@unpublished{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142500}, pages = {4}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+.}, subject = {Diborane}, language = {en} } @phdthesis{Somorowsky2016, author = {Somorowsky, Ferdinand}, title = {Entwicklung von nanopor{\"o}sen Gl{\"a}sern mit kontrollierten Sorptionseigenschaften zur Verbesserung des Innenraumklimas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148100}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Im Rahmen der vorliegenden Arbeit wurde die prinzipielle Eignung von por{\"o}sen Vycor®-Gl{\"a}sern als Feuchteregulierungsmaterial f{\"u}r den Einsatz im Baubereich erarbeitet. Im Speziellen wurden die Einfl{\"u}sse der Herstellungsparameter auf die Glaseigenschaften entwickelt und optimiert. Die por{\"o}sen Glasflakes wurden in angepasste Putzsysteme implementiert und praxisnahe Untersuchungen der Wirksamkeit durchgef{\"u}hrt. Unterst{\"u}tzt wurden die Ergebnisse durch auf Messwerten basierte Simulationen des Geb{\"a}udeklimas, welche auch die Auswirkungen bei verschiedenen klimatischen Bedingungen ber{\"u}cksichtigen. Der verwendete Prozess zur Herstellung der por{\"o}sen Gl{\"a}ser basiert auf dem 1933 patentierten Vycor®-Verfahren [HOO34][HOO38]. Durch eine Temperaturbehandlung entmischt das homogene Natrium-Borosilicatglas in zwei perkolierende, interpenetrierende Phasen. Diese weisen deutlich unterschiedliche chemische Best{\"a}ndigkeiten auf. Durch Aufl{\"o}sen der instabileren Phase verbleibt ein por{\"o}ses, fast reines Siliciumdioxidgef{\"u}ge, dessen Struktur und Eigenschaften durch die Wahl der Prozessparameter eingestellt werden kann. Erstmals konnte gezeigt werden, dass por{\"o}se Vycor®-Gl{\"a}ser in der Lage sind, Wasser bei Raumtemperatur reversibel aufzunehmen, im Porensystem zu speichern und wieder abzugeben. Basierend auf dieser unerl{\"a}sslichen Eigenschaft, konnten die Vycor®-Gl{\"a}ser durch eine Optimierung und ein besseres Verst{\"a}ndnis der Herstellungsparameter hin zu einem Material mit wirklichen Feuchteregulierungseigenschaften qualifiziert werden. Im ersten Teil der vorliegenden Arbeit (Kapitel 4.1 und 4.2) wurde der Einfluss der strukturbestimmenden Parameter Glaszusammensetzung, Partikelgr{\"o}ße bzw. -form und Entmischungsbedingungen auf das Sorptionsverhalten von Wasser dargestellt. Um die Wasseraufnahme und -abgabe sowie das Zusammenspiel (Zyklisierbarkeit) bei unterschiedlichen Luftfeuchtigkeiten zu untersuchen, wurde in einem Klimaschrank ein realit{\"a}tsnahes Feuchte- und Temperaturprofil generiert. Hiermit konnte die Zyklisierbarkeit der por{\"o}sen Gl{\"a}ser in Abh{\"a}ngigkeit der Glaseigenschaften beobachtet werden. Erg{\"a}nzt wurde die Charakterisierung durch Stickstoffsorptionsuntersuchungen und REM-Aufnahmen. Bei der Glaszusammensetzung wurde der Einfluss des Siliciumdioxid-Anteils und des Boroxid zu Natriumoxid Verh{\"a}ltnisses auf das finale por{\"o}se Glas betrachtet. Es zeigte sich, dass Gl{\"a}ser mit einem geringeren SiO2 Anteil zu Gl{\"a}sern mit einer h{\"o}heren Porosit{\"a}t, einer h{\"o}heren spezifischen Oberfl{\"a}che und als Folge daraus zu einer besseren Zyklisierbarkeit f{\"u}hren. Die praktische Einsatzf{\"a}higkeit wird allerdings von einer ungen{\"u}genden mechanischen Best{\"a}ndigkeit von Gl{\"a}sern mit Siliciumdioxidgehalten unterhalb von 50 MA\% begrenzt. Das B2O3/Na2O-Verh{\"a}ltnis wirkt sich vor allem auf den Grad des Entmischungsverlaufs und damit auf die sich bildende interpenetrierende Struktur aus. Erkennbar ist dies an der zum Boroxidanteil indirekt proportionalen Transformationstemperatur. Dies zeigt sich ebenfalls bei den Zyklisierungsversuchen, bei denen sich die Wasseraufnahme bzw. -abgabe bei gegebener Temperatur und unterschiedlichem B2O3/Na2O-Verh{\"a}ltnis deutlich unterscheidet. Anhand der entsprechenden Stickstoffsorptionsuntersuchungen konnte gezeigt werden, dass das Reaktionsverm{\"o}gen eines por{\"o}sen Glases auf einen Temperatur- und Feuchtezyklus, ein Zusammenspiel aus passendem Porendurchmesser und hoher spezifischer Oberfl{\"a}che ist. Einen besonderen Aspekt der vorliegenden Arbeit stellt die Untersuchung von Glasflakes, flache Pl{\"a}ttchen mit Dicken von einigen µm und Durchmessern von bis zu 1000 µm, dar. Diese k{\"o}nnen z. B. mittels eines Rotationsflakers hergestellt werden. Es konnte gezeigt werden, dass die mit den Flakes versehenen Wandanstriche nicht nur bessere Verarbeitungseigenschaften aufweisen, sondern auch im Vergleich zu ann{\"a}hernd isotropen Partikeln signifikant verbesserte Sorptionseigenschaften besitzen. Die Ausbildung der Porengr{\"o}ße und damit der spezifischen Oberfl{\"a}che verl{\"a}uft haupts{\"a}chlich {\"u}ber den einstellbaren thermischen Entmischungsvorgang. Um die optimalen Parameter f{\"u}r die Feuchtigkeitsaufnahme und -abgabe zu finden, wurde in dieser Arbeit neben der Plateautemperatur auch die Entmischungsdauer variiert. Oberhalb von ca. 520 °C ist die charakteristische Phasenseparation energetisch beg{\"u}nstigt. Diese verst{\"a}rkt sich mit steigender Temperatur, wodurch gr{\"o}ßere Entmischungsbezirke entstehen. Oberhalb von ca. 650 °C kommt es zum Zusammensintern der Glasflakes, sodass deren urspr{\"u}ngliche Geometrie zerst{\"o}rt wird. F{\"u}r Untersuchungen oberhalb dieser Temperaturen muss also das Rohglas entmischt und erst im nachfolgenden Prozess zu Pulver aufgemahlen werden. Glasflakes sind durch diesen Verarbeitungsprozess jedoch nicht mehr herstellbar. Ein entscheidendes neues Ergebnis dieser Arbeit ist, dass die Porengr{\"o}ße innerhalb dieses Temperaturbereiches durch Anpassung der Entmischungstemperatur ann{\"a}hernd nanometer-genau eingestellt werden kann. Dies zeigt auch den großen Vorteil por{\"o}ser Vycor®-Gl{\"a}ser im Vergleich zu anderen por{\"o}sen Materialien. F{\"u}r die Feuchteregulierung erwies sich ein Porendurchmesser von 3,8 nm, welcher durch eine Entmischungstemperatur von 533 °C generiert wird, als optimal. Die Dauer der Entmischung hat vor allem einen Einfluss auf den Fortschritt des Porenwachstums, nicht jedoch auf die Porengr{\"o}ße selbst. Nach ca. 30 Minuten kann das Entstehen der Poren erstmals eindeutig nachgewiesen werden. Der Entmischungsprozess ist nach ca. 24 Stunden abgeschlossen. Eine Verl{\"a}ngerung der Entmischungszeit hat keine weitere Ver{\"a}nderung der Porenstruktur zur Folge. In Kombination mit den Ergebnissen der Untersuchungen zum Einfluss des B2O3/Na2O-Verh{\"a}ltnisses konnte gezeigt werden, dass durch die Wahl der passenden Entmischungstemperatur die gew{\"u}nschte Porengr{\"o}ße, in weiten Bereichen unabh{\"a}ngig vom B2O3/Na2O-Verh{\"a}ltnis, gezielt eingestellt werden kann. Im zweiten Teil der Arbeit wurde die Auslaugung hinsichtlich technischer Funktionalit{\"a}t und Umweltfreundlichkeit optimiert. Hierbei konnte gezeigt werden, dass neben Schwefels{\"a}ure auch Salzs{\"a}ure zur vollst{\"a}ndigen Auslaugung verwendet werden kann. Salzs{\"a}ure kann im Gegensatz zu Schwefels{\"a}ure deutlich einfacher wieder aufgearbeitet werden (geringere Temperatur und Druck im Falle einer destillativen Aufarbeitung), was f{\"u}r die wirtschaftliche Anwendung von hoher Bedeutung ist. Weiterhin wurde die Konzentration der S{\"a}ure verringert. Hierbei konnten bis zu einer Verd{\"u}nnung auf 0,75 molare Salzs{\"a}ure noch por{\"o}se Gl{\"a}ser mit vergleichbaren Zyklisierungswerten erhalten werden. Erst bei weiterer Verd{\"u}nnung wurden die entmischten Glasflakes unvollst{\"a}ndig ausgelaugt. Ein weiterer Einfluss der verwendeten S{\"a}ureart oder der Konzentration auf die Porenstruktur bzw. die Porengr{\"o}ße konnte nicht gefunden werden. Wie in der Literatur beschrieben, wurde die Auslaugung der entmischten Gl{\"a}ser zun{\"a}chst bei hohen Temperaturen oberhalb von 95 °C durchgef{\"u}hrt, sodass dieser Teilschritt viel Energie verbraucht [JAS01]. Um den Prozess ressourcenschonender aufzustellen, wurde im Kapitel 4.3 untersucht, welche Temperatur zwingend ben{\"o}tigt wird. Hierbei wurden die Temperatur und die S{\"a}urekonzentration variiert. Diese Parameter ver{\"a}ndern den Anteil der Poren, jedoch nicht die Porengr{\"o}ße. Durch eine geringere Temperatur und geringere S{\"a}urekonzentrationen nimmt die Porosit{\"a}t ab. Eine Verl{\"a}ngerung der Auslaugedauer auf drei Stunden verbessert den Grad der Auslaugung erheblich. Da die Auslaugung bei 0,40 molarer Salzs{\"a}ure nicht vollst{\"a}ndig verl{\"a}uft, wurde bei dieser Konzentration die Auslaugedauer nochmals einzeln betrachtet. Hierbei best{\"a}tigte sich, dass eine l{\"a}ngere Auslaugung den Anteil der in der Entmischung eingestellten Poren vergr{\"o}ßert und auch die Zyklisierbarkeit (Massenhub) zunimmt. Die Werte von den mit 1,5 molarer Salzs{\"a}ure ausgelaugten Gl{\"a}sern k{\"o}nnen, trotz einer Dauer von bis zu acht Stunden, jedoch nicht erreicht werden. Eine alternative M{\"o}glichkeit um die Auslaugung ressourcenschonender zu gestalten, wurde mit dem neuen Ansatz die Synthese unter hydrothermischen Bedingungen durchzuf{\"u}hren, entwickelt. Hierbei wurden die entmischten Gl{\"a}ser entweder mit verd{\"u}nnter S{\"a}ure (0,75 mol/l HCl) oder mit Wasser in einem Autoklaven bei Temperaturen von 100 °C bis 200 °C, einem Reaktionsdruck von bis zu 30 bar und f{\"u}r bis zu 20 Stunden behandelt. Im Fall der Salzs{\"a}ure verursachen alle drei Parameter eine Ver{\"a}nderung der Porenstruktur. In der Porengr{\"o}ßenbetrachtung mittels Stickstoffsorption erkennt man einen zweiten Peak bei gr{\"o}ßerem Durchmesser, wobei der urspr{\"u}ngliche Peak abnimmt. Dies deutet auf ein Aufl{\"o}sen der urspr{\"u}nglichen Porenw{\"a}nde hin. Die Zunahme des Porenvolumens und die Abnahme der spezifischen Oberfl{\"a}che best{\"a}tigt diese Annahme. Da die resultierende Porenstruktur und die spezifische Oberfl{\"a}che stark ver{\"a}ndert werden, ist diese hydrothermale Methode zur Fertigung von Glasflakes f{\"u}r die Anwendung als Feuchtespeichermaterial nicht geeignet. F{\"u}r andere Anwendungsfelder (siehe Seite 85) k{\"o}nnte diese M{\"o}glichkeit dennoch sehr interessant sein, da so leicht ein bimodales Porensystem hergestellt werden kann. Das Kapitel „Variation der Auslaugebedingungen" wird mit Untersuchungen zur Wiederverwertbarkeit von Auslaugemedium und Bors{\"a}ure abgeschlossen. Hierzu wird die gel{\"o}ste Bors{\"a}ure aus dem Auslaugemedium bei Raumtemperatur ausgef{\"a}llt. Eine anschließende destillative Aufreinigung kann zu einem nahezu vollst{\"a}ndigen Recycling, sowohl des Auslaugemediums als auch der Bors{\"a}ure, f{\"u}hren. Neben dem Einfluss der Glasherstellung und der Herstellungsparameter auf die Wasserauf- und -abgabef{\"a}higkeit der por{\"o}sen Gl{\"a}ser, wurden auch die Parameter der Klimaprofile (Raumtemperaturschwankungen, {\"A}nderung der Feuchtigkeit) genauer betrachtet. Die Sorption h{\"a}ngt stark von der Temperatur ab. Die Wasserabgabe wird durch eine h{\"o}here Temperatur (50 °C) erh{\"o}ht und beschleunigt. Dieser Effekt zeigt sich auch bei der Zyklisierung. Der Massenhub betr{\"a}gt bei 50 °C 12,1 MA\%, bei 20 °C nur noch 3,3 MA\% bei identischem Feuchte- und Zeitprofil. Die Kinetik der Wasseraufnahme und -abgabe wurde anhand von Klimaprofilen mit unterschiedlichen {\"A}nderungsraten untersucht. Hierbei fand die Feuchte{\"a}nderung von 30 \% auf 90 \% innerhalb von einer Stunde, zwei Stunden und vier Stunden statt. Untersucht wurden die f{\"u}r den Einsatz als Feuchteregulierungsmaterial optimierten Glasflakes sowie Flakes mit gr{\"o}ßeren und kleineren Porendurchmessern. Bei allen Proben findet die Aufnahme deutlich schneller statt als die Desorption. Ein Grund hierf{\"u}r ist der Flaschenhalsporeneffekt (siehe Seite 37). Des Weiteren ist bei den optimierten Glasflakes die Steigung der Massen{\"a}nderung, unabh{\"a}ngig von der Feuchte{\"a}nderungsrate, immer am gr{\"o}ßten. Diese Gl{\"a}ser sprechen also am direktesten auf {\"A}nderungen der Luftfeuchtigkeit an und es best{\"a}tigt sich, dass die Einstellung der richtigen Porengr{\"o}ße entscheidend ist. Dies konnte im Rahmen der vorliegenden Arbeit realisiert werden. Dar{\"u}ber hinaus erm{\"o}glichen die Ergebnisse der Experimente zur Sorptionskinetik einen umfassenderen Blick auf die Sorption und dabei insbesondere auf die Poreneigenschaften und auf die Sorptionsvorgeschichte. Ebenfalls wurde die Alterung der Sorptionsf{\"a}higkeit untersucht. Bei bis zu 20 Wiederholungszyklen konnte kein negativer Effekt beobachtet werden. Die Wasseraufnahme und -abgabe hat neben dem feuchtigkeitsregulierenden auch eine energetische Auswirkung auf den Energiehaushalt in einem Geb{\"a}ude. Da bei jeder Sorption Energie verbraucht bzw. frei wird, kann ein w{\"a}rmeregulierender Effekt auftreten. Um diesen Effekt genauer zu quantifizieren, wurde die Desorption von konditionierten Gl{\"a}sern mittels Differenzkalorimetrie untersucht. Der Energiebetrag kann sowohl bei den Glasflakes als auch bei den mit Flakes versetzten Putzen detektiert werden und korreliert mit der gespeicherten Wassermenge. Auch wenn die Einzelenergiemenge pro Vorgang sehr gering ist, so summiert sich diese bei den vielen Vorg{\"a}ngen {\"u}ber das Jahr hinweg zu einem erheblichen Gesamtenergiebetrag (ca. 6 \% des Energieverbrauchs in einem Wohnhaus), welcher eine interessante Erg{\"a}nzung zur Feuchtigkeitsregulierung darstellen kann. Mit den f{\"u}r die Wasserauf- und -abgabe optimierten por{\"o}sen Gl{\"a}sern wurden Wandanstriche (Putze und Farben) hergestellt (siehe Seite 112) und diese auf ihre Eignung als Feuchteregulierungsmaterial untersucht. Im Vergleich mit den Standardputzen haben die Klimaputze mit dem Zusatz von Glasflakes aktuell noch geringere mechanische Kennwerte, insbesondere Druckfestigkeit und Dynamisches E-Modul. Dies ist vor allem auf das lockere Gef{\"u}ge durch die Beimischung der Glasflakes zur{\"u}ckzuf{\"u}hren. Die Beimengung f{\"u}hrt umgekehrt aber zu einer Steigerung der Porosit{\"a}t und der spezifischen Oberfl{\"a}che. REM-Aufnahmen belegen dies. Durch Optimierung der Putzzusammensetzung gibt es jedoch eine gute Chance, die mechanischen Eigenschaften der Klimaputze noch zu verbessern. Um den Feuchteregulierungseffekt besser einsch{\"a}tzen zu k{\"o}nnen, wurde in Zyklisierungsversuchen der Vycor®-Putz mit kommerziellen Putzen mit und ohne zus{\"a}tzliche Regulierungsfunktionalit{\"a}t und anderen Feuchteregulierungsmaterialien, wie Zeolithen und Holzfaserplatten, verglichen. Dabei zeigte der Putz mit den optimierten Glasflakes eine deutlich h{\"o}here Wasseraufnahmekapazit{\"a}t, ein direkteres Ansprechverhalten auf Feuchtigkeitsschwankungen und einen sehr viel h{\"o}heren Massenhub. Erkennbar wird dies vor allem beim realit{\"a}tsnahen Vergleich von zwei Wandst{\"u}cken. Hierf{\"u}r wurden Tr{\"a}gerplatten als Basis sowohl mit einem Standardputz als auch mit dem Vycor®-Klimaputz aufgebaut. Das Vycor®-Wandsystem konnte den Feuchtigkeitssprung im Klimaschrank von 72 \% r. L. auf 40 \% r. L. vollst{\"a}ndig abpuffern. Der Massenhub betrug mit ca. 13 g Wasser pro m2 Wandfl{\"a}che sogar das Dreifache der eigentlich zu bindenden Wassermenge. In Zusammenarbeit mit der Universit{\"a}t Bayreuth konnten die im Labor gewonnen Ergebnisse mittels Simulationsberechnungen untermauert werden. Mit dem Software-Tool WUFI (W{\"a}rme und Feuchte instation{\"a}r) konnte sowohl eine Regulierung der jahreszeitlichen Feuchteschwankungen als auch ein positiver Effekt auf das Wohlbefinden der Bewohner gezeigt werden. Durch die Simulationen, deren Eingangswerte auf realen Messwerten basieren, konnte nachgewiesen werden, dass sowohl por{\"o}se Gl{\"a}ser als auch die mit por{\"o}sen Glasflakes versetzen Baustoffe einen deutlich messbaren positiven Effekt auf das Raumklima haben. Der direkte Nachweis, also ein positiver Effekt des por{\"o}sen Glases auf das Raumklima, wurde bisher nur in Simulationen modelliert und ist unter realen Versuchsbedingungen noch zu pr{\"u}fen. Hierzu m{\"u}sste ein Testraum aufgebaut und {\"u}ber l{\"a}ngere Zeit vermessen werden. Im Rahmen dieser Arbeit wurde an Hand der voran beschriebenen Ergebnisse das por{\"o}se Glassystem der Vycor®-Gl{\"a}ser hinsichtlich seiner kontrollierten Sorptionseigenschaften f{\"u}r eine Anwendung als Feuchteregulierungsmaterial entwickelt. Im Zuge dessen wurde ein besseres Verst{\"a}ndnis f{\"u}r die Abl{\"a}ufe und Mechanismen der auftretenden spinodalen Entmischung erarbeitet. Weiterhin konnten die Zusammenh{\"a}nge zwischen den Poreneigenschaften und der Sorption von Wasser tiefgehender verstanden werden, sodass wichtige Erkenntnisse gewonnen werden konnten, um por{\"o}ses Vycor®-Glas als Modellsystem f{\"u}r Entmischung und Sorption weiter zu etablieren.}, subject = {Glas}, language = {de} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @phdthesis{Baus2016, author = {Baus, Johannes Armin}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie h{\"o}herkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgef{\"u}hrten Untersuchungen betraf das Studium der Reaktivit{\"a}t der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5-9 wurden bereits fr{\"u}her synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bez{\"u}glich ihrer Molek{\"u}ldynamik in L{\"o}sung untersucht. Die Verbindungen 5-10 zeigten in L{\"o}sung bei Raumtemperatur unterschiedlich stark ausgepr{\"a}gte Dynamikph{\"a}nomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekund{\"a}ren Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Ger{\"u}st. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Ger{\"u}st wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Mol{\"a}quivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-{\"U}bergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden {\"U}bergangsmetalldibromiden bzw. Nickel(II)-bromid-1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte {\"U}bergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es f{\"u}r d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das {\"U}bergangsmetallatom miteinander verbr{\"u}ckt, was zur Ausbildung einer spirocyclischen Struktur f{\"u}hrt. Der neutrale, pentakoordinierte Zink-Silylen-Komplex 25 wurde in einer Lewis-S{\"a}ure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22-24 als ein Lewis-S{\"a}ure/Base-Addukt verstehen l{\"a}sst, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repr{\"a}sentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)-Silylen-Komplex {\"u}berhaupt. Verbindung 28 wurde durch Umsetzung von drei Mol{\"a}quivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Mol{\"a}quivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Mol{\"a}quivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 {\"u}bertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zun{\"a}chst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert.}, subject = {Siliciumverbindungen}, language = {de} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @article{BraunschweigKrummenacherMailaenderetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Mail{\"a}nder, Lisa and Pentecost, Leanne and Vargas, Alfredo}, title = {Formation of a stable radical by oxidation of a tetraorganoborate}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {43}, doi = {10.1039/c6cc02916g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191321}, pages = {7005-7008}, year = {2016}, abstract = {Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C\(_4\)Ph\(_4\))\(_2\)], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state.}, language = {en} } @phdthesis{Ullrich2016, author = {Ullrich, Stefan}, title = {Synthese und Reaktivit{\"a}t NHC-stabilisierter Diborene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140485}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der vorliegenden Arbeit wurde der Fokus auf die Synthese neuer Diborene mit unterschiedlichem Substitutionsmuster gerichtet. Ein Ziel bestand darin, die Gruppe der heteroaromatisch substituierten Diborene, die sich bisher aus den literaturbekannten Thienyl-substituierten Diborenen 59 und 60 zusammensetzt, um weitere Vertreter zu bereichern. In diesem Kontext konnte das Furanyl-substituierte Diboren 85 synthetisiert und charakterisiert werden (Schema 59). Die Festk{\"o}rperstruktur von 85 zeigt eine koplanare Anordnung zwischen der B=B-Doppelbindung und den Furanylsubstituenten, was als Hinweis auf eine Konjugation zwischen der B=B-Doppelbindung und den Heteroaromaten gewertet werden kann und damit Parallelen zu den Thienyl-substituierten Diborenen 59 und 60 erkennen l{\"a}sst. Analog dazu weist 85 drei Banden im UV-Vis-Absorptionsspektrum auf, die anhand von quantenchemischen Rechnungen den entsprechenden elektronischen Anregungen zugeordnet werden k{\"o}nnen. Demzufolge sind die HOMOs ausschließlich an der B=B-Doppelbindung und die LUMOs an den Furanylringen, sowie den NHCs lokalisiert. Cyclovoltammetrische Messungen legen zudem den Elektronenreichtum des Furanyl-substituierten Diborens 85 offen und sprechen f{\"u}r dessen Eignung als starkes, neutrales nichtmetallisches Oxidationsmittel. Dar{\"u}ber hinaus zeigen sie eine teilweise reversible Oxidation zu dem entsprechenden Monoradikalkation auf. Zur Realisierung weiterer heteroaromatisch substituierter Diborene wurden Versuche unternommen die Pyrrolylgruppe als Substituent zu etablieren, die noch elektronenreicher verglichen zu Furanyl- und Thienylgruppen ist. Die erfolgreiche Darstellung des NHC-stabilisierten Diborens 88 konnte mittels NMR-Spektroskopie verifiziert werden, jedoch gelang die weitere Charakterisierung aufgrund der extremen Empfindlichkeit von 88 nicht (Schema 59). Der Einsatz von vergleichsweise großen NHCs wie IMes zur kinetischen Stabilisierung der B=B-Doppelbindung eines Pyrrolyl-substituierten Diborens war nicht erfolgreich. Schema 59: Synthese der NHC-stabilisierten heteroaromatisch substituierten Diborene (85, 88) durch Reduktion der korrespondierenden NHC-Boran-Addukte (84, 87). In unmittelbarer Fortf{\"u}hrung der aussichtsreichen Arbeiten von Dr. Philipp Bissinger wurde an geeigneten Syntheserouten zu den NHC-stabilisierten Diborenen 95 und 99 mit derivatisierten Thiophensubstituenten gearbeitet. Ausgehend von den BMes2- und B(FMes)2-funktionalisierten Thiophensubstituenten konnten {\"u}ber mehrere Reaktionssequenzen die korrespondierenden NHC-Boran-Addukte synthetisiert und charakterisiert werden. Die Reduktion dieser NHC-Boran-Addukte erzeugt intensiv gef{\"a}rbte L{\"o}sungen, deren 11B-NMR-spektroskopische Untersuchungen Hinweise auf die Generierung der Diborene 95 und 99 lieferten (Schema 60). Dar{\"u}ber hinaus wird die erfolgreiche Darstellung des Diborens 95 durch R{\"o}ntgenstrukturanalyse an Einkristallen gest{\"u}tzt. Schema 60: Synthese der Diborene 95 und 99 mit derivatisierten Thiophensubstituenten. Die Isolierung gr{\"o}ßerer Mengen der Diborene 95 und 99 in analytisch reiner Form gelang jedoch bislang nicht. UV-Vis Absorptionsspektroskopie, Cyclovoltammetrie und TD-DFT-Rechnungen offenbaren die drastische Einflussnahme der BMes2- bzw. der B(FMes)2-Gruppe auf die Eigenschaften der resultierenden Diborene 95 und 99. Vor allem die elektronenziehende B(FMes)2-Gruppe senkt die Grenzorbitale energetisch erheblich ab und verringert das HOMO-LUMO-gap signifikant. Die Hauptabsorptionsbande im UV-Vis-Absorptionsspektrum findet sich im nahinfraroten Bereich (NIR) und ist damit gegen{\"u}ber jener des Thienyl-substituierten Diborens 59 stark bathochrom verschoben. Ziel ankn{\"u}pfender Arbeiten der Gruppe um Braunschweig ist die Optimierung der Synthese der Diborene 95 und 99, sowie die weitere Charakterisierung der physikalischen Eigenschaften und die Erforschung der Reaktivit{\"a}ten. Ein weiteres Ziel dieser Arbeit war die Synthese von Vinyl-substituierten Diborenen. Das NHC-Boran-Addukt 102 konnte, ausgehend von 1,1-Diphenylethen, erfolgreich dargestellt werden. Die Reduktion mit KC8 erzeugte eine intensiv gef{\"a}rbte Reaktionsl{\"o}sung, deren 11B-NMR-spektroskopische Untersuchung eine gegen{\"u}ber bekannten Diborenen leicht tieffeldverschobene Resonanz im 11B-NMR-Spektrum zeigt. Die Isolierung und zweifelsfreie Identifizierung des Reaktionsprodukts gelang aufgrund der hohen Empfindlichkeit bislang nicht. Weitere Versuche ein Diboren mit vinylogem Substitutionsmuster zu synthetisieren, in dem die alpha-Position des Vinyl-Substituenten durch eine Phenylgruppe besetzt ist, waren nicht zielf{\"u}hrend (Schema 61). Ankn{\"u}pfend an die Arbeiten von Thomas Steffenhagen, dem die Darstellung des ersten [2]Diboraferrocenophans mit Diborenbr{\"u}cke 109 und dessen Identifizierung mittels NMR-Spektroskopie gelang, wurden Versuche unternommen, 109 zu kristallisieren. Dabei konnten geeignete Einkristalle zur r{\"o}ntgenstrukturanalytischen Charakterisierung erhalten werden und das Strukturmotiv im Festk{\"o}rper best{\"a}tigt werden (Schema 62). Zentraler Gegenstand dieser Arbeit war neben der Synthese und Charakterisierung von neuen Diborenen die Untersuchung der Chemie der reaktiven B=B-Doppelbindung. Dazu wurden unter anderem Reaktivit{\"a}tsstudien mit M{\"u}nzmetallkomplexen durchgef{\"u}hrt, um die Koordinationschemie der heteroaromatisch substituierten Diborene 59 und 85, sowie des Diboren-verbr{\"u}ckten [2]Diboraferrocenophans 109 zu erforschen. Die Umsetzungen von 59, 85 und 109 mit CuCl f{\"u}hrten zu den entsprechenden M{\"u}nzmetall π-Diboren-Komplexen 111-113 (Schema 63). R{\"o}ntgenstrukturanalytische Untersuchungen zeigen die T-f{\"o}rmige Geometrie der Komplexe, die aus der side-on Koordination des jeweiligen Diborens an das Metallzentrum resultiert. Das erhaltene Strukturmotiv entspricht damit dem der literaturbekannten M{\"u}nzmetall-π-Diboren-Komplexe 71 und 72. Aufgrund der hohen Empfindlichkeit konnten allerdings weder die Ausbeute bestimmt noch eine detaillierte NMR-spektroskopische Charakterisierung durchgef{\"u}hrt werden. Das photophysikalische Potential dieser Verbindungsklasse wird dennoch in qualitativen Tests durch Bestrahlung mit UV-Licht erkennbar. Die Koordination von Kupferalkinen an die B=B-Doppelbindung der Verbindungen 59, 85 und 109 verl{\"a}uft demgegen{\"u}ber selektiv (Schema 63). Die ebenfalls T-f{\"o}rmigen Komplexe (114-116) erweisen sich als deutlich stabiler als die CuCl-Analoga und konnten demzufolge in analysenreiner Form isoliert werden. Allerdings zeigen diese in qualitativen Tests kein Lumineszenzverhalten. Eine genauere Analyse dieser Befunde erfolgte bislang nicht, ist aber aktueller Bestandteil der Forschung der Arbeitsgruppe um Braunschweig. Da die heteroaromatisch substituierten Diborene wegen ihres energetisch hoch liegenden HOMO bereitwillig zur Abgabe von Elektronen tendieren, wie in cyclovoltammetrischen Messungen gezeigt werden konnte, wurde deren potentielle Verwendung als Reduktionsmittel untersucht. Die Diborene 59, 60, 85 und 88 wurden dazu mit dem milden Oxidationsmittel (C7H7)BArf4 oxidiert und die Monoradikalkationen 117-120 mittels EPR-Spektroskopie nachgewiesen (Schema 64). Aufgrund der hohen Empfindlichkeit der Radikale (117-120) konnte keine weitere Charakterisierung erfolgen. Durch Oxidation des Diborens 85 mit Iod konnte Verbindung 121 erhalten werden (Schema 65). Die Festk{\"o}rperstruktur zeigt einen dreigliedrigen Heterocyclus, bestehend aus einem positiv polarisierten Iodatom, das eine B2-Einheit verbr{\"u}ckt und damit die gleichwertige Beschreibung als Iodoniumion in Analogie zu den gleichnamigen Intermediaten, die bei der Addition von Halogenen an Alkene entstehen, rechtfertigt. Die Hydroborierungsreaktion ist eine bekannte Additionsreaktion von H-B-Bindungen an C=C-Doppelbindungen und konnte in dieser Arbeit erfolgreich auf die alkenanalogen Diborene {\"u}bertragen werden. Die Reaktion des heteroaromatisch substituierten Diborens 85 mit Catecholboran ergibt das Triboran 122, das strukturell den klassischen Hydroborierungsprodukten von Alkenen gleicht. In Analogie dazu wird von einer syn-Addition der H-B-Bindung an die B=B-Doppelbindung des Diborens ausgegangen. Wird hingegen das Hydroborierungsreagenz Durylboran eingesetzt, so findet eine nicht-klassische Addition der H-B-Fragmente an die B=B-Doppelbindung statt. Der genaue Mechanismus, der zur Bildung des Triborans 124 f{\"u}hrt, ist bisher nicht aufgekl{\"a}rt (Schema 66). Wird das [2]Diboraferrocenophan 109, das ein cyclisches, cis-konfiguriertes Diboren als Br{\"u}cke beinhaltet, mit Catecholboran bzw. Durylboran umgesetzt, so werden ebenfalls Triborane (123 und 125) generiert, die sich jedoch von den Triboranen 122 und 124 in ihrer Struktur grundlegend unterscheiden (Schema 67). Ein Erkl{\"a}rungsansatz hierf{\"u}r k{\"o}nnte in der hohen Ringspannung im cyclischen Diboren-verbr{\"u}ckten [2]Diboraferrocenophan 109 verglichen mit dem acyclischen heteroaromatisch substituierten Diboren 85 liegen. Ein Schritt zur Bildung des Triborans 123 aus der Umsetzung von 109 mit Catecholboran findet offenbar, wie die Festk{\"o}rperstruktur von 123 nahe legt, durch eine Ringerweiterung des F{\"u}nfringes des Catecholborans zu einem Sechsring durch Insertion eines Boratoms der Diborenbr{\"u}cke statt. Um genauere Aussagen zur Bildung von 123 wie auch 125 treffen zu k{\"o}nnen, sind quantenchemische Studien zu diesem Thema aktuelles Arbeitsgebiet der Arbeitsgruppe um Braunschweig. Die Reaktivit{\"a}t der elektronenreichen B=B-Doppelbindung der heteroaromatisch substituierten Diborene wurde in der vorliegenden Arbeit gegen{\"u}ber der Substanzklasse der Chalkogene {\"u}berpr{\"u}ft. Dabei stellte sich heraus, dass die Reaktionen der Diborene 60 und 85 mit elementarem Schwefel durch reduktive Insertion von Schwefel in die B=B-Doppelbindung zur Bildung von Produktgemischen aus Trithiadiborolanen und Diborathiiranen f{\"u}hren. Es zeigte sich, dass die gezielte Darstellung der Trithiadiborolane 126 und 127 durch Einwirkung von Ultraschall gelingt, wohingegen das Thiadiborolan 128 selektiv durch Reaktion des Diborens 85 mit Ethylensulfid oder einem {\"U}berschuss an Triphenylphosphansulfid zug{\"a}nglich gemacht werden kann (Schema 68). Die Reaktion der Diborene 60 und 85 mit elementarem Selen bzw. elementarem Tellur ergibt die entsprechenden Diboraselenirane (129 und 130) bzw. Diboratellurirane (131 und 132), die durch reduktive Insertion des entsprechenden Chalkogens in die B=B-Doppelbindung entstehen (Schema 69). Eine vollst{\"a}ndige Spaltung der B=B-Bindung durch Insertion weiterer {\"A}quivalente Selen bzw. Tellur ist auch unter Behandlung mit Ultraschall nicht zu beobachten. Das Furanyl-substituierte Diboren 85 konnte zudem mit chalkogenhaltigen Verbindungen erfolgreich umgesetzt werden. 85 reagiert mit Diphenyldisulfid und Diphenyldiselenid selektiv durch Addition der E-E-Bindung an die B=B Doppelbindung (Schema 70). Die diaseteroselektiven, analysenreinen 1,2-Additionsprodukte (133, 137) lassen auf einen Mechanismus, der in Analogie zu den Additionen von Disulfiden bzw. Diseleniden an Alkene {\"u}ber die Zwischenstufe entsprechender Sulfonium- bzw. Seleniumionen verl{\"a}uft, folgern. Alternativ dazu muss eine konzertierte syn-Addition der E-E-Bindung in Erw{\"a}gung gezogen werden. Demgegen{\"u}ber konnten aus den Umsetzungen des Thienyl-substituierten Diborens 60 mit Diphenyldisulfid, Diphenyldiselenid und isoPropylthiol keine analysenreinen Produkte isoliert werden. Das Diboren-verbr{\"u}ckte [2]Diboraferrocenophan 109 reagiert mit Diphenyldisulfid in einer 1,2-Addition der S-S-Bindung an die B=B-Doppelbindung, wobei ein sp2-sp3-Diboran durch Abspaltung eines NHCs gebildet wird. Die verk{\"u}rzte Fe-Bsp2-Bindungsl{\"a}nge l{\"a}sst auf eine Stabilisierung des sp2-Boratoms durch das Fe-Zentrum schließen. In einer vergleichbaren Reaktion mit Dimethyldisulfid konnte das identische Strukturmotiv, ein sp2-sp3-Diboran, erhalten werden (Schema 71). Die Reaktion des [2]Diboraferrocenophans 109 mit Diphenyldiselenid f{\"u}hrt zur vollst{\"a}ndigen Spaltung der B=B-Doppelbindung unter Addition zweier Se-Se-Bindungen von zwei {\"A}quivalenten Diphenyldiselenid und der damit einhergehenden Bildung der acyclischen bisborylierten Ferrocenspezies 139 (Schema 72). Die Bildung des einfachen Additionsprodukts, was wahrscheinlich intermedi{\"a}r auftritt, wurde auch bei Umsetzung mit nur einem {\"A}quivalent Diphenyldiselenid nicht beobachtet. Die Umsetzung des Furanyl-substituierten Diborens 85 mit isoPropylthiol verl{\"a}uft unter Addition der H-S-Bindung an die B=B-Doppelbindung, wobei in allen F{\"a}llen das syn-Additionsprodukt 142 erhalten wurde (Schema 72). Die von Thomas Steffenhagen beschriebene Addition der H-S-Bindung von isoPropylthiol an die B=B-Doppelbindung des [2]Diboraferrocenophans 109 ergibt dagegen selektiv ein anti-Additionsprodukt. In einer vergleichbaren Reaktion des [2]Diboraferrocenophans 109 mit tert-Butylthiol wurden anhand von NMR-Spektroskopie Indizien f{\"u}r die Bildung eines 1,2-Additionsproduktes erhalten. Allerdings gelang die Isolierung eines analysenreinen Produktes bislang nicht.}, subject = {Mehrfachbindung}, language = {de} } @phdthesis{Mueck2016, author = {M{\"u}ck, Felix Maximilian}, title = {Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivit{\"a}ts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27-36, 38, 47-49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40-42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festk{\"o}rper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in L{\"o}sung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Mol{\"a}quivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Mol{\"a}quivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden" umgeben. Beide Verbindungen liegen sowohl im Festk{\"o}rper als auch in L{\"o}sung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in L{\"o}sung wurde auch durch quantenchemische Rechnungen best{\"a}tigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festk{\"o}rper trikoordiniert und in L{\"o}sung tetrakoordiniert. Reaktivit{\"a}tsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-S{\"a}ure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27-38). Mit Ausnahme der Bildung von 25, 27 und 34-36 ist das typische Reaktivit{\"a}tsspektrum des Silylens 23 an zus{\"a}tzliche Reaktivit{\"a}tsfacetten gekoppelt: (i) eine {\"A}nderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28-33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium-Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-S{\"a}ure/Base-Reaktion unter Bildung des Lewis-S{\"a}ure/Base-Adduktes 25 und - nach einer zus{\"a}tzlichen Umlagerung - Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27-36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verl{\"a}uft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium-Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zun{\"a}chst mit einer der beiden C-C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermedi{\"a}r gebildeten Silacyclopropenringes. Die Verbindungen 30-33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Ger{\"u}st dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zun{\"a}chst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium-Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. F{\"u}r die Bildung von 31-33 postuliert man zun{\"a}chst eine homolytische El-El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si-ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden f{\"u}hrt dann unter Abspaltung von Me3SiElPh zur Bildung von 31-33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verl{\"a}uft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34-36 mit einer Silicium-Chalcogen-Doppelbindung. F{\"u}r die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molek{\"u}l Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zun{\"a}chst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Molek{\"u}ls Kohlenstoffdioxid an die Silicium-Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gest{\"u}tzt, dass 37 ebenfalls durch Umsetzung von 30 mit einem {\"U}berschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27-36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34-36) bzw. Imino-Liganden (nur 28-33) sowie einer Si-El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si-El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 l{\"a}sst sich als verzerrtes Tetraeder beschreiben. Reaktivit{\"a}tsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-S{\"a}uren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium-Bor-, Silicium-Aluminium- bzw. Silicium-Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-S{\"a}ure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer {\"a}quatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium-Zink-Verbindung 42 auch in L{\"o}sung stabil ist, w{\"a}hrend die Silicium-Bor- und Silicium-Aluminium-Verbindung 39 bzw. 40 in L{\"o}sung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen {\"a}hnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilit{\"a}t in L{\"o}sung. Da 39 und 40 in L{\"o}sung auch bei tieferer Temperatur (T = -20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei h{\"o}herer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine st{\"a}rkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den {\"U}bergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43-45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43-45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbr{\"u}ckt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer {\"a}quatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43-46 mit den jeweiligen Amidinato-Analoga 4-7 f{\"a}llt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) f{\"u}hrt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4-6, w{\"a}hrend die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden f{\"u}hrt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43-45 mit einem verbr{\"u}ckenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47-51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47-51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49-51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium-Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47-51 wird erneut die unterschiedliche Reaktivit{\"a}t der Amidinato/Guanidinato-analogen Silylene 1 (im Festk{\"o}rper tri- und in L{\"o}sung tetrakoordiniert) und 24 (sowohl in L{\"o}sung als auch im Festk{\"o}rper trikoordiniert) deutlich. Interessanterweise f{\"u}hren die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10-12 repr{\"a}sentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49-51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, w{\"a}hrend der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden tr{\"a}gt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer {\"a}quatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verl{\"a}uft formal unter heterolytischer Aktivierung einer Chalcogen-Chalcogen-Bindung und f{\"u}hrt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu f{\"u}hrt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se-Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivit{\"a}t des Silylens 24 gegen{\"u}ber kleinen Molek{\"u}len untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem {\"U}berschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer {\"a}quimolaren Menge an Kohlenstoffdisulfid (→ 56), einer st{\"o}chio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen {\"U}berschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repr{\"a}sentieren sehr seltene Beispiele f{\"u}r Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repr{\"a}sentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbr{\"u}ckenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele f{\"u}r Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten f{\"u}hren (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), w{\"a}hrend in der Mehrzahl der F{\"a}lle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer {\"a}quatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repr{\"a}sentiert mit seinem {\"u}ber das Kohlenstoff-Atom bindenden CS22--Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel f{\"u}r das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform.}, subject = {Siliciumkomplexe}, language = {de} } @phdthesis{Trumpp2016, author = {Trumpp, Alexandra}, title = {Synthese und Reaktivit{\"a}t von Diboran(4)- und Diboran(4)-Addukt-Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136812}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der vorliegenden Arbeit wurde zum einen das Koordinationsverhalten von Lewis-Basen an die Lewis-aciden Borzentren der symmetrisch konfigurierten 1,2-Dihalogendiborane(4) des Typs B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) und des unsymmetrisch 1,1 substituierten Diborans(4) F2BB(Mes)2, sowie die Eigenschaften und die Reaktivit{\"a}t der erhaltenen sp2-sp3 Diboran(4)-Verbindungen untersucht. Zum anderem wurde die F{\"a}higkeit des 1,1-substituierten Diborans(4) F2BB(Mes)2 zur oxidativen Addition der B-F- bzw. B-B-Bindung an Bisphosphan-Platin(0)-Komplexe untersucht.}, subject = {Diborane}, language = {de} }