and Rossnagel, K. and Thomale, R. and Siegrist, T. and Sangiovanni, G. and Di Sante, D. and Reinert, F.}, title = {Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-23727-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260719}, year = {2021}, abstract = {Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids. Weyl semimetals exhibit Berry flux monopoles in momentum-space, but direct experimental evidence has remained elusive. Here, the authors reveal topologically non-trivial winding of the orbital-angular-momentum at the Weyl nodes and a chirality-dependent spin-angular-momentum of the Weyl bands, as a direct signature of the Berry flux monopoles in TaAs.}, language = {en} } @article{UeceylerHaeuserSommer2011, author = {{\"U}ceyler, Nurcan and H{\"a}user, Winfried and Sommer, Claudia}, title = {Systematic review with meta-analysis: Cytokines in fibromyalgia syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69189}, year = {2011}, abstract = {Background: To perform a systematic review and meta-analysis on cytokine levels in patients with fibromyalgia syndrome (FMS). Methods: Through December 2010 we systematically reviewed the databases PubMed, MEDLINE, and PsycINFO and screened the reference lists of 22 review articles for suitable original articles. Original articles investigating cytokines in patients with FMS were included. Data were extracted by two independent authors. Differences of the cytokine levels of FMS patients and controls were summarized by standardized mean differences (SMD) using a random effects model. Study quality was assessed applying methodological scores: modified Center of Evidence Based Medicine, Newcastle-Ottawa-Scale, and W{\"u}rzburg Methodological Quality Score. Results: Twenty-five articles were included investigating 1255 FMS patients and 800 healthy controls. Data of 13/25 studies entered meta-analysis. The overall methodological quality of studies was low. The results of the majority of studies were not comparable because methods, investigated material, and investigated target cytokines differed. Systematic review of the selected 25 articles revealed that FMS patients had higher serum levels of interleukin (IL)-1 receptor antagonist, IL-6, and IL-8, and higher plasma levels of IL-8. Meta-analysis of eligible studies showed that FMS patients had higher plasma IL-6 levels compared to controls (SMD = -0.34 [-0.64, -0.03] 95\% CI; p = 0.03). The majority of investigated cytokines were not different between patients and controls. Conclusions: The pathophysiological role of cytokines in FMS is still unclear. Studies of higher quality and with higher numbers of subjects are needed.}, subject = {Fibromyalgie}, language = {en} } @article{OezdağAcarlıKleinEgenolfetal.2022, author = {{\"O}zdağ Acarl{\i}, Ay{\c{s}}e Nur and Klein, Thomas and Egenolf, Nadine and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Subepidermal Schwann cell counts correlate with skin innervation - an exploratory study}, series = {Muscle \& Nerve}, volume = {65}, journal = {Muscle \& Nerve}, number = {4}, doi = {10.1002/mus.27496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318726}, pages = {471 -- 479}, year = {2022}, abstract = {Introduction/Aims Schwann cell clusters have been described at the murine dermis-epidermis border. We quantified dermal Schwann cells in the skin of patients with small-fiber neuropathy (SFN) compared with healthy controls to correlate with the clinical phenotype. Methods Skin punch biopsies from the lower legs of 28 patients with SFN (11 men, 17 women; median age, 54 [range, 19-73] years) and 9 healthy controls (five men, four women, median age, 34 [range, 25-69] years) were immunoreacted for S100 calcium-binding protein B as a Schwann cell marker, protein-gene product 9.5 as a pan-neuronal marker, and CD207 as a Langerhans cell marker. Intraepidermal nerve fiber density (IENFD) and subepidermal Schwann cell counts were determined. Results Skin samples of patients with SFN showed lower IENFD (P < .05), fewer Schwann cells per millimeter (P < .01), and fewer Schwann cell clusters per millimeter (P < .05) than controls. When comparing SFN patients with reduced (n = 13; median age, 53 [range, 19-73] years) and normal distal (n = 15, median age, 54 [range, 43-68] years) IENFD, the number of solitary Schwann cells per millimeter (p < .01) and subepidermal nerve fibers associated with Schwann cell branches (P < .05) were lower in patients with reduced IENFD. All three parameters correlated positively with distal IENFD (P < .05 to P < .01), whereas no correlation was found between Schwann cell counts and clinical pain characteristics. Discussion Our data raise questions about the mechanisms underlying the interdependence of dermal Schwann cells and skin innervation in SFN. The temporal course and functional impact of Schwann cell presence and kinetics need further investigation.}, language = {en} } @phdthesis{OenalHartmann2011, author = {{\"O}nal-Hartmann, Cigdem}, title = {Emotional Modulation of Motor Memory Formation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Hintergr{\"u}nde: Wie eine Vielzahl von Studien belegt, kann das explizite Ged{\"a}chtnis, das die bewusste Erinnerung an enkodierte Informationen beinhaltet, durch Emotionen beeinflusst werden, und zwar {\"u}ber den Einfluss auf verschiedene Verarbeitungsebenen (Enkodierung, Konsolidierung, Abruf usw.). Bisher wenig untersucht ist, ob und wie Emotionen Vorg{\"a}nge der motorischen Ged{\"a}chtnisbildung, die nicht auf bewusster Erinnerung beruhen und sich stattdessen durch Ver{\"a}nderungen im Verhalten darstellen, modulieren. Experiment 1: Das Ziel des ersten Experimentes war es, den Einfluss von Emotionen auf motorisches Lernen zu untersuchen. Vier Gruppen von Probanden mussten in einer motorischen Lernaufgabe schnelle, seitliche Bewegungen mit dem Daumen ausf{\"u}hren. W{\"a}hrend dieser Aufgabe h{\"o}rten die Probanden emotionale Kl{\"a}nge, die in Valenz und Arousal variierten: 1. Valenz negativ/ Arousal niedrig (V-/A-), 2. Valenz negativ/ Arousal hoch (V-/A+), 3. Valenz positiv/ Arousal niedrig (V+/A-), 4. Valenz positiv/ Arousal hoch (V+/A+). Die deskriptive Analyse aller Daten sprach f{\"u}r beste Ergebnisse f{\"u}r das motorische Lernen in der Bedingung V-/A-, aber die Unterschiede zwischen den Bedingungen waren nicht signifikant. Die Interaktion zwischen Valenz und Arousal emotionaler T{\"o}ne scheint demnach motorische Enkodierungsprozesse zu modulieren, jedoch m{\"u}ssen zuk{\"u}nftige Studien mit unterschiedlichen emotionalen Stimuli die Annahme weiter untersuchen, dass negative Stimuli mit niedrigem Arousal w{\"a}hrend der Enkodierung einen f{\"o}rdernden Effekt auf das motorische Kurzzeitged{\"a}chtnis haben. Experiment 2: Die Absicht des zweiten Experimentes war es, die Auswirkungen emotionaler Interferenzen auf die Konsolidierung beim Sequenzlernen zu untersuchen. Sechs Gruppen von Probanden trainierten zuerst in getrennten Sitzungen eine SRTT-Aufgabe (serial reaction time task). Um die Konsolidierung der neu erlernten Fertigkeit zu modulieren, wurden die Probanden nach dem Training einer von drei unterschiedlichen Klassen emotionaler Stimuli (positiv, negativ oder neutral) ausgesetzt. Diese bestanden aus einem Set emotionaler Bilder, die mit emotional kongruenten Musikst{\"u}cken oder neutralen Kl{\"a}ngen kombiniert waren. Bei den Probandengruppen wurde die emotionale Interferenz nach zwei unterschiedlichen Zeitintervallen realisiert, entweder direkt nach der Trainingssitzung oder sechs Stunden sp{\"a}ter. 72 Stunden nach der Trainingssitzung wurde jede Gruppe erneut mit der SRTT-Aufgabe getestet. Die Leistung in diesem Nachtest wurde mittels Reaktionszeit und Genauigkeit bei der Ausf{\"u}hrung der Zielsequenz analysiert. Die emotionale Interferenz beeinflusste weder die Nachtestergebnisse f{\"u}r die Reaktionszeit noch die f{\"u}r die Genauigkeit. Allerdings konnte eine Steigerung der expliziten Sequenzerkennung durch erregende negative Stimuli festgestellt werden, wenn diese direkt nach der ersten Trainingseinheit (0h) dargeboten wurden. Diese Ergebnisse lassen vermuten, dass die Konsolidierung der expliziten Aspekte prozeduralen Lernens in einer st{\"a}rkeren Wechselwirkung mit emotionalen Interferenzen stehen k{\"o}nnte als die der impliziten Aspekte. Die Konsolidierung unterschiedlicher Ebenen des Fertigkeitserwerbs k{\"o}nnte demnach von unterschiedlichen Mechanismen gesteuert werden. Da Performanz und explizites Sequenzerkennen nicht korrelierten, vermuten wir, dass implizite und explizite Modalit{\"a}ten bei der Durchf{\"u}hrung der SRTT-Aufgabe nicht komplement{\"a}r sind. Experiment 3: Es sollte untersucht werden, ob es eine Pr{\"a}ferenz der linken Gehirnhemisph{\"a}re bei der Kontrolle von Flexionsreaktionen auf positive Stimuli gibt und der rechten Hemisph{\"a}re bei der Kontrolle von Extensionsreaktionen auf negative Stimuli. Zu diesem Zweck sollten rechtsh{\"a}ndige Probanden einen Joystick zu sich ziehen oder von sich weg dr{\"u}cken, nachdem sie einen positiven oder negativen Stimulus in ihrem linken oder rechten Gesichtsfeld gesehen hatten. Die Flexionsreaktionen waren bei positiven Stimuli schneller, Extensionsreaktion hingegen bei negativen Stimuli. Insgesamt war die Performanz am schnellsten, wenn die emotionalen Stimuli im linken Gesichtsfeld pr{\"a}sentiert wurden. Dieser Vorrang der rechten Gehirnhemisph{\"a}re war besonders deutlich f{\"u}r negative Stimuli, wohingegen die Reaktionszeiten auf positive Bilder keine hemisph{\"a}rische Differenzierung zeigten. Wir konnten keine Interaktion zwischen Gesichtsfeld und Reaktionstyp belegen, auch fand sich keine Dreifachinteraktion zwischen Valenz, Gesichtsfeld und Reaktionstyp. In unserem experimentellen Kontext scheint die Interaktion zwischen Valenz und Gesichtsfeld st{\"a}rker zu sein als die Interaktion zwischen Valenz und motorischem Verhalten. Auf Grund dieser Ergebnisse vermuten wir, dass unter gewissen Bedingungen eine Hierarchisierung der asymmetrischen Muster Vorrang hat, die m{\"o}glicherweise andere vorhandene Asymmetrien maskieren k{\"o}nnte.}, subject = {Motorisches Lernen}, language = {en} } @article{ZuernStrack2017, author = {Z{\"u}rn, Michael and Strack, Fritz}, title = {When More Is Better - Consumption Priming Decreases Responders' Rejections in the Ultimatum Game}, series = {Frontiers in Psychology}, volume = {8}, journal = {Frontiers in Psychology}, number = {2226}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.02226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189989}, year = {2017}, abstract = {During the past decades, economic theories of rational choice have been exposed to outcomes that were severe challenges to their claim of universal validity. For example, traditional theories cannot account for refusals to cooperate if cooperation would result in higher payoffs. A prominent illustration are responders' rejections of positive but unequal payoffs in the Ultimatum Game. To accommodate this anomaly in a rational framework one needs to assume both a preference for higher payoffs and a preference for equal payoffs. The current set of studies shows that the relative weight of these preference components depends on external conditions and that consumption priming may decrease responders' rejections of unequal payoffs. Specifically, we demonstrate that increasing the accessibility of consumption-related information accentuates the preference for higher payoffs. Furthermore, consumption priming increased responders' reaction times for unequal payoffs which suggests an increased conflict between both preference components. While these results may also be integrated into existing social preference models, we try to identify some basic psychological processes underlying economic decision making. Going beyond the Ultimatum Game, we propose that a distinction between comparative and deductive evaluations may provide a more general framework to account for various anomalies in behavioral economics.}, language = {en} } @phdthesis{Zuern2015, author = {Z{\"u}rn, Michael}, title = {The Dual Nature of Utility - Categorical and Comparative Evaluations in Economic Decisions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120141}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Utility is perhaps the most central concept in modern economic theorizing. However, the behaviorist reduction to Revealed Preference not only removed the psychological content of utility but experimental investigations also exposed numerous anomalies in this theory. This program of research focused on the psychological processes by which utility judgments are generated. For this purpose, the standard assumption of a homogeneous concept is substituted by the Utilitarian Duality Hypothesis. In particular, judgments concerning categorical utility (uCat) infer an object's category based on its attributes which may subsequently allow the transfer of evaluative information like feelings or attitudes. In contrast, comparative utility (uCom) depends on the distance to a reference value on a specific dimension of comparison. Importantly, dimensions of comparison are manifold and context dependent. In a series of experiments, we show that the resulting Dual Utility Model is able to explain several known anomalies in a parsimonious fashion. Moreover, we identify central factors determining the relative weight assigned to both utility components. Finally, we discuss the implications of the Utilitarian Duality for both, the experimental practice in economics as well as the consequences for economic theorizing. In sum, we propose that the Dual Utility Model can serve as an integrative framework for both the rational model and its anomalies.}, subject = {Nutzen}, language = {en} } @phdthesis{Zuefle2022, author = {Z{\"u}fle, Marwin Otto}, title = {Proactive Critical Event Prediction based on Monitoring Data with Focus on Technical Systems}, doi = {10.25972/OPUS-25575}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The importance of proactive and timely prediction of critical events is steadily increasing, whether in the manufacturing industry or in private life. In the past, machines in the manufacturing industry were often maintained based on a regular schedule or threshold violations, which is no longer competitive as it causes unnecessary costs and downtime. In contrast, the predictions of critical events in everyday life are often much more concealed and hardly noticeable to the private individual, unless the critical event occurs. For instance, our electricity provider has to ensure that we, as end users, are always supplied with sufficient electricity, or our favorite streaming service has to guarantee that we can watch our favorite series without interruptions. For this purpose, they have to constantly analyze what the current situation is, how it will develop in the near future, and how they have to react in order to cope with future conditions without causing power outages or video stalling. In order to analyze the performance of a system, monitoring mechanisms are often integrated to observe characteristics that describe the workload and the state of the system and its environment. Reactive systems typically employ thresholds, utility functions, or models to determine the current state of the system. However, such reactive systems cannot proactively estimate future events, but only as they occur. In the case of critical events, reactive determination of the current system state is futile, whereas a proactive system could have predicted this event in advance and enabled timely countermeasures. To achieve proactivity, the system requires estimates of future system states. Given the gap between design time and runtime, it is typically not possible to use expert knowledge to a priori model all situations a system might encounter at runtime. Therefore, prediction methods must be integrated into the system. Depending on the available monitoring data and the complexity of the prediction task, either time series forecasting in combination with thresholding or more sophisticated machine and deep learning models have to be trained. Although numerous forecasting methods have been proposed in the literature, these methods have their advantages and disadvantages depending on the characteristics of the time series under consideration. Therefore, expert knowledge is required to decide which forecasting method to choose. However, since the time series observed at runtime cannot be known at design time, such expert knowledge cannot be implemented in the system. In addition to selecting an appropriate forecasting method, several time series preprocessing steps are required to achieve satisfactory forecasting accuracy. In the literature, this preprocessing is often done manually, which is not practical for autonomous computing systems, such as Self-Aware Computing Systems. Several approaches have also been presented in the literature for predicting critical events based on multivariate monitoring data using machine and deep learning. However, these approaches are typically highly domain-specific, such as financial failures, bearing failures, or product failures. Therefore, they require in-depth expert knowledge. For this reason, these approaches cannot be fully automated and are not transferable to other use cases. Thus, the literature lacks generalizable end-to-end workflows for modeling, detecting, and predicting failures that require only little expert knowledge. To overcome these shortcomings, this thesis presents a system model for meta-self-aware prediction of critical events based on the LRA-M loop of Self-Aware Computing Systems. Building upon this system model, this thesis provides six further contributions to critical event prediction. While the first two contributions address critical event prediction based on univariate data via time series forecasting, the three subsequent contributions address critical event prediction for multivariate monitoring data using machine and deep learning algorithms. Finally, the last contribution addresses the update procedure of the system model. Specifically, the seven main contributions of this thesis can be summarized as follows: First, we present a system model for meta self-aware prediction of critical events. To handle both univariate and multivariate monitoring data, it offers univariate time series forecasting for use cases where a single observed variable is representative of the state of the system, and machine learning algorithms combined with various preprocessing techniques for use cases where a large number of variables are observed to characterize the system's state. However, the two different modeling alternatives are not disjoint, as univariate time series forecasts can also be included to estimate future monitoring data as additional input to the machine learning models. Finally, a feedback loop is incorporated to monitor the achieved prediction quality and trigger model updates. We propose a novel hybrid time series forecasting method for univariate, seasonal time series, called Telescope. To this end, Telescope automatically preprocesses the time series, performs a kind of divide-and-conquer technique to split the time series into multiple components, and derives additional categorical information. It then forecasts the components and categorical information separately using a specific state-of-the-art method for each component. Finally, Telescope recombines the individual predictions. As Telescope performs both preprocessing and forecasting automatically, it represents a complete end-to-end approach to univariate seasonal time series forecasting. Experimental results show that Telescope achieves enhanced forecast accuracy, more reliable forecasts, and a substantial speedup. Furthermore, we apply Telescope to the scenario of predicting critical events for virtual machine auto-scaling. Here, results show that Telescope considerably reduces the average response time and significantly reduces the number of service level objective violations. For the automatic selection of a suitable forecasting method, we introduce two frameworks for recommending forecasting methods. The first framework extracts various time series characteristics to learn the relationship between them and forecast accuracy. In contrast, the other framework divides the historical observations into internal training and validation parts to estimate the most appropriate forecasting method. Moreover, this framework also includes time series preprocessing steps. Comparisons between the proposed forecasting method recommendation frameworks and the individual state-of-the-art forecasting methods and the state-of-the-art forecasting method recommendation approach show that the proposed frameworks considerably improve the forecast accuracy. With regard to multivariate monitoring data, we first present an end-to-end workflow to detect critical events in technical systems in the form of anomalous machine states. The end-to-end design includes raw data processing, phase segmentation, data resampling, feature extraction, and machine tool anomaly detection. In addition, the workflow does not rely on profound domain knowledge or specific monitoring variables, but merely assumes standard machine monitoring data. We evaluate the end-to-end workflow using data from a real CNC machine. The results indicate that conventional frequency analysis does not detect the critical machine conditions well, while our workflow detects the critical events very well with an F1-score of almost 91\%. To predict critical events rather than merely detecting them, we compare different modeling alternatives for critical event prediction in the use case of time-to-failure prediction of hard disk drives. Given that failure records are typically significantly less frequent than instances representing the normal state, we employ different oversampling strategies. Next, we compare the prediction quality of binary class modeling with downscaled multi-class modeling. Furthermore, we integrate univariate time series forecasting into the feature generation process to estimate future monitoring data. Finally, we model the time-to-failure using not only classification models but also regression models. The results suggest that multi-class modeling provides the overall best prediction quality with respect to practical requirements. In addition, we prove that forecasting the features of the prediction model significantly improves the critical event prediction quality. We propose an end-to-end workflow for predicting critical events of industrial machines. Again, this approach does not rely on expert knowledge except for the definition of monitoring data, and therefore represents a generalizable workflow for predicting critical events of industrial machines. The workflow includes feature extraction, feature handling, target class mapping, and model learning with integrated hyperparameter tuning via a grid-search technique. Drawing on the result of the previous contribution, the workflow models the time-to-failure prediction in terms of multiple classes, where we compare different labeling strategies for multi-class classification. The evaluation using real-world production data of an industrial press demonstrates that the workflow is capable of predicting six different time-to-failure windows with a macro F1-score of 90\%. When scaling the time-to-failure classes down to a binary prediction of critical events, the F1-score increases to above 98\%. Finally, we present four update triggers to assess when critical event prediction models should be re-trained during on-line application. Such re-training is required, for instance, due to concept drift. The update triggers introduced in this thesis take into account the elapsed time since the last update, the prediction quality achieved on the current test data, and the prediction quality achieved on the preceding test data. We compare the different update strategies with each other and with the static baseline model. The results demonstrate the necessity of model updates during on-line application and suggest that the update triggers that consider both the prediction quality of the current and preceding test data achieve the best trade-off between prediction quality and number of updates required. We are convinced that the contributions of this thesis constitute significant impulses for the academic research community as well as for practitioners. First of all, to the best of our knowledge, we are the first to propose a fully automated, end-to-end, hybrid, component-based forecasting method for seasonal time series that also includes time series preprocessing. Due to the combination of reliably high forecast accuracy and reliably low time-to-result, it offers many new opportunities in applications requiring accurate forecasts within a fixed time period in order to take timely countermeasures. In addition, the promising results of the forecasting method recommendation systems provide new opportunities to enhance forecasting performance for all types of time series, not just seasonal ones. Furthermore, we are the first to expose the deficiencies of the prior state-of-the-art forecasting method recommendation system. Concerning the contributions to critical event prediction based on multivariate monitoring data, we have already collaborated closely with industrial partners, which supports the practical relevance of the contributions of this thesis. The automated end-to-end design of the proposed workflows that do not demand profound domain or expert knowledge represents a milestone in bridging the gap between academic theory and industrial application. Finally, the workflow for predicting critical events in industrial machines is currently being operationalized in a real production system, underscoring the practical impact of this thesis.}, subject = {Prognose}, language = {en} } @article{ZyberajSeibelSchowalteretal.2022, author = {Zyberaj, Jetmir and Seibel, Sebastian and Schowalter, Annika F. and P{\"o}tz, Lennart and Richter-Killenberg, Stefanie and Volmer, Judith}, title = {Developing sustainable careers during a pandemic: the role of psychological capital and career adaptability}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {5}, issn = {2071-1050}, doi = {10.3390/su14053105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267286}, year = {2022}, abstract = {The Coronavirus disease 2019 (COVID-19) has not only had negative effects on employees' health, but also on their prospects to gain and maintain employment. Using a longitudinal research design with two measurement points, we investigated the ramifications of various psychological and organizational resources on employees' careers during the COVID-19 pandemic. Specifically, in a sample of German employees (N = 305), we investigated the role of psychological capital (PsyCap) for four career-related outcomes: career satisfaction, career engagement, coping with changes in career due to COVID-19, and career-related COVID-19 worries. We also employed leader-member exchange (LMX) as a moderator and career adaptability as a mediating variable in these relationships. Results from path analyses revealed a positive association between PsyCap and career satisfaction and career coping. Furthermore, PsyCap was indirectly related to career engagement through career adaptability. However, moderation analysis showed no moderating role of LMX on the link between PsyCap and career adaptability. Our study contributes to the systematic research concerning the role of psychological and organizational resources for employees' careers and well-being, especially for crisis contexts.}, language = {en} } @article{ZwirnerBohnertFrankeetal.2021, author = {Zwirner, Johann and Bohnert, Simone and Franke, Heike and Garland, Jack and Hammer, Niels and M{\"o}bius, Dustin and Tse, Rexson and Ondruschka, Benjamin}, title = {Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {11}, issn = {2218-273X}, doi = {10.3390/biom11111577}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248587}, year = {2021}, abstract = {Diagnosing traumatic brain injury (TBI) from body fluids in cases where there are no obvious external signs of impact would be useful for emergency physicians and forensic pathologists alike. None of the previous attempts has so far succeeded in establishing a single biomarker to reliably detect TBI with regards to the sensitivity: specificity ratio in a post mortem setting. This study investigated a combination of body fluid biomarkers (obtained post mortem), which may be a step towards increasing the accuracy of biochemical TBI detection. In this study, serum and cerebrospinal fluid (CSF) samples from 30 acute lethal TBI cases and 70 controls without a TBI-related cause of death were evaluated for the following eight TBI-related biomarkers: brain-derived neurotrophic factor (BDNF), ferritin, glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6), lactate dehydrogenase, neutrophil gelatinase-associated lipocalin (NGAL), neuron-specific enolase and S100 calcium-binding protein B. Correlations among the individual TBI biomarkers were assessed, and a specificity-accentuated threshold value analysis was conducted for all biomarkers. Based on these values, a decision tree modelling approach was performed to assess the most accurate biomarker combination to detect acute lethal TBIs. The results showed that 92.45\% of acute lethal TBIs were able to be diagnosed using a combination of IL-6 and GFAP in CSF. The probability of detecting an acute lethal TBI was moderately increased by GFAP alone and considerably increased by the remaining biomarkers. BDNF and NGAL were almost perfectly correlated (p = 0.002; R\(^2\) = 0.944). This study provides evidence that acute lethal TBIs can be detected to a high degree of statistical accuracy using forensic biochemistry. The high inter-individual correlations of biomarkers may help to estimate the CSF concentration of an unknown biomarker, using extrapolation techniques.}, language = {en} } @article{ZwirnerAndersBohnertetal.2021, author = {Zwirner, Johann and Anders, Sven and Bohnert, Simone and Burkhardt, Ralph and Da Broi, Ugo and Hammer, Niels and Pohlers, Dirk and Tse, Rexson and Ondruschka, Benjamin}, title = {Screening for fatal traumatic brain injuries in cerebrospinal fluid using blood-validated CK and CK-MB immunoassays}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {7}, issn = {2218-273X}, doi = {10.3390/biom11071061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242769}, year = {2021}, abstract = {A single, specific, sensitive biochemical biomarker that can reliably diagnose a traumatic brain injury (TBI) has not yet been found, but combining different biomarkers would be the most promising approach in clinical and postmortem settings. In addition, identifying new biomarkers and developing laboratory tests can be time-consuming and economically challenging. As such, it would be efficient to use established clinical diagnostic assays for postmortem biochemistry. In this study, postmortem cerebrospinal fluid samples from 45 lethal TBI cases and 47 controls were analyzed using commercially available blood-validated assays for creatine kinase (CK) activity and its heart-type isoenzyme (CK-MB). TBI cases with a survival time of up to two hours showed an increase in both CK and CK-MB with moderate (CK-MB: AUC = 0.788, p < 0.001) to high (CK: AUC = 0.811, p < 0.001) diagnostic accuracy. This reflected the excessive increase of the brain-type CK isoenzyme (CK-BB) following a TBI. The results provide evidence that CK immunoassays can be used as an adjunct quantitative test aid in diagnosing acute TBI-related fatalities.}, language = {en} } @article{ZwinkJenetzkySchmiedekeetal.2012, author = {Zwink, Nadine and Jenetzky, Ekkehart and Schmiedeke, Eberhard and Schmidt, Dominik and M{\"a}rzheuser, Schmidt and Grasshoff-Derr, Sabine and Holland-Cunz, Stefan and Weih, Sandra and Hosie, Stuart and Reifferscheid, Peter and Ameis, Helen and Kujath, Christina and Rissmann, Anke and Obermayr, Florian and Schwarzer, Nicole and Bartels, Enrika and Reutter, Heiko and Brenner, Hermann}, title = {Assisted reproductive techniques and the risk of anorectal malformations: a German case-control study}, series = {Orphanet Journal of Rare Diseases}, volume = {7}, journal = {Orphanet Journal of Rare Diseases}, number = {65}, organization = {CURE-Net Consortium}, doi = {10.1186/1750-1172-7-65}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134036}, year = {2012}, abstract = {Background: The use of assisted reproductive techniques (ART) for treatment of infertility is increasing rapidly worldwide. However, various health effects have been reported including a higher risk of congenital malformations. Therefore, we assessed the risk of anorectal malformations (ARM) after in-vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Methods: Data of the German Network for Congenital Uro-REctal malformations (CURE-Net) were compared to nationwide data of the German IVF register and the Federal Statistical Office (DESTATIS). Odds ratios (95\% confidence intervals) were determined to quantify associations using multivariable logistic regression accounting for potential confounding or interaction by plurality of births. Results: In total, 295 ARM patients born between 1997 and 2011 in Germany, who were recruited through participating pediatric surgeries from all over Germany and the German self-help organisation SoMA, were included. Controls were all German live-births (n = 10,069,986) born between 1997 and 2010. Overall, 30 cases (10\%) and 129,982 controls (1\%) were born after IVF or ICSI, which translates to an odds ratio (95\% confidence interval) of 8.7 (5.9-12.6) between ART and ARM in bivariate analyses. Separate analyses showed a significantly increased risk for ARM after IVF (OR, 10.9; 95\% CI, 6.2-19.0; P < 0.0001) as well as after ICSI (OR, 7.5; 95\% CI, 4.6-12.2; P < 0.0001). Furthermore, separate analyses of patients with isolated ARM, ARM with associated anomalies and those with a VATER/VACTERL association showed strong associations with ART (ORs 4.9, 11.9 and 7.9, respectively). After stratification for plurality of birth, the corresponding odds ratios (95\% confidence intervals) were 7.7 (4.6-12.7) for singletons and 4.9 (2.4-10.1) for multiple births. Conclusions: There is a strongly increased risk for ARM among children born after ART. Elevations of risk were seen after both IVF and ICSI. Further, separate analyses of patients with isolated ARM, ARM with associated anomalies and those with a VATER/VACTERL association showed increased risks in each group. An increased risk of ARM was also seen among both singletons and multiple births.}, language = {en} } @phdthesis{Zwettler2021, author = {Zwettler, Fabian Ulrich}, title = {Expansionsmikroskopie kombiniert mit hochaufl{\"o}sender Fluoreszenzmikroskopie}, doi = {10.25972/OPUS-21236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fluorescence microscopy is a form of light microscopy that has developed during the 20th century and is nowadays a standard tool in Molecular and Cell biology for studying the structure and function of biological molecules. High-resolution fluorescence microscopy techniques, such as dSTORM (direct Stochastic Optical Reconstruction Microscopy) allow the visualization of cellular structures at the nanometre scale (10-9 m). This has already made it possible to decipher the composition and function of various biopolymers, such as proteins, lipids and nucleic acids, up to the three-dimensional (3D) structure of entire organelles. In practice, however, it has been shown that these imaging methods and their further developments still face great challenges in order to achieve an effective resolution below ∼ 10 nm. This is mainly due to the nature of labelling biomolecules. For the detection of molecular structures, immunostaining is often performed as a standard method. Antibodies to which fluorescent molecules are coupled, recognize and bind specifcally and with high affnity to the molecular section of the target structure, also called epitope or antigen. The fluorescent molecules serve as reporter molecules which are imaged with the use of a fluorescence microscope. However, the size of these labels with a length of about 10-15 nm in the case of immunoglobulin G (IgG) antibodies, cause a detection of the fluorescent molecules shifted to the real position of the studied antigen. In dense regions where epitopes are located close to each other, steric hindrance between antibodies can also occur and leads to an insuffcient label density. Together with the shifted detection of fluorescent molecules, these factors can limit the achievable resolution of a microscopy technique. Expansion microscopy (ExM) is a recently developed technique that achieves a resolution improvement by physical expansion of an investigated object. Therefore, biological samples such as cultured cells, tissue sections, whole organs or isolated organelles are chemically anchored into a swellable polymer. By absorbing water, this so-called superabsorber increases its own volume and pulls the covalently bound biomolecules isotropically apart. Routinely, this method achieves a magnifcation of the sample by about four times its volume. But protocol variants have already been developed that result in higher expansion factors of up to 50-fold. Since the ExM technique includes in the frst instance only the sample treatment for anchoring and magnifcation of the sample, it can be combined with various standard methods of fluorescence microscopy. In theory, the resolution of the used imaging technique improves linearly with the expansion factor of the ExM treated sample. However, an insuffcient label density and the size of the antibodies can here again impair the effective achievable resolution. The combination of ExM with high-resolution fluorescence microscopy methods represents a promising strategy to increase the resolution of light microscopy. In this thesis, I will present several ExM variants I developed which show the combination of ExM with confocal microscopy, SIM (Structured Illumination Microscopy), STED (STimulated Emission Depletion) and dSTORM. I optimized existing ExM protocols and developed different expansion strategies, which allow the combination with the respective imaging technique. Thereby, I gained new structural insights of isolated centrioles from the green algae Chlamydomonas reinhardtii by combining ExM with STED and confocal microscopy. In another project, I combined 3D-SIM imaging with ExM and investigated the molecular structure of the so-called synaptonemal complex. This structure is formed during meiosis in eukaryotic cells and contributes to the exchange of genetic material between homologous chromosomes. Especially in combination with dSTORM, the ExM method showed its high potential to overcome the limitations of modern fluorescence microscopy techniques. In this project, I expanded microtubules in mammalian cells, a polymer of the cytoskeleton as well as isolated centrioles from C. reinhardtii. By labelling after expansion of the samples, I was able to signifcantly reduce the linkage error of the label and achieve an improved label density. In future, these advantages together with the single molecule sensitivity and high resolution obtained by the dSTORM method could pave the way for achieving molecular resolution in fluorescence microscopy}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{ZvirblisGorboulevRubtsovetal.1988, author = {Zvirblis, G. S. and Gorboulev, Valentin G. and Rubtsov, P. M. and Chernov, B. K. and Golova, Yu. B. and Pozmogova, G. E. and Skryabin, K. G. and Bayev, A. A.}, title = {Genetic engineering of peptide hormones : III. Cloning of cDNA of porcine growth hormone and construction of gene for expression of hormone in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46958}, year = {1988}, abstract = {Results are presented of cloning cDNA of procine growth hormone, analysis of its primary structure, and creation of a construction capable of expression of this cDNA in Esqheriahia coti cells. It is shown that in the population of mRNA coding porcine growth hormone, heterogeneity is noted which is manifested not only at the level of the nucleotide sequence, but also is reflected in the amino acid sequence of the mature hormone.}, language = {en} }