@article{BelicPageLazariotouetal.2019, author = {Belic, Stanislav and Page, Lukas and Lazariotou, Maria and Waaga-Gasser, Ana Maria and Dragan, Mariola and Springer, Jan and Loeffler, Juergen and Morton, Charles Oliver and Einsele, Hermann and Ullmann, Andrew J. and Wurster, Sebastian}, title = {Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.03204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252477}, year = {2019}, abstract = {Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.}, language = {en} } @article{BeilhackChopraKrausetal.2013, author = {Beilhack, Andreas and Chopra, Martin and Kraus, Sabrina and Schwinn, Stefanie and Ritz, Miriam and Mattenheimer, Katharina and Mottok, Anja and Rosenwald, Andreas and Einsele, Hermann}, title = {Non-Invasive Bioluminescence Imaging to Monitor the Immunological Control of a Plasmablastic Lymphoma-Like B Cell Neoplasia after Hematopoietic Cell Transplantation}, doi = {10.1371/journal.pone.0081320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111341}, year = {2013}, abstract = {To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.}, language = {en} } @article{BedkeIannittiDeLucaetal.2014, author = {Bedke, Tanja and Iannitti, Rossana G. and De Luca, Antonella and Giovannini, Gloria and Fallarino, Francesca and Berges, Carsten and Latg{\´e}, Jean-Paul and Einsele, Hermann and Romani, Luigina and Topp, Max S.}, title = {Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and \(Foxp3^+\) regulatory T cells in humans and mice}, series = {Immunology and Cell Biology}, volume = {92}, journal = {Immunology and Cell Biology}, number = {8}, doi = {10.1038/icb.2014.34}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121449}, pages = {659-70}, year = {2014}, abstract = {Unlike induced \(Foxp3^+\) regulatory T cells (\(Foxp3^+\) \(iT_{reg}\)) that have been shown to play an essential role in the development of protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated \(peptide^+\) Tr1 cells in healthy humans and mice after vaccination with Crf-1/p41+zymosan. These cells produced high amounts of interleukin (IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells, \(Foxp3^+\) \(iT_{reg}\) that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with \(Foxp3^+\) \(iT_{reg}\).}, language = {en} } @article{BachmannSchrederEngelhardtetal.2021, author = {Bachmann, Friederike and Schreder, Martin and Engelhardt, Monika and Langer, Christian and Wolleschak, Denise and M{\"u}gge, Lars Olof and D{\"u}rk, Heinz and Sch{\"a}fer-Eckart, Kerstin and Blau, Igor Wolfgang and Gramatzki, Martin and Liebisch, Peter and Grube, Matthias and Metzler, Ivana v. and Bassermann, Florian and Metzner, Bernd and R{\"o}llig, Christoph and Hertenstein, Bernd and Khandanpour, Cyrus and Dechow, Tobias and Hebart, Holger and Jung, Wolfram and Theurich, Sebastian and Maschmeyer, Georg and Salwender, Hans and Hess, Georg and Bittrich, Max and Rasche, Leo and Brioli, Annamaria and Eckardt, Kai-Uwe and Straka, Christian and Held, Swantje and Einsele, Hermann and Knop, Stefan}, title = {Kinetics of renal function during induction in newly diagnosed multiple myeloma: results of two prospective studies by the German Myeloma Study Group DSMM}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers13061322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234139}, year = {2021}, abstract = {Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3\% at baseline to 1.9\% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49\% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined "renal complete response (CRrenal)" was achieved in 17/25 (68\%) pts after VCD, 12/19 (63\%) after RAD, and 14/27 (52\%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment "renal fitness" in the latter group.}, language = {en} } @article{AndersenBogstedDybkaretal.2015, author = {Andersen, Jens Peter and B{\o}gsted, Martin and Dybk{\ae}r, Karen and Mellqvist, Ulf-Henrik and Morgan, Gareth J. and Goldschmidt, Hartmut and Dimopoulos, Meletios A. and Einsele, Hermann and San Miguel, Jes{\´u}s and Palumbo, Antonio and Sonneveld, Pieter and Johnsen, Hans Erik}, title = {Global myeloma research clusters, output, and citations: a bibliometric mapping and clustering analysis}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0116966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144214}, pages = {e0116966}, year = {2015}, abstract = {Background International collaborative research is a mechanism for improving the development of disease-specific therapies and for improving health at the population level. However, limited data are available to assess the trends in research output related to orphan diseases. Methods and Findings We used bibliometric mapping and clustering methods to illustrate the level of fragmentation in myeloma research and the development of collaborative efforts. Publication data from Thomson Reuters Web of Science were retrieved for 2005-2009 and followed until 2013. We created a database of multiple myeloma publications, and we analysed impact and co-authorship density to identify scientific collaborations, developments, and international key players over time. The global annual publication volume for studies on multiple myeloma increased from 1,144 in 2005 to 1,628 in 2009, which represents a 43\% increase. This increase is high compared to the 24\% and 14\% increases observed for lymphoma and leukaemia. The major proportion (> 90\% of publications) was from the US and EU over the study period. The output and impact in terms of citations, identified several successful groups with a large number of intra-cluster collaborations in the US and EU. The US-based myeloma clusters clearly stand out as the most productive and highly cited, and the European Myeloma Network members exhibited a doubling of collaborative publications from 2005 to 2009, still increasing up to 2013. Conclusion and Perspective Multiple myeloma research output has increased substantially in the past decade. The fragmented European myeloma research activities based on national or regional groups are progressing, but they require a broad range of targeted research investments to improve multiple myeloma health care.}, language = {en} }