TY - JOUR A1 - Nickerson, David A1 - Atalag, Koray A1 - de Bono, Bernard A1 - Geiger, Jörg A1 - Goble, Carole A1 - Hollmann, Susanne A1 - Lonien, Joachim A1 - Müller, Wolfgang A1 - Regierer, Babette A1 - Stanford, Natalie J. A1 - Golebiewski, Martin A1 - Hunter, Peter T1 - The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable JF - Interface Focus N2 - Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome. KW - Human Physiome KW - standards KW - repositories KW - service infrastructure KW - reproducible science KW - managing big data Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189584 VL - 6 IS - 2 ER - TY - JOUR A1 - Lousada, Cláudio M. A1 - Soroka, Inna L. A1 - Yagodzinskyy, Yuriy A1 - Tarakina, Nadezda V. A1 - Todoshchenko, Olga A1 - Hänninen, Hannu A1 - Korzhavyi, Pavel A. A1 - Jonsson, Mats T1 - Gamma radiation induces hydrogen absorption by copper in water JF - Scientific Reports N2 - One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H\(_{2}\)(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. KW - gamma radiation KW - radioactive waste KW - nuclear power KW - repositories KW - safety KW - copper KW - water Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167730 VL - 6 IS - 24234 ER -