@unpublished{AuerhammerArrowsmithBoehnkeetal.2018, author = {Auerhammer, Dominic and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dewhurst, Rian D. and Kupfer, Thomas}, title = {Brothers from Another Mother: a Borylene and its Dimer are Non-Interconvertible but Connected through Reactivity}, series = {Chemical Science}, journal = {Chemical Science}, doi = {10.1039/C7SC04789D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157125}, year = {2018}, abstract = {The self-stabilizing, tetrameric cyanoborylene [(cAAC)B(CN)]4 (I, cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and its diborene relative, [(cAAC)(CN)B=B(CN)(cAAC)] (II), both react with disulfides and diselenides to yield the corresponding cAAC-supported cyanoboron bis(chalcogenides). Furthermore, reactions of I or II with elemental sulfur and selenium in various stoichiometries provided access to a variety of cAAC- stabilized cyanoboron-chalcogen heterocycles, including a unique dithiaborirane, a diboraselenirane, 1,3-dichalcogena-2,4-diboretanes, 1,3,4-trichalcogena- 2,5-diborolanes and a rare six-membered 1,2,4,5-tetrathia-3,6-diborinane. Stepwise addition reactions and solution stability studies provided insights into the mechanism of these reactions and the subtle differences in reactivity observed between I and II.}, language = {en} } @unpublished{BoehnkeBraunschweigJimenezHallaetal.2018, author = {B{\"o}hnke, Julian and Braunschweig, Holger and Jim{\´e}nez-Halla, Oscar and Krummenacher, Ivo and Stennett, Tom E.}, title = {Half-Sandwich Complexes of an Extremely Electron-Donating, Re-dox-Active η\(^6\)-Diborabenzene Ligand}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b12394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156766}, year = {2018}, abstract = {The heteroarene 1,4-bis(CAAC)-1,4-diborabenzene (1; CAAC = cyclic (alkyl)(amino)carbene) reacts with [(MeCN)\(_3\)M(CO)\(_3\)] (M = Cr, Mo, W) to yield half-sandwich complexes of the form [(η\(^6\)-diborabenzene)M(CO)\(_3\)] (M = Cr (2), Mo (3), W (4)). Investigation of the new complexes with a combination of X-ray diffraction, spectroscopic methods and DFT calculations shows that ligand 1 is a remarkably strong electron donor. In particular, [(η\(^6\)-arene)M(CO)\(_3\)] complexes of this ligand display the lowest CO stretching frequencies yet observed for this class of complex. Cyclic voltammetry on complexes 2-4 revealed one reversi- ble oxidation and two reversible reduction events in each case, with no evidence of ring-slippage of the arene to the η\(^4\) binding mode. Treatment of 4 with lithium metal in THF led to identification of the paramagnetic complex [(1)W(CO)\(_3\)]Li·2THF (5). Compound 1 can also be reduced in the absence of a transition metal to its dianion 1\(^{2-}\), which possesses a quinoid-type structure.}, language = {en} } @unpublished{StoyBoehnkeJiménezHallaetal.2018, author = {Stoy, Andreas and B{\"o}hnke, Julian and Jiménez-Halla, J. Oscar C. and Dewhurst, Rian D. and Thiess, Torsten and Braunschweig, Holger}, title = {CO\(_2\) Binding and Splitting by Boron-Boron Multiple Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201802117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164265}, year = {2018}, abstract = {CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction.}, language = {en} } @unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @unpublished{CidHermannRadcliffeetal.2018, author = {Cid, Jessica and Hermann, Alexander and Radcliffe, James E. and Curless, Liam D. and Braunschweig, Holger and Ingleson, Michael J.}, title = {Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations}, series = {Organometallics}, journal = {Organometallics}, doi = {10.1021/acs.organomet.8b00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164299}, year = {2018}, abstract = {Reaction of bis-catecholatodiboron-NHC adducts, B\(_2\)Cat\(_2\)(NHC), (NHC = IMe (tetramethylimidazol-2-ylidene), IMes (1,3-dimesitylimidazol-2-ylidene) or IDIPP (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)) with BCl3 results in the replacement of the catecholato group bound to the four coordinate boron with two chlorides to yield diboron(5) Lewis acid-base adducts of formula CatB-BCl\(_2\)(NHC). These compounds are precursors to diboron(5) monocations, accessed by adding AlCl\(_3\) or K[B(C\(_6\)F\(_5\))\(_4\)] as halide abstraction agents in the presence of a Lewis base. The substitution of the chlorides of CatB-BCl\(_2\)(NHC) for hydrides is achieved using Bu\(_3\)SnH and a halide abstracting agent to form 1,1-dihydrodiboron(5) compounds, CatB-BH\(_2\)(NHC). Attempts to generate diboron(4) monocations of formula [CatB-B(Y)(NHC)]\(^+\) (Y = Cl or H) led to the rapid formation of CatBY.}, language = {en} } @unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @unpublished{StennettMattockVollertetal.2018, author = {Stennett, Tom and Mattock, James and Vollert, Ivonne and Vargas, Alfredo and Braunschweig, Holger}, title = {Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene}, series = {Angewandte Chemie, International Edition}, volume = {57}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201800671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160258}, pages = {4098-4102}, year = {2018}, abstract = {Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.}, language = {en} } @unpublished{HermannCidMattocketal.2018, author = {Hermann, Alexander and Cid, Jessica and Mattock, James D. and Dewhurst, Rian D. and Krummenacher, Ivo and Vargas, Alfredo and Ingleson, Michael J. and Braunschweig, Holger}, title = {Diboryldiborenes: π-Conjugated B\(_4\) Chains Isoelectronic to the Butadiene Dication}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201805394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167977}, year = {2018}, abstract = {sp\(^2\)-sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain.}, language = {en} } @unpublished{BoehnkeArrowsmithBraunschweig2018, author = {B{\"o}hnke, Julian and Arrowsmith, Merle and Braunschweig, Holger}, title = {Activation of a Zerovalent Diboron Compound by Desymmetrization}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.8b06930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167983}, year = {2018}, abstract = {The desymmetrization of the cyclic (alkyl)(amino)carbene-supported diboracumulene, B\(_2\)(cAAC\(^{Me}\))\(_2\) (cAAC\(^{Me}\) = 1- (2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) by mono-adduct formation with IMe\(^{Me}\) (1,3-dimethylimidazol-2-ylidene) yields the zerovalent sp-sp\(^2\) diboron compound B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)), which provides a versatile platform for the synthesis of novel symmetrical and unsymmetrical zerovalent sp\(^2\)-sp\(^2\) diboron compounds by adduct formation with IMe\(^{Me}\) and CO, respectively. Furthermore, B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)) displays enhanced reactivity compared to its symmetrical precursor, undergoing spontaneous intramolecular C-H activation and facile twofold hydrogenation, the latter resulting in B-B bond cleavage and the formation of the mixed-base parent borylene, (cAAC\(^{Me}\))(IMe\(^{Me}\))BH.}, language = {en} }