TY - INPR A1 - Brych, Mareike A1 - Händel, Barbara T1 - Disentangling top-down and bottom-up influences on blinks in the visual and auditory domain T2 - International Journal of Psychophysiology N2 - Sensory input as well as cognitive factors can drive the modulation of blinking. Our aim was to dissociate sensory driven bottom-up from cognitive top-down influences on blinking behavior and compare these influences between the auditory and the visual domain. Using an oddball paradigm, we found a significant pre-stimulus decrease in blink probability for visual input compared to auditory input. Sensory input further led to an early post-stimulus blink increase in both modalities if a task demanded attention to the input. Only visual input caused a pronounced early increase without a task. In case of a target or the omission of a stimulus (as compared to standard input), an additional late increase in blink rate was found in the auditory and visual domain. This suggests that blink modulation must be based on the interpretation of the input, but does not need any sensory input at all to occur. Our results show a complex modulation of blinking based on top-down factors such as prediction and attention in addition to sensory-based influences. The magnitude of the modulation is mainly influenced by general attentional demands, while the latency of this modulation allows to dissociate general from specific top-down influences that are independent of the sensory domain. KW - eye blinks KW - attention KW - auditory KW - visual KW - visual domain KW - auditory domain KW - oddball Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246590 SN - 1872-7697 SN - 0167-8760 N1 - accepted version ER - TY - INPR A1 - Schmidt, Uwe A1 - Fantuzzi, Felipe A1 - Arrowsmith, Merle A1 - Hermann, Alexander A1 - Prieschl, Dominic A1 - Rempel, Anna A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Tuneable reduction of cymantrenylboranes to diborenes or borylene-derived boratafulvenes T2 - Chemical Communications N2 - Whereas the reduction of N-heterocyclic carbene (NHC)-stabilised cymantrenyldibromoboranes, (NHC)BBr\(_2\)Cym, in benzene results in formation of the corresponding diborenes (NHC)\(_2\)B\(_2\)Cym\(_2\), a change of solvent to THF yields a borylene of the form (NHC)\(_2\)BCym, stabilised through its boratafulvene resonance form. KW - Borylene KW - Diborene KW - Boranes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222149 ER - TY - INPR A1 - Scheitl, Carolin P.M. A1 - Ghaem Maghami, Mohammad A1 - Lenz, Ann-Kathrin A1 - Höbartner, Claudia T1 - Site-specific RNA methylation by a methyltransferase ribozyme T2 - Nature N2 - Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification including RNA methylation. Methylated nucleotides belong to the evolutionarily most conserved features of tRNA and rRNA.1,2 Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as methyl group donor. This and other nucleotide-derived cofactors are considered as evolutionary leftovers from an RNA World, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication.3 Chemically diverse ribozymes seem to have been lost in Nature, but may be reconstructed in the laboratory by in vitro selection. Here, we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine (m1A) in a substrate RNA, utilizing O6-methylguanine (m6G) as a small-molecule cofactor. The ribozyme shows a broad RNA sequence scope, as exemplified by site-specific adenosine methylation in tRNAs. This finding provides fundamental insights into RNA’s catalytic abilities, serves a synthetic tool to install m1A in RNA, and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes. KW - Methyltransferase Ribozyme KW - RNA Enzymes KW - position-specific installation of m1A in RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218687 ER - TY - INPR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping T2 - Physical Chemistry Chemical Physics N2 - Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state. KW - Photodynamics KW - DNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209467 ET - submitted version ER - TY - INPR A1 - Hermann, Alexander A1 - Arrowsmith, Merle A1 - Trujillo-Gonzalez, Daniel A1 - Jiménez-Halla, J. Oscar C. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Trapping of a Borirane Intermediate in the Reductive Coupling of an Arylborane to a Diborene T2 - Journal of the American Chemical Society N2 - The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation. KW - boron KW - reactive intermediates KW - reductive coupling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203140 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.0c02306 ER - TY - INPR A1 - Humeniuk, Alexander A1 - Bužančić, Margarita A1 - Hoche, Joscha A1 - Cerezo, Javier A1 - Mitric, Roland A1 - Santoro, Fabrizio A1 - Bonačić-Koutecky, Vlasta T1 - Predicting fluorescence quantum yields for molecules in solution: A critical assessment of the harmonic approximation and the choice of the lineshape function T2 - The Journal of Chemical Physics N2 - For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy, the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, VH), in order to dissect the importance of displacements, frequency changes and Duschinsky rotations. In addition we analyze the effect of different broadening functions (Gaussian, Lorentzian or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified anharmonic model. We adress the reliability of these models considering the potential errors introduced by the harmonic approximation and the phenomenological width of the broadening function. KW - fluorescence quantum yield Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199305 UR - https://doi.org/10.1063/1.5143212 N1 - Accepted Manuscript. N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Humeniuk et al. J. Chem. Phys. 152, 054107 (2020); https://doi.org/10.1063/1.5143212 and may be found at https://doi.org/10.1063/1.5143212. ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199225 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Submitted version ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing true nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198699 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Accepted manuscript ER -