TY - JOUR A1 - Djakovic, Lara A1 - Hennig, Thomas A1 - Reinisch, Katharina A1 - Milić, Andrea A1 - Whisnant, Adam W. A1 - Wolf, Katharina A1 - Weiß, Elena A1 - Haas, Tobias A1 - Grothey, Arnhild A1 - Jürges, Christopher S. A1 - Kluge, Michael A1 - Wolf, Elmar A1 - Erhard, Florian A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. KW - herpes virus KW - transcription Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358161 VL - 14 ER - TY - JOUR A1 - Pattschull, Grit A1 - Walz, Susanne A1 - Gründl, Marco A1 - Schwab, Melissa A1 - Rühl, Eva A1 - Baluapuri, Apoorva A1 - Cindric-Vranesic, Anita A1 - Kneitz, Susanne A1 - Wolf, Elmar A1 - Ade, Carsten P. A1 - Rosenwald, Andreas A1 - von Eyss, Björn A1 - Gaubatz, Stefan T1 - The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes JF - Cell Reports N2 - YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways. KW - YAP KW - B-MYB KW - Myb-MuvB KW - mitotic genes KW - enhancer KW - transcription Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202039 VL - 27 IS - 12 ER - TY - JOUR A1 - Elkon, Ran A1 - Loayza-Puch, Fabricio A1 - Korkmaz, Gozde A1 - Lopes, Rui A1 - van Breugel, Pieter C A1 - Bleijerveld, Onno B A1 - Altelaar, AF Maarten A1 - Wolf, Elmar A1 - Lorenzin, Francesca A1 - Eilers, Martin A1 - Agami, Reuven T1 - Myc coordinates transcription and translation to enhance transformation and suppress invasiveness JF - EMBO reports N2 - c‐Myc is one of the major human proto‐oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc‐induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript‐specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc‐induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells. KW - c‐Myc KW - transcriptional responses KW - translational regulation KW - transcription KW - transformation KW - metastasis KW - cancer KW - protein biosynthesis & quality control Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150373 VL - 16 IS - 12 ER -