@article{OPUS4-22774, title = {Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope}, series = {Journal of Instrumentation}, volume = {13}, journal = {Journal of Instrumentation}, organization = {The KM3NeT collaboration}, doi = {10.1088/1748-0221/13/05/P05035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227744}, pages = {1-14}, year = {2018}, abstract = {The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.}, language = {en} } @article{OPUS4-36018, title = {Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube}, series = {The Astrophysical Journal}, volume = {870}, journal = {The Astrophysical Journal}, number = {2}, publisher = {The American Astronomical Society}, organization = {The LIGO Scientific Collaboration and the Virgo Collaboration}, doi = {10.3847/1538-4357/aaf21d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360189}, pages = {1-16}, year = {2019}, abstract = {Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.}, language = {en} } @techreport{OPUS4-35963, title = {Platelets - Molecular, cellular and systemic functions in health and disease}, editor = {Nieswandt, Bernhard}, organization = {Collaborative Research Centre/Transregio 240}, doi = {10.25972/OPUS-35963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359636}, pages = {25}, year = {2024}, abstract = {Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states.}, subject = {Thrombozyt}, language = {en} }