TY - JOUR A1 - Zhang, Chonghe A1 - Liu, Xiaocui A1 - Wang, Junyi A1 - Ye, Qing T1 - A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability JF - Angewandte Chemie N2 - Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E−H bond activation (E=B, Si, Ge) was investigated. While the reaction with B−H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on N\(_{α}\) upon N\(_{2}\) elimination, the Si−H (Et\(_{3}\)SiH, PhMe\(_{2}\)SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5\(_{int}\) and 6\(_{int}\) being isolated and characterized. In contrast, the cooperative Ge−H was reversible and stayed at the 1,2-addition step. KW - E-H bond activation KW - boracycle KW - azido borane KW - lewis superacid KW - structure elucidation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318322 VL - 61 IS - 36 ER - TY - JOUR A1 - Wei, Yuxiang A1 - Wang, Junyi A1 - Yang, Weiguang A1 - Lin, Zhenyang A1 - Ye, Qing T1 - Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o‐Carborane JF - Chemistry – A European Journal N2 - Among the parent borirane, benzoborirene and ortho‐dicarbadodecaborane‐fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π‐donating group or an extra ligand for B‐coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2‐insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4‐insertion of Ar−(C=O)− into a B−C bond. The fusion of strained molecular systems to an o‐carborane cage shows great promise for boosting both the ring strain and acidity. KW - borirane KW - carborane KW - fused boracycles KW - Lewis acidity KW - ring strain Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312089 VL - 29 IS - 5 ER - TY - JOUR A1 - Su, Wei A1 - Rajeshkumar, Thayalan A1 - Xiang, Libo A1 - Maron, Laurent A1 - Ye, Qing T1 - Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2‐Insertion of CO into a U−N Bond JF - Angewandte Chemie International Edition N2 - In this contribution, we illustrate uranium complexes bearing a pendant borate (i.e. 1 and 2) or a pendant borane (i.e. 3 and 4) moiety via reaction of the highly strained uranacycle I with various 3‐coordinate boranes. Complexes 3 and 4 represent the first examples of uranium complexes with a pendant borane Lewis acid. Moreover, complex 3 was capable of activation of CO, delivering a new CO activation mode, and an abnormal CO 1,2‐insertion pathway into a U−N bond. The importance of the pendant borane moiety was confirmed by the controlled experiments. KW - Boranes KW - Boron KW - Carbon Monoxide KW - Lewis acids KW - Uranium Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312197 VL - 61 IS - 51 ER -