@phdthesis{Claes2016, author = {Claes, Christina}, title = {Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ein Teil der hier vorliegenden Arbeit besch{\"a}ftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollst{\"a}ndig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festk{\"o}rper stark {\"a}hneln. Die vergleichsweise lange B-CCarben-Bindungen (98: 1.621(3) {\AA}; 99: 1.619(5) {\AA}; 100: 1.631(3) {\AA}) konnten hierbei als Beleg f{\"u}r den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B-P-Bindungen (112: 1.987(2) {\AA}; 113: 1.980(2) {\AA}; 114: 1.960(3) {\AA}) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich k{\"u}rzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizit{\"a}t von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zur{\"u}ckgef{\"u}hrt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen F{\"a}llen unselektiv und f{\"u}hrte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] {\"u}berf{\"u}hrt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B-CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molek{\"u}lstrukturen im Festk{\"o}rper von 101, 102 und 103 unterscheiden sich nur geringf{\"u}gig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilit{\"a}t sogar gegen{\"u}ber Luft und Wasser auf. W{\"a}hrend gegen{\"u}ber [Pt(PCy3)2] keine Reaktivit{\"a}t beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollst{\"a}ndige C-H-Bindungsaktivierung am NHC-R{\"u}ckgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B-CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signals{\"a}tze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals best{\"a}tigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festk{\"o}rper konnte durch eine Einkristallr{\"o}ntgenstrukturanalyse belegt werden, wobei die geringe Qualit{\"a}t des Datensatzes keine Strukturdiskussion zul{\"a}sst. Erwartungsgem{\"a}ß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C-H-Einheiten im NHC-R{\"u}ckgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewiss{\"a}uren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. W{\"a}hrend die Umsetzungen mit Lewiss{\"a}uren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des L{\"o}sungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren L{\"o}sungsmittel f{\"u}hrten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molek{\"u}lstruktur im Festk{\"o}rper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivit{\"a}t neuer Phosphan-stabilisierter Diborene. Hierbei konnte zun{\"a}chst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei -40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unl{\"o}slichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivit{\"a}t oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molek{\"u}lstrukturen von 122, 123, 126 und 127 im Festk{\"o}rper konnten die Abst{\"a}nde der B=B-Doppelbindungen (1.55(2)-1.593(2) {\AA}) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1-B1-B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die F{\"u}nfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgr{\"o}ße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde f{\"u}r dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems h{\"o}herer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Aufl{\"o}sung bzw. Signal{\"u}berlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B-B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollst{\"a}ndig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zun{\"a}chst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. W{\"a}hrend mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des L{\"o}sungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase erm{\"o}glichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) ben{\"o}tigt dieser Ansatz jedoch deutlich l{\"a}ngere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 \% statt 54 \%). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 {\"u}berf{\"u}hrt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer L{\"o}sung von 122 erhalten werden. Die Identit{\"a}t von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erkl{\"a}rt werden. Zus{\"a}tzlich konnten zwei weitere m{\"o}gliche Zersetzungsprodukte durch Einkristallr{\"o}ntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur f{\"u}r 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) m{\"o}glich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei gef{\"u}hrt werden. Diese ungew{\"o}hnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als m{\"o}glicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist {\"u}ber die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = -20.62; NICS(1) = -6.27; NICS(1)` = -14.59) und den unterschiedlich langen B-C-Bindungen des Vierrings in der Molek{\"u}lstruktur im Festk{\"o}rper (B-C1: 1.465(4) bzw. 1.486(4) {\AA}; B-C3: 1.666(4) bzw. 1.630(4) {\AA}) weiter best{\"a}tigt wurde. Eine Einkristallr{\"o}ntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) {\AA} im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 {\"u}berf{\"u}hrt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in L{\"o}sung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molek{\"u}lstruktur im Festk{\"o}rper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 f{\"u}hrte (B-B: 1.633(3) {\AA}). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in L{\"o}sung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) f{\"u}r ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch {\"a}ußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu f{\"u}hrte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molek{\"u}lstrukturen im Festk{\"o}rper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B-B: 1.626(3) {\AA} (167); 1.628(3) {\AA} (168); 1.633(4) {\AA} (63)). Beide Spezies zeigen hierbei erwartungsgem{\"a}ß ein interessantes photophysikalisches Verhalten, wobei dieses l{\"o}sungsmittelunabh{\"a}ngig ist und Fluoreszenzprozesse f{\"u}r die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivit{\"a}tsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden.}, subject = {Bor}, language = {de} } @phdthesis{Schaefer2016, author = {Sch{\"a}fer, Marius}, title = {Darstellung und Reaktivit{\"a}t von Iminoboranen sowie deren Einsatz bei der Synthese von Azaborininen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die Dissertation befasst sich mit der Darstellung von Iminoboranen sowie deren Verwendung bei der Rhodium-vermittelten Synthese von Azaborininen.}, subject = {Iminoborane}, language = {de} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Dellermann, Theresa and Hammond, Kai}, title = {Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds}, series = {Chemistry, A European Journal}, volume = {22}, journal = {Chemistry, A European Journal}, number = {48}, doi = {10.1002/chem.201604094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139364}, pages = {17169 -- 17172}, year = {2016}, abstract = {Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride.}, subject = {Diborane}, language = {en} } @phdthesis{Macha2016, author = {Macha, Bret B.}, title = {Boron-Containing Aromatics as Communicating and Communicative Units in π-Conjugated Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137498}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Project Borylene A new borylene ligand ({BN(SiMe\(_3\))(t-Bu)}) has been successfully synthesized bound in a terminal manner to base metal scaffolds of the type [M(CO)\(_5\)] (M = Cr, Mo, and W), yielding complexes [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19), [(OC)\(_5\)Mo{BN(SiMe\(_3\))(t- Bu)}] (20), and [(OC)\(_5\)W{BN(SiMe\(_3\))(t-Bu)}] (21) (Figure 5-1). Synthesis of complexes 19, 20, and 21 was accomplished by double salt elimination reactions of Na\(_2\)[M(CO)\(_5\)] (M = Cr (11), Mo (1), and W (12)) with the dihaloborane Br\(_2\)BN(SiMe\(_3\))(t-Bu) (18). This new "first generation" unsymmetrical borylene ligand is closely akin to the bis(trimethylsilyl)aminoborylene ligand and has been shown to display similar structural characteristics and reactivity. The unsymmetrical borylene ligand {BN((SiMe\(_3\))(t-Bu)} does display some individual characteristics of note and has experimentally been shown to undergo photolytic transfer to transition metal scaffolds in a more rapid manner, and appears to be a more reactive borylene ligand, than the previously published symmetrical {BN(SiMe\(_3\))\(_2\)} ligand, based on NMR and IR spectroscopic evidence. Photolytic transfer reactions with this new borylene ligand ({BN((SiMe\(_3\))(t-Bu)}) were conducted with other metal scaffolds, resulting in either complete borylene transfer or partial transfer to form bridging borylene ligand interactions between the two transition metals. The unsymmetrical ligand's coordination to early transition metals (up to Group 6) indicates a preference for a terminal coordination motif while bound to these highly Lewis acidic species. The ligand appears to form more energetically stable bridging coordination modes when bound to transition metals with high Lewis basicity (beyond Group 9) and has been witnessed to transfer to transition metal scaffolds in a terminal manner and subsequently rearrange in order to achieve a more energetically stable bridging final state. Figure 5-2 lists the four different transfer reactions conducted between the chromium borylene species [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19) and the transition metal complexes [(η\(^5\)-C\(_5\)H\(_5\))V(CO)\(_4\)] (51), [(η\(^5\)-C\(_5\)Me\(_5\))Ir(CO)\(_2\)] (56), [(η\(^5\)-C\(_5\)H\(_4\)Me)Co(CO)\(_2\)] (59), and [{(η\(^5\)-C\(_5\)H\(_5\))Ni}\(_2\){μ-(CO)\(_2\)}] (53). These reactions successfully yielded the new "second generation" borylene complexes [(η\(^5\)-C\(_5\)H\(_5\))(OC)\(_3\)V{BN(SiMe\(_3\))(t-Bu)}] (55), [(η\(^5\)-C\(_5\)Me\(_5\))Ir{BN(SiMe\(_3\))(t-Bu)}\(_2\)] (58), [{(η\(^5\)-C\(_5\)H\(_4\)Me)Co}\(_2\)(μ-CO)\(_2\){μ- BN(SiMe\(_3\))(t-Bu)}] (61), and [{(η\(^5\)-C\(_5\)H\(_5\))Ni}\(_2\)(μ-CO){μ-BN(SiMe\(_3\))(t-Bu)}] (62), respectively. Analysis of the accumulated data for all of the terminal borylene species discussed in this section, particularly bond distances, infrared spectroscopy, and \(^{11}\)B{\(^1\)H} NMR spectroscopic data, has been performed, and a trend in the data has led to the following conclusions: [1] NMR spectroscopic data for the \(^{11}\)B{\(^1\)H} boron and \(^{13}\)C{\(^1\)H} carbonyl environments of the first generation borylene species ([(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Cr (19), Mo (20), and W (21))) all show progressive up-field shifting as the Group 6 metal becomes heavier (Cr (19) to Mo (20) to W (21)), indicating maximum deshielding for these nuclei in the [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19) complex. [2] The boron-metal-trans-carbon (B-M-C\(_{trans}\)) axes of the first generation borylene complexes [(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Mo (20), and W (21)) are not completely linear, preventing direct IR spectroscopic comparison. The chromium analog [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19), however, is essentially linear and displays the expected three carbonyl IR stretching frequencies, all at higher energy than those of the chromium bis(trimethylsilyl)aminoborylene complex [(OC)\(_5\)Cr{BN(SiMe\(_3\))\(_2\)}] (13), indicating that the ({BN(SiMe\(_3\))(t-Bu)}) ligand is either a stronger σ-donor or a poorer π-acceptor compared to the chromium metal center. [3] In transfer reactions, the {BN(SiMe\(_3\))(t-Bu)} fragment appears to be more stable as a terminal ligand when bound to more Lewis acidic first row transition metals and appears to prefer coordination in a bridging motif when coordinated to more Lewis basic first row transition metals. Project Borirene The synthesis of the first platinum bis(borirene) complexes are presented along with findings from structural and electronic examination of the role of platinum in allowing increased coplanarity and conjugation of twin borirene systems. This series of trans-platinum-linked bis(borirene) complexes (119/120, 122/123, and 125/126) all show coplanarity in the twin ring systems and stand as the first verified structural representations of two coplanar borirene systems across a linking unit. The role of a platinum atom in mediating communication between chromophoric ligands can be generalized by an expected bathochromic (red) shift in the absorption spectrum due to an increase in the electronic delocalization between the formerly independent aromatic systems when compared to the platinum mono-σ-borirenyl systems. The trans-platinum bis(borirene) scaffold serves as a simplified monomeric system that allows not only study of the effects of transition metals in mitigating electronic conjugation, but also the tunability of the overall photophysical profile of the system by exocyclic augmentation of the three-membered aromatic ring. A series of trans-platinum bis(alkynyl) complexes were prepared (Figure 5-3) to serve as stable platforms to transfer terminal borylene ligands {BN(SiMe\(_3\))\(_2\)} onto 95, 102, 106, and 63. Mixing of cis-[PtCl\(_2\)(PEt\(_3\))\(_2\)] (93) with two equivalents of corresponding alkynes in diethylamine solutions successfully yielded trans-[Pt(C≡C-Ph)\(_2\)(PEt\(_3\))\(_2\)] (95), trans-[Pt(C≡C-p-C\(_6\)H\(_4\)OMe)\(_2\)(PEt\(_3\))\(_2\)] (102), trans-[Pt(C≡C-p-C\(_6\)H\(_4\)CF\(_3\))\(_2\)(PEt\(_3\))\(_2\)](106), and trans-[Pt(C≡C-9-C\(_{14}\)H\(_9\))\(_2\)(PEt\(_3\))\(_2\)] (63) through salt elimination reactions. Three of the trans-platinum bis(alkynyl) complexes (95, 102, and 106) successfully yielded trans-platinum bis(borirenyl) complexes 119/120, 122/123, and 125/126 through photolytic transfer of two equivalents of the terminal borylene ligand {BN(SiMe\(_3\))\(_2\)} from [(OC)\(_5\)Cr{BN(SiMe\(_3\))\(_2\)}] (13) (Figure 5-4). Attempted borylene transfer reactions to the trans-platinum bis(alkynyl) complex trans-[Pt(C≡C-9-C\(_{14}\)H\(_9\))\(_2\)(PEt\(_3\))\(_2\)] (63) failed due to the complex's photoinstability. Although a host of other variants of platinum alkynyl species were prepared and attempted, these three were the only ones that successfully yielded trans-platinum bis(borirenyl) units. Attempts were also made to create a cis variant for direct UV-vis comparison to the trans-platinum bis(borirenyl) variants, however, these attempts were also not successful. Gladysz-type platinum end-capped alkynyl species were also synthesized to serve as transfer platforms for borirene synthesis in sequential order, however, these species were also shown to not be photolytically stable. A host of new monoborirenes: Ph-(μ-{BN(SiMe\(_3\))(t-Bu)}C=C)-Ph (148), trans- [PtCl{(μ-{BN(SiMe\(_3\))(t-Bu)}C=C)-Ph}(PEt\(_3\))\(_2\)] (149), and [(η\(^5\)-C\(_5\)Me\(_5\))(OC)\(_2\)Fe(μ- {BN(SiMe\(_3\))(t-Bu)}C=C)Ph] (150) were synthesized by photo- and thermolytic transfer of the unsymmetrical {BN(SiMe\(_3\))(t-Bu)} ligand from the complexes [(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Cr (19), Mo (20), and W (21)) to organic and organometallic alkynyl species to verify that the borylene complexes all display similar reactivity to the symmetrical terminal borylenes of the type [(OC)\(_5\)M{BN(SiMe\(_3\))\(_2\)}] (M = Cr (13), Mo (14), and W (15)). These monoborirenes are all found to be oils when in their pure states and X-ray structural determination was impossible for these species. Project Boratabenzene The bis(boratabenzene) complex [{(η\(^5\)-C\(_5\)H\(_5\))Co}\(_2\){μ:η\(^6\),η\(^6\)-(BC\(_5\)H\(_5\))\(_2\)}] (189) was successfully prepared by treatment of tetrabromodiborane (65) with six equivalents of cobaltocene (176) in a unique reaction that utilized cobaltocene as both a reagent and reductant (Figure 5-5). The bimetallic transition metal complex features a new bridging bis(boratabenzene) ligand linked through a boron-boron single bond that can manifest delocalization of electron density by providing an accessible LUMO orbital for π-communication between the cobalt centers and heteroaromatic rings. This dianionic diboron ligand was shown to facilitate electronic coupling between the cobalt metal sites, as evidenced by the potential separations between successive single-electron redox events in the cyclic voltammogram. Four formal redox potentials for complex 189 were found: E\(_{1/2}\)(1) = -0.84 V, E\(_{1/2}\)(2) = -0.94 V, E\(_{1/2}\)(3) = -2.09 V, and E\(_{1/2}\)(4) = -2.36 V (relative to the Fc/Fc+ couple) (Figure 5-6). These potentials correlate to two closely-spaced oxidation waves and two well-resolved reduction waves ([(189)]\(^{0/+1}\), [(189)]\(^{+1/+2}\), [(189)]\(^{0/-1}\), and [(189)]\(^{-1/-2}\) redox couples, respectively). The extent of metal-metal communication was found to be relative to the charge of the metal atoms, with the negative charge being more efficiently delocalized across the bis(boratabenzene) unit (class II Robin-Day system). Magnetic studies indicate that the Co(II) ions are weakly antiferromagnetically coupled across the B-B bridge. While reduction of the bis(boratabenzene) system resulted in decomposition of the complex, oxidation of the system by one- and two-electron steps resulted in isolable stable monocationic (194) and dicationic (195) forms of the bis(boratabenzene) complex (Figure 5-7). Study of these systems verified the results of the cyclic voltammetry studies performed on the neutral species. These species are unfortunately not stable in acetonitrile or nitromethane solutions, which until this point are the only solvents that have been observed to dissolve the cationic species. Unfortunately, this instability in solution complicates reactivity studies of these cationic complexes. Finally, reactivity studies were performed on the neutral bis(boratabenzene) complex 189 in which the compound was tested for: (A) cleavage of the boratabenzene (cyclo-BC\(_5\)H\(_5\)) ring from the cobalt center, and (B) oxidative addition of the B-B bond to a transition metal scaffold to attempt synthesis of the first ever L\(_x\)M-η\(^1\)-(BC\(_5\)H\(_5\)) complex. Both of these reactivity studies, however, proved unsuccessful and typically witnessed decomposition of the bis(boratabenzene) complex or no reactivity. After repeated attempts of these reactions, no oxidative addition of the bis(boratabenzene) system could be confirmed.}, subject = {Borverbindungen}, language = {en} } @phdthesis{Molitor2016, author = {Molitor, Sebastian}, title = {Stabilisierung und Reaktivit{\"a}t carbenoider Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137607}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ziel der vorliegenden Doktorarbeit war die Stabilisierung und Isolierung von Alkalimetall-Carbenoiden sowie die Entwicklung neuer Anwendungsgebiete dieser Verbindungen. Dabei konzentrierte sich der erste Teil auf die thermische Stabilit{\"a}t und die Kontrolle der Reaktivit{\"a}t dieser Verbindungen, w{\"a}hrend der zweite Teil die Stabilit{\"a}ts-Reaktivit{\"a}ts-Beziehung der Verbindungsklasse beinhaltet. Stabilit{\"a}t von M/X-Carbenoiden Ein Schwerpunkt lag dabei auf der Synthese, den Eigenschaften und der Reaktivit{\"a}t Silyl-substituierter Carbenoide. Diese wurden durch Deprotonierung der Fluor- und Chlorvorstufen mit einer geeigneten Alkalimetall-Base zun{\"a}chst in situ erzeugt (Abb. 4.1), da sie trotz stabilisierender Gruppen thermisch instabil waren und sich meist bei Temperaturen {\"u}ber -40 °C zersetzten. Durch die Einf{\"u}hrung der Thiophosphoryl- und Silylgruppe konnten erstmals systematische Studien zu den Eigenschaften und Stabilit{\"a}ten der Carbenoide mit unterschiedlichen M/X-Kombinationen durchgef{\"u}hrt werden. Hierbei gelang es neben dem Einfluss der Abgangsgruppe auch den Einfluss der unterschiedlichen Alkalimetalle zu untersuchen, welcher in der Literatur bisher nahezu unbeachtet geblieben war. Abb. 4.1. (oben) Synthese von 52-M und 53-M; (unten) Molek{\"u}lstrukturen der Carbenoide 53-Na und 53-K im Festk{\"o}rper. Durch NMR-spektroskopische Untersuchungen konnte die erfolgreiche Synthese der Fluor- bzw. Chlor-Carbenoide 52-M und 53-M (mit M = Li, Na, K) nachgewiesen werden. Diese zeigten im 31P{1H}-NMR-Spektrum nur eine geringe Verschiebung verglichen mit den protonierten Vorstufen, allerdings best{\"a}tigte das Fehlen des Signals f{\"u}r das Br{\"u}ckenwasserstoffatom im 1H-NMR-Spektrum die erfolgreiche Synthese der Verbindungen. Das Signal des carbenoiden Kohlenstoffatoms im 13C{1H}-NMR-Spektrum zeigte bei den Chlor-Carbenoiden nur eine geringe {\"A}nderung verglichen mit der protonierten Ausgangsverbindung. Die um etwa 35 Hz erh{\"o}hte 1JCP-Kopplungskonstante ließ jedoch auf einen erh{\"o}hten s-Charakter der P-C-Bindung und damit auf ein sp2-hybridisiertes Kohlenstoffatom schließen. Durch VT-NMR-Messungen konnte die thermische Instabilit{\"a}t der Carbenoide best{\"a}tigt und die genauen Zersetzungstemperaturen bestimmt werden. Dabei zeigte sich, dass 53-Li mit einer Zersetzungstemperatur von TD = 0 °C thermisch am instabilsten ist. Durch das Ersetzten von Lithium durch Natrium konnte die Stabilit{\"a}t des Carbenoids drastisch erh{\"o}ht werden, was sich in einer Zersetzungstemperatur von TD = 30 °C widerspiegelt. Diese Beobachtung ist entgegen des Trends der Stabilit{\"a}t von einfachen Alkalimetallorganylen und hebt die Besonderheit der Alkalimetall-Carbenoide hervor. Es konnte dabei auch gezeigt werden, dass durch Kalium keine weitere Stabilisierung erzielt werden konnte. Allgemein {\"a}hneln sich die beobachteten Natrium- und Kalium-Carbenoide 53-Na und 53-K sowohl in ihrer thermischen Stabilit{\"a}t als auch in ihren NMR-spektroskopischen Eigenschaften. 53-Na und 53-K konnten - im Gegensatz zur Lithiumverbindung - in sehr guten Ausbeuten als gelbe Feststoffe isoliert und kristallographisch untersucht werden (Abb. 4.1). Damit stellen 53-Na und 53-K die ersten isolierten Carbenoide der schweren Alkalimetalle dar. 53-Na bildet ein Monomer, 53-K ein zentrosymmetrisches Dimer im Festk{\"o}rper. Beide Carbenoide bilden sogenannte Carben-Donor-Komplexe mit einem M-Cl-Kontakt, aber keinerlei Wechselwirkung zwischen dem Metall und dem carbenoiden Kohlenstoffatom aus. Die beobachtete C1-Cl-Bindungsverl{\"a}ngerung um Δd = 0.05 {\AA} (53-Na) bzw. Δd = 0.03 {\AA} (53-K) best{\"a}tigt die erh{\"o}hte Polarisierung der C1-Cl-Bindung, was typisch f{\"u}r den carbenoiden Charakter ist. Durch elektrostatische Wechselwirkungen und negativer Hyperkonjugation wird die negative Ladung am carbenoiden Kohlenstoff stabilisiert, was sich in einer Verl{\"a}ngerung der C1-P- bzw. C1-Si-Bindung und einer Verk{\"u}rzung der P-S-Bindung {\"a}ußert. Die erh{\"o}hte Stabilit{\"a}t von 53-Na und 53-K verglichen mit der Lithiumverbindung wurde auf die erh{\"o}hte Polarit{\"a}t, geringere Lewis-Acidit{\"a}t und den erh{\"o}hten ionischen Charakter der M-C-Wechselwirkung zur{\"u}ckgef{\"u}hrt. Diese Vermutung f{\"u}hrte zur Annahme, dass eine Manipulation der M-C-Wechselwirkung die M{\"o}glichkeit bietet, die Stabilit{\"a}t von Carbenoiden zu kontrollieren. Durch die Koordination starker Donorliganden wie 12-Krone-4 im Fall von Lithium bzw. 18-Krone-6 f{\"u}r Kalium konnten die entsprechenden Carbenoide synthetisiert und strukturell charakterisiert werden. Dabei bildeten sich durch die Koordination des Kronenethers separierte Ionenpaare im Festk{\"o}rper, was zur gew{\"u}nschten thermischen Stabilisierung f{\"u}hrte. So zeigte 53-Li•(12-Krone-4)2 eine erh{\"o}hte Zersetzungstemperatur von TD = 20 °C im Vergleich zum THF-Addukt [(53-K)2•(18-Krone-6): TD = 40 °C]. Die f{\"u}r die Chlor-Carbenoide 53-M durchgef{\"u}hrten Untersuchungen wurden im Anschluss auf die Fluor-Carbenoide 52-M erweitert. Dabei belegten NMR-spektroskopische Studien die erwartungsgem{\"a}ß geringere thermische Stabilit{\"a}t der Fluor-Systeme. Im Fall von 52-Li konnte eine Zersetzungstemperatur von TD = -70 °C bestimmt werden, w{\"a}hrend sich 52-Na und 52-K mit Zersetzungstemperaturen von TD = 10 °C (52-Na) bzw. 30 °C (52-K) - analog zu den Chlor-Carbenoiden - als thermisch deutlich stabiler erwiesen. Das carbenoide Kohlenstoffatom erf{\"a}hrt im 13C{1H}-NMR-Spektrum eine f{\"u}r Carbenoide typische Tieffeldverschiebung im Vergleich zur protonierten Vorstufe. Diese f{\"a}llt im Fall von 52-Li (ΔC = 33 ppm) etwas gr{\"o}ßer aus als f{\"u}r 52-Na (ΔC = 32 ppm) bzw. 52-K (ΔC = 30 ppm). Neben der Bestimmung der Zersetzungstemperatur der Carbenoide gelang es ebenfalls, die Zersetzungsprodukte der M/Cl- und M/F-Carbenoide aufzukl{\"a}ren und zu charakterisieren. So konnte gezeigt werden, dass sich die Chlor-Carbenoide selektiv zur sesselartigen Verbindung 57 zersetzen (Abb. 4.2). Bei den Fluor-Carbenoiden 52-M kommt es hingegen zur Bildung unterschiedlicher Verbindungen. Diese werden jedoch vermutlich alle {\"u}ber das Thioketon-Intermediat TK gebildet, das durch Wanderung des Schwefels der Thiophosphorylgruppe zum carbenoiden Kohlenstoffatom entsteht und durch Abfangreaktion mit Methyllithium zum lithiierten Thioether 60 nachgewiesen werden konnte. In Abh{\"a}ngigkeit vom Metall und Abgangsgruppe werden anschließend unterschiedliche Reaktionswege durchlaufen. Gem{\"a}ß des HSAB-Konzepts erfolgt im Fall des Lithium-Carbenoids der Angriff am Schwefelatom des Thioketons, wobei die zyklische Verbindung 57 gebildet wird. Beim weicheren Kalium-Carbenoid 52-K kommt es selektiv zur Bildung des Thioenolats 65, w{\"a}hrend f{\"u}r 52-Na ein Gemisch aus 57 und 65 beobachtet wird. Abb. 4.2. (oben) Zersetzungsreaktionen der M/X-Carbenoide 52-M und 53-M; (unten) Molek{\"u}lstrukturen der Verbindungen 60 und 65 im Festk{\"o}rper. Die zu 52 analogen bromierten und iodierten Ausgangsverbindungen eigneten sich nicht zur Darstellung von Carbenoiden. Hier gelang es nicht durch Deprotonierung die Carbenoide zu synthetisieren. Le Floch und Mitarbeiter konnten bereits 2007 zeigen, dass durch eine zweite stabilisierende Thiophosphorylgruppe das Li/Cl-Carbenoid 14 bis zu einer Temperatur von 60 °C keine Zersetzungsreaktionen zeigt. Basierend auf diesen {\"U}berlegungen wurden - analog zu den Silyl-substituierten Carbenoiden - der Einfluss der unterschiedlichen Alkalimetalle und Halogene auf die Eigenschaften und die Stabilit{\"a}t der entsprechenden Carbenoide untersucht. Zur Darstellung der Carbenoide wurden die protonierten Vorstufen 69-71 mit einem leichten {\"U}berschuss an Alkalimetallhexamethyldisilazan umgesetzt. Die Fluor-Carbenoide 69-M zeigten dabei wieder die f{\"u}r Carbenoide typische Tieffeldverschiebung des carbenoiden Kohlenstoff-atoms im 13C{1H}-NMR-Spektrum verglichen mit der protonierten Vorstufe. Im Fall der Chlor- und Brom-Carbenoide 70-M bzw. 71-M sind {\"a}hnliche Signalverschiebungen zu beobachten, allerdings fallen diese schw{\"a}cher aus. Erneut sind starke spektroskopische {\"A}hnlichkeiten zwischen den Natrium- und Kalium-Vertretern festzustellen, w{\"a}hrend die Lithium-Carbenoide eine gewisse Ausnahmestellung einnehmen. Abb. 4.3. (oben) Synthese von 69-M, 70-M und 71-M; (unten) Molek{\"u}lstrukturen der Bis(thiophosphoryl)-substituierten Carbenoide 69-Na•PMDTA, 70-Na und 70-K im Festk{\"o}rper. Durch VT-NMR-Messungen konnte gezeigt werden, dass alle Carbenoide bis Temperaturen von 60 °C keine Zersetzungsreaktionen eingehen. So gelang es, alle Carbenoide als gelbe Feststoffe zu isolieren. Einzig das Li/F-Carbenoid erwies sich bei Raumtemperatur als instabil und wies eine Zersetzungstemperatur von TD = 0 °C auf. Damit ist es das bis heute stabilste Li/F-Carbenoid das in der Literatur bekannt ist. Durch r{\"o}ntgenkristallographische Untersuchungen konnten alle Chlor- bzw. Brom-Carbenoide 70-M bzw. 71-M sturkturell charakterisiert werden. Dabei ist es gelungen, zus{\"a}tzlich zu den bereits bekannten Strukturen schwerer Alkalimetall-Carbenoide, einige Metall-Halogen-Kombinationen erstmalig strukturell zu charakterisieren. Durch den Zusatz von PMDTA gelang es auch das erste Na/F-Carbenoid zu charakterisieren. Abbildung 4.3 zeigt exemplarisch einige Vertreter der neuen Strukturen. Auff{\"a}llig ist dabei, dass in Abh{\"a}ngigkeit des Metalls {\"a}hnliche Strukturen erhalten wurden. So bilden die Kalium-Vertreter 70-K und 71-K wieder ein zentrosymmetrisches Dimer aus, w{\"a}hrend die Natrium-Vertreter 69-Na•PMDTA, 70-Na, 71-Na und 71-Li als Monomere vorliegen. Bei den beschriebenen Carbenoiden ist nur bei 69-Na•PMDTA und 70-Na die f{\"u}r Carbenoide typische C1-X-Bindungsverl{\"a}ngerung beobachtbar, was auf deren erh{\"o}hten carbenoiden Charakter im Vergleich mit den anderen Systemen schließen l{\"a}sst. Zusammenfassend l{\"a}sst sich folgender allgemeiner Trend formulieren: Der carbenoide Charakter f{\"a}llt in der Gruppe der Halogene von F zu I und in der Gruppe der Alkalimetalle gem{\"a}ß Li > Na ≥ K. Die thermische Stabilit{\"a}t zeigt gleichzeitig einen inversen Trend (Abb. 4.4). Reaktivit{\"a}t, carbenoider Charakter Thermische Stabilit{\"a}t Abb. 4.4. Tendenzen in den Eigenschaften von Carbenoiden. Reaktivit{\"a}t und Anwendung Nachdem die Carbenoide auf ihre Stabilit{\"a}ten, NMR-spektroskopischen und strukturellen Eigenschaften untersucht wurden, stand in weiteren Studien die Reaktivit{\"a}t der Carbenoide im Vordergrund. Hierbei lag der Fokus vor allem auf E-H-Bindungsaktivierungsreaktionen, da es bislang nur wenige Beispiele f{\"u}r Carbenoide mit Hauptgruppenelementverbindungen gibt. Zun{\"a}chst sollte die Reaktivit{\"a}t von 53-Li gegen{\"u}ber Boranen untersucht werden. Hierbei kommt es zur selektiven Bildung des Lithiumborats 79 (Abb. 4.5). An das ehemalige carbenoide Kohlenstoffatom ist dabei eine BH3-Einheit und ein weiteres Wasserstoffatom gebunden. Durch theoretische und experimentelle Untersuchungen konnte der Reaktionsmechanismus zu 79 aufgekl{\"a}rt werden, der als schrittweise B-H-Aktivierung beschrieben werden kann. So kommt es zun{\"a}chst zur Boratbildung und anschließend zum Cl/H-Austausch mit Hilfe eines weiteren Boran-Molek{\"u}ls. Dies konnte durch Deuterierungsexperimente mit BD3•THF experimentell best{\"a}tigt werden. Die Lithiumboratbildung zeigte sich dabei abh{\"a}ngig von der Stabilit{\"a}t der Lewis-Basen-Addukte, da mit den stabileren Amin- bzw. Phosphan-Boran-Addukten keine Umsetzung zu 79 beobachtet werden konnte. Abb. 4.5. (links) B-H-Aktivierung durch Carbenoid 53-Li; (rechts) Molek{\"u}lstruktur des Lithiumborats 79 im Festk{\"o}rper. Im n{\"a}chsten Schritt wurde die Reaktivit{\"a}t gegen{\"u}ber Phosphanen getestet. Dabei kam es interessanterweise nicht zu einer analogen P-H-Bindungsaktivierung, sondern vielmehr zu einer Dehydrokupplung der sekund{\"a}ren Arylphosphane zu den entsprechenden Diphosphanen unter Bildung der zweifach protonierten Vorstufe (Abb. 4.6). Diese Reaktion ist bisher einzigartig in der Chemie der Carbenoide und hebt deren großes Potenzial f{\"u}r weitere Anwendungen hervor. Das entwickelte Syntheseprotokoll stellt eine sehr selektive und effektive Methode dar, Phosphane zu Diphosphanen zu kuppeln. Es war so m{\"o}glich die Diphosphane nach der Abtrennung der zweifach protonierten Vorstufe, die anschließend recycelt werden kann, in sehr guten Ausbeuten von {\"u}ber 90\% zu isolieren. Dabei erlaubte das Syntheseprotokoll die Gegenwart funktioneller Gruppen, z.B. Methoxy-, Dimethylamino- oder Trifluoromethyl-Substitutenten. {\"U}berraschenderweise zeigten die Umsetzungen der Lithium-Carbenoide mit Chlorsubstituierten Arylphosphanen keinerlei Substitutionsreaktionen am Aromaten sondern f{\"u}hrten ebenfalls selektiv zu den Diphosphanen. Einzig das sterisch anspruchsvolle sekund{\"a}re Arylphosphan Mes2PH oder aliphatische Phosphane wie tBu2PH oder Cy2PH eigneten sich nicht zur Dehydrokupplung. Im Fall des 3,5-Dichlorsubstiuierten Phosphans war es m{\"o}glich neben dem Diphosphan das entsprechende P-H-Aktivierungsprodukt zu beobachten und in einer Ausbeute von 22\% zu isolieren. Diese Aktivierung zeigte sich abh{\"a}ngig von der Konzentration der Reaktionsl{\"o}sung und konnte durch hohe Verd{\"u}nnung unterdr{\"u}ckt werden. Abb. 4.6. (links) Carbenoid-vermittelte Dehydrokupplung von Ar2PH; (rechts) Molek{\"u}lstruktur von (p-C6H4Me)4P2 im Festk{\"o}rper. Bemerkenswerterweise zeigten quantenchemische Studien, dass die einfachen und nicht-stabilisierten Carbenoide, wie beispielsweise LiC(H)Cl2, nicht f{\"u}r die Dehydrokupplung von Phosphanen geeignet sind und eine ausreichende elektronische Stabilisierung f{\"u}r selektive Ums{\"a}tze erforderlich ist. So ist zwar im Experiment f{\"u}r alle untersuchten Carbenoide die Diphosphan-Bildung beobachtbar, allerdings f{\"u}r unstabilisierte Systeme nur als Nebenreaktion. Mechanistische Studien zeigten, dass der erste Schritt der Reaktion die Deprotonierung des Phosphans und die Bildung einer Phosphid-Spezies ist. Dieser Schritt ist im Fall der stabilisierten Carbenoide bevorzugt. Bei den nicht-stabilisierten Carbenoiden stellt die Bildung des Carbens unter Salzeliminierung den ersten Reaktionsschritt dar, was im Anschluss zu unselektiven Folgereaktionen f{\"u}hrt. Die synthetisierten Diphosphane besitzen großes Potenzial f{\"u}r weitere Anwendungen, beispielsweise als Liganden in der {\"U}bergangsmetallkatalyse. Basierend auf diesen {\"U}berlegungen wurden in anf{\"a}nglichen Studien die Diphosphane an Gold(I)-Fragmente koordiniert (Abb. 4.7). Es gelang dabei die Diphosphan-Bisgold-Komplexe in nahezu quantitativen Ausbeuten als farblose Feststoffe zu isolieren und mittels Multikern-NMR-Spektroskopie und hochaufgel{\"o}ster Massenspektrometrie zu charakterisieren. Einzig die Chlor-substituierten Diphosphane zeigten nach der Zugabe von Gold(I) bereits Kupplungsreaktionen mit sich selbst. R{\"o}ntgenkristallographische Untersuchungen zeigten, dass die beiden Gold-Zentren eine trans-Stellung zueinander einnehmen, in der keine intramolekulare Au•••Au-Wechselwirkung beobachtet werden konnte. Auch in der Kristallpackung zeigte sich, dass die Bildung der Festk{\"o}rperstrukturen von C-H•••X- und π•••π-Wechselwirkungen dominiert wird. Studien zum Einsatz in der Katalyse stehen noch aus. Da die Komplexe in allen gel{\"a}ufigen L{\"o}sungsmitteln schwer l{\"o}slich sind, besteht weiter Optimierungsbedarf, um die L{\"o}slichkeit, z.B. durch Einf{\"u}hrung von Alkylgruppen, zu erh{\"o}hen. Abb. 4.7. (links) Syntheseweg zu Diphosphan-Bisgold-Komplexen; (rechts) Molek{\"u}lstruktur des Bisgold-Komplexes von (p-C6H4Me)4P2 im Festk{\"o}rper. Neben der einzigartigen Reaktivit{\"a}t Silyl-substituierter Carbenoide gegen{\"u}ber element-organischen Verbindungen wie Boranen oder Phosphanen wurde auch die Reaktivit{\"a}t gegen{\"u}ber sp{\"a}ten {\"U}bergangsmetallkomplexen, hier exemplarisch [Pd(PPh3)4] untersucht. Ziel sollte es sein mit Carbenoiden als selektiven Carbentransferreagenzien Zugang zu Carbenkomplexen zu erhalten, die schwer {\"u}ber alternative Routen zug{\"a}nglich sind. Bei Verwendung der Silyl-substituierten Systeme kam es dabei jedoch zun{\"a}chst nicht zur selektiven Synthese des Carbenkomplexes C, sondern vielmehr zu Produktgemischen aus Thioketon-komplex T und Carbenkomplex C. Die Verh{\"a}ltnisse erwiesen sich jedoch als abh{\"a}ngig vom Metall, Halogen und der Silylgruppe des Carbenoids sowie von der Reaktionstemperatur. Tabelle 4.1 zeigt eine {\"U}bersicht. Je tiefer die Temperatur und je gr{\"o}ßer die Substituenten der Silylgruppe desto mehr Carbenkomplexbildung kann beobachtet werden. Theoretische Berechnungen der Trimethylsilyl- bzw. Triphenylsilyl-Systeme konnten die experimentellen Befunde best{\"a}tigen. Der Thioketonkomplex T stellt so das thermodynamisch stabilere Produkt dar, w{\"a}hrend der Carbenkomplex C kinetisch bevorzugt ist. Erfreulicherweise gelingt bei Verwendung der im Vergleich zum Lithiumsystem stabileren Natrium- bzw. Kalium-Carbenoide die selektive Synthese des Palladium-Carbenkomplexes C (Eintr{\"a}ge 3 und 4). Durch die Stabilisierung des Li/Cl-Carbenoids durch Kronenether kann ebenfalls die Carbenkomplex-bildung forciert werden (Eintrag 5). Je stabiler die Carbenoide, desto selektiver wird der Carbenkomplex C gebildet. Das zeigt auch die Reaktion des sehr reaktiven Li/F-Carbenoids, das vollst{\"a}ndig zum Thioketonkomplex T reagiert (Eintrag 11). Bei den Kalium-Carbenoiden der sterisch anspruchsloseren Silyl-Systeme tritt noch ein weiteres Reaktionsprodukt auf, das als das Ylid Y identifiziert wurde. Dieses tritt auch bei Kristallisationsversuchen des Carben-komplexes auf und wurde r{\"o}ntgenkristallographisch untersucht. Tabelle 4.1. Reaktivit{\"a}t unterschiedlicher Silyl-substituierter Carbenoide gegen{\"u}ber [Pd(PPh3)4]. Eintrag Metall Halogen Silylgruppe Temperatur Thioketon-komplex [\%]a Carben-komplex [\%]a Ylid [\%]a 1 Li Cl SiPh3 RT 80 20 - 2 Li Cl SiPh3 -78 °C 48 52 - 3 Na Cl SiPh3 RT - >99 - 4 K Cl SiPh3 RT - >99 - 5 Li•(12-Krone-4) Cl SiPh3 RT - 93 - 6 K•(18-Krone-6) Cl SiPh3 RT - 75 25 7 K Cl SiMePh2 -40 °C - 71 29 8 K Cl SiMe2Ph -40 °C - 43 57 9 K Cl SiMe3 -10 °C 70 30 - 10 K Cl SiMe3 -40 °C 40 33 26 11 Li F SiPh3 -78 °C >99 - - [a] Verh{\"a}ltnis der Produkte durch 31P{1H}-NMR-Spektroskopie bestimmt. Trotz selektiver Synthese des Carbenkomplexes 119 erwies sich die Aufreinigung als problematisch, da das gebildete Triphenylphosphan vermutlich aufgrund der Koordination an das Metallsalz schwer abgetrennt werden konnte. {\"U}berraschenderweise zeigte sich beim Erw{\"a}rmen des Gemisches auf 80 °C die Bildung einer neuen Verbindung, die als Diphosphanphosphonium-Komplex 121 identifiziert wurde. Dieser konnte mittels NMR-spektroskopischer Untersuchungen und hochauf-gel{\"o}ster Massenspektrometrie charakterisiert werden. Studien zur Strukturanalyse und zur Reaktivit{\"a}t stehen hier allerdings noch aus. Da der Carbenkomplex zun{\"a}chst nicht selektiv dargestellt werden konnte, wurde eine alternative Syntheseroute entwickelt. Diese beinhaltete die oxidative Addition der halogenierten Liganden an das {\"U}bergangsmetall und anschließende Dehydrohalogenierung. Hierzu wurden analog Abbildung 4.9 zuerst die Palladium-Komplexe in einer oxidativen Additionsreaktion synthetisiert. Dabei gelang es sowohl unterschiedliche Halogenatome als auch unterschiedliche Silyl-Reste in der Synthese der Palladium-Komplexe zu etablieren. Die luftstabilen Verbindungen 129-134 konnten in moderaten bis guten Ausbeuten (52-91\%) als gelbe Feststoffe isoliert und durch Multikern-NMR-Spektroskopie, hochaufgel{\"o}ste Massen-spektrometrie und R{\"o}ntgenstrukturanalyse charakterisiert werden. Sie besitzen in allen F{\"a}llen das sehr {\"a}hnliche Strukturmotiv eines nahezu quadratisch-planar koordinierten Palladium-atoms. Zur Dehydrohalogenierung wurden die Komplexe 129-134 mit verschiedenen Basen umgesetzt. Mit Hilfe der Alkalimetallhexamethyldisilazan-Basen gelang die gew{\"u}nschte HX-Eliminierung, jedoch nicht unter Bildung des Carbenkomplexes, sondern biscyclo-metallierter Produkte. Beim Triphenylsilyl-substituierten System 129 konnte nach der Aufarbeitung Verbindung 135 isoliert werden, bei der ein an das Siliciumatom gebundener Phenylring metalliert wurde. Bei den Methyl-substituierten Vertretern 131 und 133 fand hingegen selektiv die Metallierung einer Methylgruppe unter Ausbildung ungew{\"o}hnlicher Palladacyclobutane statt. Dies konnte im Fall von 137 eindeutig durch R{\"o}ntgenstrukturanalyse best{\"a}tigt werden (Abb. 4.9). Abb. 4.9. (links) Syntheseweg zu den Palladium-Komplexen 129-138; (rechts) Molek{\"u}lstrukturen der Palladium-Komplexe 130 und 137 im Festk{\"o}rper. Da cyclometallierte Palladium-Komplexe als effektive Katalysatoren in C-C-Kn{\"u}pfungs-reaktionen eingesetzt werden, sollte auch das Potenzial der synthetisierten Komplexe getestet werden. Dabei zeigte sich, dass alle Komplexe eine h{\"o}here Aktivit{\"a}t als [Pd(PPh3)4] in der Suzuki-Miyaura-Kupplung von 4-Bromanisol mit Phenylborons{\"a}ure aufweisen. Aus Tabelle 4.2 wird aber auch ersichtlich, dass die zweite Cyclisierung einen negativen Effekt auf die Aktivit{\"a}t hat. Verbindung 129, das Produkt der einfachen oxidativen Addition, zeigte bereits nach vier Stunden nahezu vollst{\"a}ndigen Umsatz. Dabei konnten TON's von etwa 17000 bei nahezu gleichbleibendem Umsatz erzielt werden (Eintrag 5). Tabelle 4.2. Palladium-katalysierte Suzuki-Miyaura-Kupplung von 4-Bromanisol und Phenylborons{\"a}ure. Eintrag Katalysator Katalysator-Ladung [mol \%] Reaktionszeit [h] NMR-Ausbeute [\%]a 1 [Pd(PPh3)4] 0.5 2 25 2 129 0.5 1.75 79 3 129 0.5 4 95 4 129 0.5 8 98 5 129 0.005 3 85 6 137 0.5 4 71 7 137 0.5 8 87 8 137 0.5 10 92 9 135 0.5 8 92 [a] Ausbeuten bestimmt durch NMR-Spektroskopie bezogen auf 4-Bromanisol. Insgesamt konnten in dieser Doktorarbeit zahlreiche neue Erkenntnisse im Bereich der Carbenoidchemie erarbeitet werden. Diese lassen sich wiefolgt zusammenfassen: • Anhand von Silyl- und Thiophosphoryl-stabilisierter Carbenoide konnte erstmals systematisch der Einfluss der M/X-Kombination auf die Stabilit{\"a}t und Reaktivit{\"a}t von Carbenoiden untersucht werden. • Erstmals konnten Na- und K-Carbenoide isoliert und strukturell charakterisiert werden. • Mit Hilfe der Stabilisierung konnten neue Anwendungsgebiete im Bereich der element-organischen Chemie erschlossen werden, darunter die B-H-Bindungsaktivierung am carbenoiden Kohlenstoffatom und die Kupplung von Phosphanen. • Beim Einsatz von Carbenoiden als Carbentransferreagenzien zur Darstellung ungew{\"o}hnlicher Carbenkomplexe konnte gezeigt werden, dass Selektivit{\"a}ten von zahlreichen Faktoren abh{\"a}ngen und beeinflusst werden k{\"o}nnen. Mit diesen Studien konnte folglich ein Kreis von der Stabilisierung und Isolierung der normalerweise hochreaktiven Carbenoide zu deren Anwendungen geschlossen werden. Die Studien zeigen zudem das Potenzial dieser Verbindungsklasse und lassen vermuten, dass durch ein weiteres Einstellen von Stabilit{\"a}t und Reaktivit{\"a}t noch bisher unbekannte Reaktionsmuster erm{\"o}glicht werden k{\"o}nnen.}, subject = {Carbenoide}, language = {de} } @phdthesis{Brede2016, author = {Brede, Franziska Andrea}, title = {Synthesestrategien und Struktur-Eigenschafts-Beziehungen anorganisch-organischer Hybridmaterialien basierend auf 3d-{\"U}bergangsmetallchloriden und N-heterozyklischen Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit umfasst die Synthese, die Untersuchung von Struktur-Eigenschafts-Beziehungen und Eigenschaftsmodifikationen von Komplexen und Koordinationspolymeren basierend auf den 3d-{\"U}bergangsmetallchloriden von Mn, Fe, Co sowie Zn und N-heterozyklischen Liganden. Durch die Kombination von mechanochemische Umsetzungen, mikrowellenassistierten Synthesen, solvensassistierten, solvothermalen und solvensfreien Reaktionen zu verschiedenen Synthesestrategien wurden 23 neue Koordinationsverbindungen synthetisiert und charakterisiert. Ausgehend von den auf mechanochemischem Weg synthetisierten, monomeren Precursor-Komplexen [MCl2(TzH)4] (M = Mn und Fe) konnten die h{\"o}hervernetzten Koordinationspolymere 1∞[FeCl(TzH)2]Cl und 1∞[MCl2(TzH)] (M = Fe und Mn) durch thermische und mikrowelleninduzierte Konversionsreaktionen als phasenreine Bulkprodukte erhalten werden. Die sukzessive Abgabe organischer Liganden und die damit verbundene Umwandlung in die h{\"o}hervernetzten Spezies wurden dabei mittels temperaturabh{\"a}ngiger Pulverdiffraktometrie und simultanem DTA/TG-Verfahren analysiert. Durch gezielte Variation der L{\"o}sungsmittel beim Liquid-assisted grinding, der mechanochemischen Synthese unter Zugabe einer fl{\"u}ssigen Phase, konnten die beiden polymorphen Koordinationspolymere α-1∞[MnCl2(BtzH)2] und β-1∞[MnCl2(BtzH)2] erhalten werden, die im monoklinen bzw. orthorhombischen Kristallsystem kristallisieren. Solvensassistierte Umsetzungen von MnCl2 mit 1,2,4-1H-Triazol (TzH) unter Zugabe von Hilfsbasen resultierten unter anderem in der Bildung der dreidimensionalen Koordinationspolymere 3∞[MnCl(Tz)(TzH)] und 3∞{[Mn5Cl3(Tz)7(TzH)2]}2·NEt3HCl. Die Untersuchung von Struktur-Eigenschafts-Korrelationen erfolgte systematisch an ausgew{\"a}hlten Verbindungen hinsichtlich ihrer dielektrischen Eigenschaften. Dabei wurden die Einfl{\"u}sse intra- und intermolekularer Wechselwirkungen auf die strukturelle Rigidit{\"a}t und die daraus folgenden Polarisierbarkeitseigenschaften analysiert und miteinander verglichen. Die gemessenen dielektrischen Konstanten erstrecken sich von Werten im high-k-Bereich f{\"u}r monomere Komplexe bis hin zu den nahezu frequenzunabh{\"a}ngigen low-k-Werten der eindimensionalen Koordinationspolymere 1∞[MnCl2(TzH)] und 1∞[MnCl2(BtzH)2] sowie der Komplexe [ZnCl2(TzH)2] und [ZnCl2(BtzH)2]·BtzH. Eigenschaftsmodifikationen und -optimierungen der synthetisierten Verbindungen er-folgten zum einen durch Erzeugung flexibler Kunststofffilme, in welche die eindimensionalen Koordinationspolymere 1∞[MCl2(TzH)] (M = Fe und Mn) eingebettet wurden. Zum anderen konnten in mechanochemischen Umsetzungen superparamagnetische Kompositpartikel bestehend aus einem Fe3O4/SiO2-Kern und einer kristallinen [ZnCl2(TzH)2]-H{\"u}lle erhalten werden, die in situ aus den Edukten ZnCl2 und TzH synthetisiert wurde.}, subject = {Komplexe}, language = {de} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138226}, pages = {11271-11275}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\).}, language = {en} } @article{BraunschweigConstantinidisDellermannetal.2016, author = {Braunschweig, Holger and Constantinidis, Philipp and Dellermann, Theresa and Ewing, William and Fischer, Ingo and Hess, Merlin and Knight, Fergus and Rempel, Anna and Schneider, Christoph and Ullrich, Stefan and Vargas, Alfredo and Woolins, Derek}, title = {Highly Strained Heterocycles Constructed from Boron-Boron Multiple Bonds and Heavy Chalcogens}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, number = {18}, doi = {10.1002/anie.201601691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138237}, pages = {5606 -- 5609}, year = {2016}, abstract = {The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions.}, subject = {Bor}, language = {en} } @phdthesis{Schneider2016, author = {Schneider, Christoph}, title = {Synthese und Reaktivit{\"a}t von Lewis-basischen Carbonylkomplexen der Gruppe 8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134211}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizit{\"a}t von Carbonylkomplexen der Gruppe 8 durchgef{\"u}hrt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-S{\"a}ure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizit{\"a}t dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-S{\"a}ure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie R{\"o}ntgenstruktur- und Elementaranalyse vollst{\"a}ndig charakterisiert. W{\"a}hrend die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformations{\"a}nderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungsl{\"a}ngen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend f{\"u}r die Lewis-Basizit{\"a}t in Abh{\"a}ngigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die h{\"o}chste Lewis-Basizit{\"a}t auf. Zudem konnte belegt werden, dass die Lewis-Basizit{\"a}t auch durch die Anzahl an σ-Donorliganden im Komplex erh{\"o}ht wird. Die schrittweise Erh{\"o}hung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und {\"a}ußert sich auch in der trans-st{\"a}ndigen Anordnung der Lewis-S{\"a}ure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-S{\"a}ure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizit{\"a}t und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-S{\"a}ure GaCl3 umgesetzt. Hierbei wurde die Ligandensph{\"a}re im Vergleich zu den Eisencarbonylen nicht ver{\"a}ndert. Um die M-Ga-Bindungsabst{\"a}nde untereinander vergleichen zu k{\"o}nnen, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizit{\"a}ten abgesch{\"a}tzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizit{\"a}t erh{\"o}ht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle {\"U}bertragung der Lewis-S{\"a}ure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-S{\"a}ure GaCl3 jeweils erfolgreich auf die Komplexe mit der h{\"o}heren Anzahl an σ-Donorliganden {\"u}bertragen wird, was deren h{\"o}here Lewis-Basizit{\"a}t belegt. Zudem konnte best{\"a}tigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensph{\"a}re jedoch kaum Unterschiede in der Lewis-Basizit{\"a}t vorgefunden werden. Zus{\"a}tzlich wurden auch ausgew{\"a}hlte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen F{\"a}llen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die st{\"a}rkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-S{\"a}ure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 f{\"u}hrte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit {\"U}bergangsmetallen zug{\"a}nglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbr{\"u}ckenden Liganden dargestellt und deren Reaktivit{\"a}t gegen{\"u}ber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen m{\"o}glich sind, w{\"a}hrend diese bei Verwendung eines Br{\"u}ckenliganden verhindert werden. Ausgew{\"a}hlte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivit{\"a}t in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen h{\"o}heren Umsatz erm{\"o}glichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivit{\"a}t bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer h{\"o}heren Lewis-Basizit{\"a}t. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbr{\"u}ckt. Im Gegensatz dazu f{\"u}hrte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbr{\"u}ckung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden.}, subject = {Lewis-Addukt}, language = {de} } @phdthesis{Kobelt2016, author = {Kobelt, Claudia}, title = {Beitr{\"a}ge zur Chemie des h{\"o}herkoordinierten Silliciums: Synthese, Struktur und Eigenschaften neuer h{\"o}herkoordinierter Silicium(II)- und Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131439}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie des h{\"o}herkoordinierten Siliciums dar. Dabei standen die Synthese und Charakterisierung neuer neutraler tetra-, penta- und hexakoordinierter Silicium(IV)-Komplexe sowie die Synthese, Charakterisierung und Reaktivit{\"a}t eines neuartigen Donor-stabilisierten Silylens im Vordergrund. Im Rahmen dieser Arbeit wurden das Silan 16, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38'·C6H5CH3, 40'∙C6H5CH3, 41 und 42, die neutralen pentakoordinierten Silicium(IV)-Komplexe 2‒8, 10·0.5C6H5CH3, 11, 12, 15, 17‒20 und 39', die neutralen hexakoordinierten Silicium(IV)-Komplexe 21‒23, das Donor-stabilisierte trikoordinierte Silylen 25, der neutrale tetrakoordinierte Silicium(II)-Komplex 35 sowie das Lithiumamidinat 1·2Et2O erstmalig dargestellt und charakterisiert. Die Charakterisierung dieser Verbindungen erfolgte durch NMR-Spektroskopie in L{\"o}sung und im Festk{\"o}rper, durch Kristallstrukturanalyse sowie durch Elementaranalyse. Die Synthesen und Eigenschaften dieser Verbindungen k{\"o}nnen wie folgt zusammengefasst werden: Synthese und Charakterisierung neutraler pentakoordinierter Silicium(IV)-Komplexe Ausgehend von entsprechenden Silicium(IV)-haltigen Vorstufen wurden die neutralen pentakoordinierten Silicium(IV)-Komplexe 2‒8, 10·0.5C6H5CH3, 11, 12, 15 und 17‒20 dargestellt. So konnten die Verbindungen 2, 5, 7 und 8 durch Umsetzung der entsprechemden Trichlorsilane bzw. Tetrachlorsilan mit 1 in Diethylether erhalten werden. Diese Verbindungen besitzen an den beiden Stickstoff-Atomen des Amidinato-Liganden jeweils eine sterisch sehr anspruchsvolle Diisopropylphenyl-Einheit (Dipp), welche den Einbau eines zweiten Amidinato-Liganden nicht zul{\"a}sst und sich so ausschließlich pentakoordinierte Silicium(IV)-Komplexe bilden. Durch Weiterreaktion von 2 und 5 mit Lithiumdimethyl- bzw. Kaliumbis(trimethylsilyl)amid entstanden die Komplexe 3, 4 und 6. Die Si-Koordinationspolyeder von 2‒8 im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei die Stickstoff-Atome des Amidinato-Liganden eine axiale bzw. {\"a}quatoriale Position besetzen. Die zweite axiale Position wird jeweils von einem Chloro-Liganden eingenommen. Die genannten Verbindungen besitzen alle einen stark gespannten viergliedrigen SiN2C-Ring mit mehr oder weniger stark ausgepr{\"a}gter Elektronendelokalisation innerhalb de N‒C‒N-Fragmentes, welcher durch den Amidinato-Liganden mit dem Si-Koordinationszentrum gebildet wird und hauptverantwortlich f{\"u}r die starke Verzerrung der Si-Koordinationspolyeder ist. Die Verbindungen 10·0.5C6H5CH3, 11 und 12 entstanden durch Umsetzung der entsprechenden Trichlorsilane mit 9 und zwei Mol{\"a}quivalenten Triethylamin in Tetrahydrofuran. Durch Weiterreaktion von 11 mit Benzolthiol bzw. Benzolselenol und Triethylamin in Tetrahydrofuran wurden die Komplexe 18 und 19 gebildet. Die Verbindungen 15 und 20 entstanden mittels einer Transsilylierungsreaktion von 14 mit Azidotrimethylsilan bzw. 11 mit Trimethylsilyl(phenyl)tellurid in Tetrahydrofuran. Verbindung 17 wurde durch Umsetzung von Cl2Si(OPh)Me (16) mit 9 und zwei Mol{\"a}quivalenten Triethylamin in Tetrahydrofuran erhalten. Die Si-Koordinationspolyeder von 10·0.5C6H5CH3, 11, 12, 15 und 17‒20 im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei der tridentate N,N',S- bzw. N,N',O-Ligand zwei F{\"u}nfringe mit dem Si-Koordinationszentrum ausbildet. Das Pyridin-Stickstoff- und das Schwefel-Atom des N,N',S-Liganden (bzw. Sauerstoff-Atom des N,N',O-Liganden) besetzen die axialen Bindungspositionen. Synthese und Charakterisierung neutraler hexakoordinierter Silicium(IV)-Komplexe Die neutralen hexakoordinierten Silicium(IV)-Komplexe 21 und 22 wurden durch Umsetzung von Trichlorsilan mit zwei Mol{\"a}quivalenten des entsprechenden Lithiumamidinats in Diethylether dargestellt. Die Si-Koordinationspolyeder von 21 und 22 im Kristall entsprechen denen von stark verzerrten Oktaedern, wobei jeweils eines der beiden Stickstoff-Atome der zwei Amidinato-Liganden trans zueinander angeordnet sind. Die beiden anderen Stickstoff-Atome der Amidinato-Liganden befinden sich in trans-Position zum Chloro- bzw. Hydrido-Liganden. Der neutrale hexakoordinierte Silicium(IV)-Komplex 23 wurde durch Umsetzung des pentakoordinierten Silicium(IV)-Komplexes 11 mit 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran dargestellt. Das Si-Koordinationspolyeder von 23 im Kristall entspricht dem eines stark verzerrten Oktaeders, wobei der dreiz{\"a}hnige N,N',S-Ligand eine mer-Anordnung einnimmt und das Chinolin-Stickstoff-Atom und das Kohlenstoff-Atom des Methyl-Liganden trans zueinander stehen. Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass pentakoordinierte Chlorosilicium(IV)-Komplexe ‒ wie beispielsweise 2, 5 oder 11 ‒ sehr gut geeignete Ausgangsstoffe f{\"u}r die Darstellung neuartiger penta- und hexakoordinierter Silicium(IV)-Verbindungen darstellen. Synthese und Charakterisierung eines neuartigen Donor-stabilisierten Silylens Nachdem alle Versuche, ein entsprechendes Donor-stabilisiertes Silylen durch Basen-induzierte reduktive HCl-Eliminierung der penta- bzw. hexakoordinierten Chlorohydridosilicium(IV)-Komplexe 2‒4, 21 und 22 darzustellen, fehlschlugen, wurde daraufhin der pentakoordinierte Dichlorosilicium(IV)-Komplex 6 mit zwei Mol{\"a}quivalenten elementarem Kalium in Tetrahydrofuran erfolgreich zum trikoordinierten Donor-stabilisierten Silylen 25 umgesetzt. Das Si-Koordinationspolyeder von 25 entspricht dem eines stark verzerrten (Pseudo)tetraeders, wobei die drei Bindungspositionen von den Stickstoff-Atomen und eine vierte von dem freien Elektronenpaar eingenommen werden. Die starke Verzerrung ist auf den stark gespannten viergliedrigen SiN2C-Ring des Komplexes zur{\"u}ckzuf{\"u}hren. Reaktivit{\"a}t des Donor-stabilisierten Silylens 25 Der trikoordinierte Silicium(II)-Komplex 25 reagierte mit Eisenpentacarbonyl in Toluol im Sinne einer nukleophilen Substitutionsreaktion unter Ausbildung einer Si-Fe-Bindung zum neutralen tetrakoordinierten Silicium(II)-Komplex 35. Das Si-Koordinationspolyeder von 35 im Kristall entspricht dem eines stark verzerrten Tetraeders. Das Fe-Koordinationspolyeder entspricht dem einer stark verzerrten trigonalen Bipyramide, wobei der sterisch sehr anspruchsvolle Silylen-Ligand interessanterweise eine axiale Bindungsposition am Eisen-Koordinationszentrum einnimmt. Desweiteren wurde 25 mit den Aziden Me3SiN3, PhSCH2N3 und (PhO)2P(O)N3 in Toluol im Sinne einer oxidativen Addition unter Abspaltung von elementarem Stickstoff zu 36, 37' bzw. 38'·C6H5CH3 umgesetzt. Bemerkenswert ist, dass bei der Reaktion mit PhSCH2N3 zu 37' eine Umlagerungsreaktion stattfindet, wobei eine Si-S-Bindung gekn{\"u}pft und ein Si-N=CH2-Fragment gebildet wird. Bei der Reaktion von 25 mit (PhO)2P(O)N3 zu 38'·C6H5CH3 wird ein Sauerstoff-verbr{\"u}cktes Dimer gebildet, wodurch ein achtgliedriger Ring mit zwei Silicium(IV)-Zentren aufgebaut wird. Die Si-Koordinationspolyeder von 36, 37' und 38'·C6H5CH3 im Kristall entsprechen denen von stark verzerrten Tetraedern, wobei der Amidinato-Ligand nur in Verbindung 36 bidentat an das Silicium-Zentrum koordiniert ist, w{\"a}hrend f{\"u}r 37' und 38'·C6H5CH3 ein monodentater Koordinationsmodus beobachtet wird. Durch Umsetzung von 25 mit N2O, S, Se bzw. Te in Toluol entstanden ebenfalls im Sinne einer oxidativen Addition die tetra- bzw. pentakoodinierten Silicium(IV)-Komplexe 39', 40'·C6H5CH3, 41 und 42. Die Verbindungen 39' und 40'·C6H5CH3 sind Dimere der eigentlichen Zielverbindungen 39 und 40, wobei 40' bei h{\"o}heren Temperaturen zu dem Monomer 40 dissoziiert, welches dann nach Abk{\"u}hlen auf Raumtemperatur auch in L{\"o}sung stabil ist. Die Verbindungen 41 sowie 42 bilden jedoch ausschließlich Monomere. Die Si-Koordinationspolyeder von 39' im Kristall entsprechen dem einer stark verzerrten trigonalen Bipyramide, w{\"a}hrend die Si-Koordinationspolyeder von 40'·C6H5CH3, 41 und 42 denen eines stark verzerrten Tetraeders entsprechen. Dabei ist der Amidinato-Ligand in 39', 41 und 42 bidentat, in 40'·C6H5CH3 dagegen monodentat an das Silicium-Koordinationszentrum koordiniert ist. Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass das Donor-stabilisierte Silylen 25 ein außergew{\"o}hnliches Reaktivit{\"a}tsspektrum aufweist und damit ein sehr interessantes Synthesepotential zur Darstellung neuartiger Silicium(II)- und Silicium(IV)-Komplexe besitzt.}, subject = {Hypervalentes Molek{\"u}l}, language = {de} }