TY - JOUR A1 - Binder, Tobias A1 - Lange, Florian A1 - Pozzi, Nicolò A1 - Musacchio, Thomas A1 - Daniels, Christine A1 - Odorfer, Thorsten A1 - Fricke, Patrick A1 - Matthies, Cordula A1 - Volkmann, Jens A1 - Capetian, Philipp T1 - Feasibility of local field potential-guided programming for deep brain stimulation in Parkinson’s disease: a comparison with clinical and neuro-imaging guided approaches in a randomized, controlled pilot trial JF - Brain Stimulation N2 - Highlights • Beta-Guided programming is an innovative approach that may streamline the programming process for PD patients with STN DBS. • While preliminary findings from our study suggest that Beta Titration may potentially mitigate STN overstimulation and enhance symptom control, • Our results demonstrate that beta-guided programming significantly reduces programming time, suggesting it could be efficiently integrated into routine clinical practice using a commercially available patient programmer. Background Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson's disease (PD). Clinical outcomes after DBS can be limited by poor programming, which remains a clinically driven, lengthy and iterative process. Electrophysiological recordings in PD patients undergoing STN-DBS have shown an association between STN spectral power in the beta frequency band (beta power) and the severity of clinical symptoms. New commercially-available DBS devices now enable the recording of STN beta oscillations in chronically-implanted PD patients, thereby allowing investigation into the use of beta power as a biomarker for DBS programming. Objective To determine the potential advantages of beta-guided DBS programming over clinically and image-guided programming in terms of clinical efficacy and programming time. Methods We conducted a randomized, blinded, three-arm, crossover clinical trial in eight Parkinson's patients with STN-DBS who were evaluated three months after DBS surgery. We compared clinical efficacy and time required for each DBS programming paradigm, as well as DBS parameters and total energy delivered between the three strategies (beta-, clinically- and image-guided). Results All three programming methods showed similar clinical efficacy, but the time needed for programming was significantly shorter for beta- and image-guided programming compared to clinically-guided programming (p < 0.001). Conclusion Beta-guided programming may be a useful and more efficient approach to DBS programming in Parkinson's patients with STN-DBS. It takes significantly less time to program than traditional clinically-based programming, while providing similar symptom control. In addition, it is readily available within the clinical DBS programmer, making it a valuable tool for improving current clinical practice. KW - beta power KW - deep brain stimulation KW - local field potentials KW - Parkinson's disease KW - DBS programming KW - DBS biomarkers Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350280 VL - 16 IS - 5 ER - TY - JOUR A1 - Lange, Florian A1 - Steigerwald, Frank A1 - Malzacher, Tobias A1 - Brandt, Gregor Alexander A1 - Odorfer, Thorsten Michael A1 - Roothans, Jonas A1 - Reich, Martin M. A1 - Fricke, Patrick A1 - Volkmann, Jens A1 - Matthies, Cordula A1 - Capetian, Philipp D. T1 - Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming JF - Frontiers in Neurology N2 - Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial. KW - directional deep brain stimulation KW - image-guided programming KW - subthalamic nucleus KW - chronic stimulation KW - randomized controlled double-blind study KW - Parkinson's disease Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249634 SN - 1664-2295 VL - 12 ER - TY - JOUR A1 - Matthies, Cordula A1 - Brill, Stefan A1 - Kaga, Kimitaka A1 - Morita, Akio A1 - Kumakawa, Kozo A1 - Skarzynski, Henryk A1 - Claassen, Andre A1 - Hui, Yau A1 - Chiong, Charlotte A1 - Müller, Joachim A1 - Behr, Robert T1 - Auditory Brainstem Implantation Improves Speech Recognition in Neurofibromatosis Type II Patients JF - ORL N2 - This prospective study aimed to determine speech understanding in neurofibromatosis type II (NF2) patients following implantation of a MED-EL COMBI 40+ auditory brainstem implant (ABI). Patients (n = 32) were enrolled postsurgically. Nonauditory side effects were evaluated at fitting and audiological performance was determined using the Sound Effects Recognition Test (SERT), Monosyllable-Trochee-Polysyllable (MTP) test and open-set sentence tests. Subjective benefits were determined by questionnaire. ABI activation was documented in 27 patients, 2 patients were too ill for testing and 3 patients were without any auditory perception. SERT and MTP outcomes under auditory-only conditions improved significantly between first fitting and 12-month follow-up. Open-set sentence recognition improved from 5% at first fitting to 37% after 12 months. The number of active electrodes had no significant effect on performance. All questionnaire respondents were ‘satisfied' to ‘very satisfied' with their ABI. An ABI is an effective treatment option in NF2 patients with the potential to provide open-set speech recognition and subjective benefits. To our knowledge, the data presented herein is exceptional in terms of the open-set speech perception achieved in NF2 patients. KW - acoustic neuroma KW - auditory brainstem implant KW - nonauditory side effects KW - open-set sentence recognition KW - subjective benefits KW - vestibular schwannoma Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196383 SN - 0301-1569 SN - 1423-0275 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 75 IS - 5 ER - TY - JOUR A1 - Nattmann, Anja A1 - Breun, Maria A1 - Monoranu, Camelia M. A1 - Matthies, Cordula A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells JF - BMC Research Notes N2 - Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS. KW - vestibular schwannoma KW - pathogenesis KW - ADAM9 KW - knock down KW - integrin KW - immunofuorescence double staining KW - Merlin KW - primary cell culture Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231213 VL - 13 ER - TY - JOUR A1 - Steigerwald, Frank A1 - Müller, Lorenz A1 - Johannes, Silvia A1 - Matthies, Cordula A1 - Volkmann, Jens T1 - Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device JF - Movement Disorders N2 - Introduction A novel neurostimulation system allows steering current in horizontal directions by combining segmented leads and multiple independent current control. The aim of this study was to evaluate directional DBS effects on parkinsonian motor features and adverse effects of subthalamic neurostimulation. Methods Seven PD patients implanted with the novel directional DBS system for bilateral subthalamic DBS underwent an extended monopolar review session during the first postoperative week, in which current thresholds were determined for rigidity control and stimulation-induced adverse effects using either directional or ring-mode settings. Results Effect or adverse effect thresholds were modified by directional settings for each of the 14 STN leads. Magnitude of change varied markedly between leads, as did orientation of optimal horizontal current steering. Conclusion Directional current steering through chronically implanted segmented electrodes is feasible, alters adverse effect and efficacy thresholds in a highly individual manner, and expands the therapeutic window in a monopolar review as compared to ring-mode DBS. KW - deep brain stimulation KW - Parkinson's disease Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187683 VL - 31 IS - 8 ER - TY - JOUR A1 - Breun, Maria A1 - Monoranu, Camelia M. A1 - Kessler, Almuth F. A1 - Matthies, Cordula A1 - Löhr, Mario A1 - Hagemann, Carsten A1 - Schirbel, Andreas A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Buck, Andreas K. A1 - Wester, Hans-Jürgen A1 - Ernestus, Ralf-Ingo A1 - Lapa, Constantin T1 - [\(^{68}\)Ga]-Pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas JF - Frontiers in Oncology N2 - We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [\(^{68}\)Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [\(^{68}\)Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [\(^{68}\)Ga]Pentixafor PET/CT was visually positive in all cases. SUV\(_{mean}\) and SUV\(_{max}\) were 3.0 ± 0.3 and 3.8 ± 0.4 and TBR\(_{mean}\) and TBR\(_{max}\) were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [\(^{68}\)Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression. KW - vestibular schwannoma KW - CXCR4 KW - PET/CT KW - molecular imaging KW - Pentixafor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201863 VL - 9 IS - 503 ER - TY - JOUR A1 - Pasos, Uri E. Ramirez A1 - Steigerwald, Frank A1 - Reich, Martin M. A1 - Matthies, Cordula A1 - Volkmann, Jens A1 - Reese, René T1 - Levodopa modulates functional connectivity in the upper beta band between bubthalamic nucleus and muscle activity in tonic and phasic motor activity patterns in Parkinson’s disease JF - Frontiers in Human Neuroscience N2 - Introduction: Striatal dopamine depletion disrupts basal ganglia function and causes Parkinson’s disease (PD). The pathophysiology of the dopamine-dependent relationship between basal ganglia signaling and motor control, however, is not fully understood. We obtained simultaneous recordings of local field potentials (LFPs) from the subthalamic nucleus (STN) and electromyograms (EMGs) in patients with PD to investigate the impact of dopaminergic state and movement on long-range beta functional connectivity between basal ganglia and lower motor neurons. Methods: Eight PD patients were investigated 3 months after implantation of a deep brain stimulation (DBS)-system capable of recording LFPs via chronically-implanted leads (Medtronic, ACTIVA PC+S®). We analyzed STN spectral power and its coherence with EMG in the context of two different movement paradigms (tonic wrist extension vs. alternating wrist extension and flexion) and the effect of levodopa (L-Dopa) intake using an unbiased data-driven approach to determine regions of interest (ROI). Results: Two ROIs capturing prominent coherence within a grand average coherogram were identified. A trend of a dopamine effect was observed for the first ROI (50–150 ms after movement start) with higher STN-EMG coherence in medicated patients. Concerning the second ROI (300–500 ms after movement start), an interaction effect of L-Dopa medication and movement task was observed with higher coherence in the isometric contraction task compared to alternating movements in the medication ON state, a pattern which was reversed in L-Dopa OFF. Discussion: L-Dopa medication may normalize functional connectivity between remote structures of the motor system with increased upper beta coherence reflecting a physiological restriction of the amount of information conveyed between remote structures. This may be necessary to maintain simple movements like isometric contraction. Our study adds dynamic properties to the complex interplay between STN spectral beta power and the nucleus’ functional connectivity to remote structures of the motor system as a function of movement and dopaminergic state. This may help to identify markers of neuronal activity relevant for more individualized programming of DBS therapy. KW - Parkinson’s disease KW - subthalamic nucleus KW - deep brain stimulation KW - local field potentials KW - dopamine KW - movement Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201540 VL - 13 IS - 223 ER - TY - JOUR A1 - Canessa, Andrea A1 - Pozzi, Nicolò G. A1 - Arnulfo, Gabriele A1 - Brumberg, Joachim A1 - Reich, Martin M. A1 - Pezzoli, Gianni A1 - Ghilardi, Maria F. A1 - Matthies, Cordula A1 - Steigerwald, Frank A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease JF - Frontiers in Human Neuroscience N2 - Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson’s disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement. KW - beta oscillations KW - Parkinson’s disease KW - motor control KW - movement disorders KW - imaging KW - subthalamic nucleus KW - coherence analysis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164061 VL - 10 IS - 611 ER -