TY - JOUR A1 - Denner, Ansgar A1 - Dittmaier, Stefan A1 - Hecht, Markus A1 - Pasold, Christian T1 - NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays JF - JOURNAL OF HIGH ENERGY PHYSICS N2 - The next-to-leading-order electroweak corrections to pp→l\(^{+}\)l\(^{-}\)/ν¯¯¯ν+γ+X production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function á la Glover/Morgan and Frixione’s cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous ZZγ and Zγγ couplings. KW - NLO computations KW - hadronic colliders KW - LHC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168766 VL - 02 IS - 057 ER - TY - THES A1 - Pasold, Christian T1 - QCD and electroweak NLO corrections to W + Photon and Z + Photon production including leptonic decays T1 - QCD und elektroschwache NLO Korrekturen zu W + Photon und Z + Photon Produktion inklusive leptonischer Zerfälle N2 - At a hadron collider as the LHC or the Tevatron the production of a photon in association with a leptonically decaying vector boson represents an important class of processes. These processes stand out due to a very clean signal of a photon and two leptons. Furthermore they provide direct access to the photon–vector-boson couplings and thus an easy opportunity to test the gauge sector of the Standard Model. Within the scope of this work we present a full calculation of the next-to-leading-order corrections which include the O (αs) corrections of the strong interaction as well as the electroweak corrections of O (α) including all photon-induced contributions. For the creation of matrix elements we use methods based on Feynman diagrams. The IR singularities are treated with the dipole subtraction technique. In order to separate photons from jets, a quark-to-photon fragmentation function ´a la Glover / Morgan or Frixione’s cone isolation is employed. Moreover, two different scenarios for charged leptons in the fi state were considered. The fi scenario for dressed leptons assumes that a charged lepton and a photon will be recombined if they are collinear. In the second scenario for bare muons it is assumed that leptons and photon can be separated in a detector also if they are collinear. For our calculation we implemented all corrections into a fl Monte Carlo program. Be- sides the computation of the total cross section this program is also able to generate diff tial distributions of several experimentally motivated observables. Apart from the expected large electroweak corrections in the high transverse-momentum regions and sizeable corrections in the resonance regions of the transverse or the invariant masses we found photon-induced corrections up to several 10% for high transverse momenta. Within run I at the LHC for 7/8 TeV the experimental accuracy for Vγ production was roughly 10%. Due to the higher luminosity at run II this accuracy will be reduced to the level of a few percent so that corrections of the same order within the theoretical predictions might become relevant. In this work we present results for the total cross section at the LHC for 7, 8 and 14 TeV and the corresponding distributions for 14 TeV. N2 - An einem Hadron Beschleuniger wie dem LHC oder dem Tevatron spielt die Prozessklasse der Produktion eines Photons in Kombination mit einem leptonisch zerfallenden massiven Eichbosons eine wichtige Rolle. Die Gründe für die große Bedeutung sind zum einen die klare Signatur aus einem Photon und zwei Leptonen als auch der direkte Zugang zu den Kopplungen des Photons an die massiven Eichbosonen und damit die Möglichkeit den Eichsektor des Standard-Modells der Elementarteilchenphysik zu testen. Um die Präzision der theoretischen Vorhersagen weiter zu erhöhen wurde im Rahmen dieser Arbeit eine vollständige Berechnung der Korrekturen in nächstführender Ordnung durchgeführt. Diese umfassen alle Korrekturen der starken Wechselwirkung von O (αs) sowie die elektroschwachen Korrekturen von O (α) inklusive aller photon-induzierten Beiträge. Zur Erzeugung von Matrixelementen wurde dabei auf Feynman-Diagramm basierte Methoden zurückgegriffen. Für die Behandlung der IR-Divergenzen wurde die Dipolesubtraktion verwendet wobei die Separation von kollinearen Photon–Jet-Konfigurationen mithilfe der Quark-Photon-Fragmentationsfunktion a´ la Glover / Morgan oder des Frixione-Kriteriums erfolgte. Außerdem wurden zwei experimentell motivierte Szenarien für die Behandlung von geladenen Leptonen im Endzustand berücksichtigt. In einem Fall werden kollineare Photon–Lepton-Paare zu einem Quasiteilchen zusammengefasst. Dieses Szenario entspricht der experimentellen Behandlung von Elektronen, die im Falle eines kollinearen Photons im elektromagnetischen Kalorimeter nicht von diesem getrennt werden können. Im zweiten Szenario werden Myonen und Photonen als experimentell separierbar angenommen, sodass Myon und Photon getrennt von einander im Detektor rekonstruiert werden können. Für die Berechnung der Korrekturen wurden alle Beiträge in einem fl Monte Carlo Programm implementiert, das neben der Berechnung des totalen Wirkungsquerschnittes auch die Erzeugung von Histogrammen für verschiedenste experimentell motivierte Observablen ermöglicht. Neben den typischen großen elektroschwachen Korrekturen bei hohen Transversalimpulsen sowie in Bereichen der Resonanzregion von transversaler beziehungsweise invarianter Masse zeigt sich, dass auch die photon-induzierten Korrekturen in der Größenordnung von einigen 10% bei hohen Transversalimpulsen beitragen. Die experimentelle Genauigkeit für Vγ Produktion in Run I mit 7/8 TeV am LHC lag bei etwa 10%. Aufgrund der gesteigerten Luminosität in Run II wird diese Genauigkeit noch weiter verbessert werden, sodass Korrekturen von ∼ 5% innerhalb der theoretischen Vorhersagen nicht mehr vernachlässigt werden können. In dieser Arbeit zeigen wir Ergebnisse für den totalen Wirkungsquerschnitt am LHC für 7, 8 und 14 TeV sowie die dazugehörigen Verteilungen für 14 TeV. KW - Quantenchromodynamik KW - particle physics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137456 ER -