TY - THES A1 - Schlesinger, Tobias T1 - Autolog zellbesiedelte Matrix zum Verschluss gastraler Inzisionen: Eine Machbarkeitsstudie im Schweinemodell T1 - Autologous seeded matrix for gastrotomy closure: A proof of concept in a porcine model N2 - Einleitung: Strukturelle Defekte der gastrointestinalen Hohlorgane stellen ein allgegen-wärtiges Problem im klinischen Alltag dar. Sie entstehen meist auf dem Boden einer ent-zündlichen oder tumorösen Grunderkrankung und können außerdem traumatisch sowie durch medizinische Eingriffe hervorgerufen werden. In der Folge kommt es zur Kontami-nation des umliegenden Gewebes mit Magen- bzw. Darminhalt, wodurch deletäre Folgen wie eine systemische Infektion, also eine Sepsis mit Multiorganversagen drohen können. Vor diesem Hintergrund sind gastrointestinale Defekte immer als potenziell lebensbedroh-lich für den Patienten zu betrachten. Die adäquate und kausale Behandlung erfolgt je nach Ätiologie und Zustand des Patienten durch eine Operation oder eine endoskopische Inter-vention. Hierzu stehen zahlreiche etablierte, operative und interventionelle Therapieme-thoden zur Verfügung. In manchen Fällen stoßen die etablierten Techniken jedoch an ihre Grenzen. Bei Patienten mit schwerwiegenden Komorbiditäten oder im Rahmen neuer me-dizinischer Verfahren sind Innovationen gefragt. Die Grundidee der vorliegenden Arbeit ist die Entwicklung einer biotechnologischen Therapieoption zur Versorgung gastrointesti-naler Hohlorganperforationen. Methoden: Zur Durchführung einer Machbarkeitsstudie wurden zehn Göttinger Mi-nischweine in zwei Gruppen mit jeweils 5 Tieren aufgeteilt. Den Tieren der Experimental-gruppe wurden Hautbiopsien entnommen und daraus Fibroblasten isoliert, welche vo-rübergehend konserviert wurden. Unter Verwendung von azellularisiertem Schweinedarm erfolgte die Herstellung von Implantaten nach den Prinzipien des Tissue Engineerings. Die Tiere beider Gruppen wurden einer Minilaparotomie und einer ca. 3cm-Inzision der Ma-genvorderwand unterzogen. Die anschließende Versorgung wurde in der Experimental-gruppe durch Implantation der neuartigen Konstrukte erzielt. In der Kontrollgruppe wur-de im Sinne des Goldstandards eine konventionelle Naht durchgeführt. Anschließend wurden die Tiere für vier Wochen beobachtet. Eine bzw. zwei Wochen nach dem pri-mären Eingriff wurde bei allen Tieren beider Gruppen eine Laparoskopie bzw. Gastrosko-pie durchgeführt. Am Ende der klinischen Observationsphase wurden die Versuchstiere getötet und die entsprechenden Magenareale zur histologischen Untersuchung explantiert. Ergebnisse: Die Herstellung der Implantate konnte auf der Basis standardisierter zellbio-logischer Methoden problemlos etabliert werden. Alle Tiere beider Gruppen überlebten den Primäreingriff sowie das vierwöchige Nachbeobachtungsintervall und zeigten dabei keine klinischen Zeichen möglicher Komplikationen. Die durchgeführten Laparoskopien und Gastroskopien ergaben bei keinem der Tiere Hinweise auf Leckagen oder lokale Infek-tionsprozesse. Die histologische Aufarbeitung zeigte im Bereich des ursprünglichen De-fekts eine bindegewebige Überbrückung sowie ein beginnendes Remodeling der Magen-schleimhaut in beiden Gruppen. Schlussfolgerungen: Durch die Verknüpfung von Einzelprozessen der Zellkultur und dem Großtier-OP konnte ein neues Verfahren zum Verschluss gastrointestinaler Defekt erfolgreich demonstriert und etabliert werden. Das Projekt konnte reibungslos durchge-führt werden und lieferte Ergebnisse, die dem Goldstandard nicht unterlegen waren. Auf-grund der kleinen Fallzahl und weiterer methodischer Limitationen sind jedoch nur einge-schränkt Schlussfolgerungen möglich, weshalb die Durchführung größerer und gut geplan-ter Studien notwendig ist. Die Erkenntnisse dieser Pilotstudie liefern eine solide Basis für die Planung weiterführender Untersuchungen. N2 - Introduction: Structural defects of the gastrointestinal hollow organs are a common problem in clinical routine. They mostly arise from inflammatory or malignant patholo-gies as well as trauma or medical procedures. Contamination of adjacent tissue with fae-ces is a consequence of this, which can lead to systemic infection e.g. sepsis with multiple organ failure. Bearing this in mind gastrointestinal defects are always potentially life-threatening for the patient. Considering the aethiology and the patient’s general condition an appropriate therapy namely operation or endoscopic intervention will be performed. Though, these techniques have limitations in certain cases. For example there are patients with severe comorbidities or history of previous operations. And there are also new sur-gical procedures emerging. Therefore, innovations are needed in this field. The main purpose of the present study is the fabrication of a new biotechnological method for therapy of gastrointestinal hollow organ perforation. Methods: A feasibility study with Göttinger Minipigs was perforemd. Ten animals were randomly split up in two groups regarding closure technique . Skin biopsies were ob-tained from the animals of the experimental group (n=5) in order to obtain dermal fibro-blasts. Using acellularised porcine small intestine seeded with the autologous dermal fi-broblasts implants were manufactured following the principles to tissue engineering. All animals underwent laparotomy and a 3cm gastrical incision. Subsequently, animals of the experimental group received a novel implant in order to close the defect. Animals of the control group received a conventional suture as a gold standard technique. All animals were observed for four weeks. One and two weeks after primary surgery all animals un-derwent laparoscopy and gastroscopy respectively. Observation was completed after four weeks and all animals were euthanized. Relevant specimens of the gastric wall were ex-planted for histological examination. Results: Fabrication of the implants was based on well-established cell cultural methods. All animals survived within four weeks after primary surgery and showed no signs for possible complications. Neither laparoscopy nor gastroscopy revealed leakage or local infection in both groups. Histological examinations showed connective tissue in the de-fect-area predominantly but also initial remodeling of gastric mucosa. Conclusions: In this trial, a novel method based on cell culture methods and surgery were combined creating a new technique for closure of gastrointestinal defect. The pro-ject was carried out smoothly and results showed non-inferiority compared with the gold standard. Though, evidence generated from this study is limited due to the small scaled design and methodological issues. Thus, further investigations with larger animal groups and proper planning are required. Nevertheless, this pilot study will contribute to im-provement of trial designs in the future. KW - Magenkrankheit KW - NOTES KW - Tissue Engineering KW - Fibroblast KW - Magenchirurgie KW - Fibroblasts KW - small intestinal submucosa KW - Anastomoseninsuffizienz KW - Gastrointestinaltrakt KW - Magen KW - Perforation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305832 ER - TY - THES A1 - Schmidt, Stefanie T1 - Cartilage Tissue Engineering – Comparison of Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells in Agarose and Hyaluronic Acid-Based Hydrogels T1 - Tissue Engineering von Knorpel – Vergleich von Gelenkknorpel-Vorläuferzellen und mesenchymalen Stromazellen in Agarose- und Hyaluronsäure-basierten Hydrogelen N2 - Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 % oxygen) and hypoxic (2 % oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue. N2 - Gelenkknorpeldefekte, die durch Sportverletzungen, Unfälle oder graduelle Abnutzung ent-stehen, können zu Degeneration des Gewebes und zur Entstehung von Arthrose führen, da Knorpelgewebe nur über eine eingeschränkte Fähigkeit zur Selbstheilung verfügt. Arthrose reduziert die Beweglichkeit und verursacht chronische Schmerzen. Sie ist vor allem bei älte-ren Menschen einer der häufigsten Gründe für körperliche Behinderung. Die zurzeit verfüg-baren operativen Behandlungsmöglichkeiten können die Symptome meist für einige Zeit lindern, aber das dabei gebildete Ersatzgewebe zeigt meistens nur eingeschränkte Funktiona-lität im Vergleich zu natürlichem gesunden Knorpelgewebe und bleibt nur für eine begrenzte Zeit stabil. Tissue Engineering von Gelenkknorpelgewebe ist ein vielversprechender Ansatz, um die Qualität des Ersatzgewebes und der Knorpelregeneration zu verbessern. Diese Arbeit untersuchte einen neuen vielversprechenden Zelltyp für das Tissue Engineering von Knorpelgewebe, sogenannte Gelenkknorpel-Vorläuferzellen (ACPCs). Diese Zellen wurden erstmals in zwei verschiedenen Hydrogelen, Agarose und HA-SH/P(AGE-co-G), mit mesenchymalen Stromazellen (MSCs) verglichen. Die chondrogene Kapazität von ACPCs und MSCs in Agarose wurde unter normoxischen (21 % Sauerstoff) und hypoxischen (2 % Sauerstoff) Bedingungen in Monokultur und zonal geschichteter Kokultur untersucht. In den zonalen Kokulturen befanden sich ACPCs in einer oberen Schicht und MSCs in einer unte-ren Schicht. In dem neu entwickelten Hyaluronsäure (HA)-basierten Hydrogel HA-SH/P(AGE-co-G) wurde die chondrogene Differenzierung von ACPCs und MSCs ebenfalls in Monokultur und in zonal geschichteter Kokultur, wie im Agarose-Hydrogel, analysiert. Außerdem wurde der Beitrag des biologisch aktiven Moleküls Hyaluronsäure zur chondro-genen Genexpression von MSCs in 2D-, 3D-Pellet- und HA-SH-Hydrogel-Kulturen unter-sucht. Diese Arbeit zeigte, dass sowohl ACPCs als auch MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen chondrogen differenzieren konnten. ACPCs produzierten im Agarose-Hydrogel ein Gewebe, das dem Gelenkknorpel ähnlicher war als das von MSCs produzierte Gewebe, da es mehr Glykosaminoglykane (GAG), weniger Typ I Kollagen und nur geringe Aktivität der Alkalinen Phosphatase (ALP) aufwies. Hypoxische Bedingungen konnten die Produktion von extrazellulärer Matrix (ECM) durch ACPCs und MSCs nicht erhöhen, aber sie verbesserten die Qualität des von MSCs produzierten Gewebes. Die Herstellung von zon-alen Agarose-Konstrukten mit ACPCs in der oberen Schicht und MSCs in der unteren Schicht führte zu einer ECM-Produktion in zonalen Hydrogelen, die im Allgemeinen zwi-schen der ECM-Produktion der ACPC-Monokultur und der MSC-Monokultur lag. Zonale Kokultur von ACPCs und MSCs führte zwar nicht zu einer erhöhten ECM-Produktion, al-lerdings beeinflussten die beiden Zelltypen sich gegenseitig und modulierten zum Beispiel die Intensitäten der Typ II und Typ I Kollagen Färbungen im Vergleich zu Monokulturen unter normoxischen und hypoxischen Bedingungen. Im HA-SH/P(AGE-co-G)-Hydrogel produzierten die MSCs mehr ECM als die ACPCs, allerdings war die Verteilung der gebilde-ten ECM bei beiden Zelltypen auf den perizellulären Bereich beschränkt. Zonale HA-SH/P(AGE-co-G)-Hydrogele führten zu einer zonalen Verteilung von ECM, die der natürli-chen Struktur von Gelenkknorpel ähnlich war, da die MSCs in der unteren Schicht mehr ECM produzierten als die ACPCs in der oberen Schicht. Anscheinend wurde die chondroge-ne Differenzierung von ACPCs von Hydrogelen unterstützt, die, so wie Agarose, keine bio-logischen Bindestellen aufwiesen, und die Chondrogenese von MSCs profitierte von Hydro-gelen mit biologischen Signalen wie HA. Da HA ein attraktives Material für Tissue Engineering von Knorpel darstellt und das HA-basierte Hydrogel HA-SH/P(AGE-co-G) anscheinend die chondrogene Differenzierung von MSCs begünstigte, wurde der Beitrag von HA zur chondrogenen Genexpression in MSCs untersucht. Eine Hochregulation der chondrogenen Genexpression ließ sich in 2D- und 3D-Pellet-Kulturen von MSCs als Reaktion auf HA beobachten, während die Genexpression von osteogenen oder adipogenen Transkriptionsfaktoren nicht hochreguliert wurde. Der Ein-schluss von MSCs in einem HA-basierten Hydrogel führte zu einer Erhöhung der Genex-pression von chondrogenen, osteogenen, adipogenen und Stemness-Markern. Ein 3D-Druck-Prozess mit dem HA-basierten Hydrogel veränderte die Genexpression von MSCs in den meisten Fällen nicht. Dennoch wurde die Expression von drei getesteten Genen (COL2A1, SOX2, CD168) in gedruckten im Vergleich zu gegossenen Konstrukten herunterreguliert. Dies unterstrich die Wichtigkeit einer genauen Kontrolle des Verhaltens der Zellen während und nach dem Druck-Prozess. Zusammenfassend ließen sich ACPCs als vielversprechender neuer Zelltyp für das Tissue Engineering von Gelenkknorpelgewebe bestätigen. ACPCs haben Vorteile gegenüber MSCs, vor allem, wenn sie in einem passenden Hydrogel wie Agarose kultiviert werden. Die Leis-tung der Zellen war stark von den verschiedenen Hydrogelen und der Umgebung beeinflusst, die diese den Zellen darboten. Die unterschiedliche chondrogene Leistung von ACPCs und MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen zeigte deutlich die übergeordnete Relevanz der Auswahl von passenden Hydrogelen für die verschiedenen Zelltypen, die im Tissue Engineering von Gelenkknorpel Verwendung finden. Hydrogele mit einem hohen Polymergehalt, wie das eingesetzte HA-SH/P(AGE-co-G)-Hydrogel, können die Verteilung der gebildeten ECM auf den perizellulären Bereich beschränken und sollten weiterentwickelt werden, um einen niedrigeren Polymergehalt und damit eine homogenere ECM-Verteilung durch die kultivierten Zellen zu erreichen. Der Einfluss von HA auf die chondrogene Gen-expression und auf die Balance zwischen Differenzierung und Erhaltung der Stemness in MSCs ließ sich aufzeigen. In Zukunft sollten weitere Studien die Signalfunktionen von HA und den Einfluss des 3D-Drucks in HA-basierten Hydrogelen genauer zu untersuchen. Zusammengenommen erweitern die Ergebnisse dieser Arbeit das Wissen im Bereich des Tissue Engineerings von Gelenkknorpelgewebe, vor allem in Bezug auf eine rationale Kom-bination von Zelltypen und Hydrogel-Materialien, und eröffnen neue Ansätze zur Knorpel-regeneration. KW - Hyaliner Knorpel KW - Tissue Engineering KW - Hydrogel KW - Hypoxie KW - Mesenchymzelle KW - articular cartilage progenitor cells KW - Cartilage KW - Mesenchymal stem cell KW - Hyaluronsäure KW - Agarose KW - zonal Hydrogels KW - Bioprinting KW - Cartilage Tissue Engineering KW - Oxygen partial pressure KW - chondrogene Differenzierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251719 ER - TY - THES A1 - Andelovic, Kristina T1 - Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models T1 - Charakterisierung arterieller Hämodynamiken in atherosklerotischen Mausmodellen und tissue-engineerten Arterienmodellen N2 - Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly – at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe−/− mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models – two parameters highly influencing plaque development and progression – there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research. N2 - Im Rahmen dieser Arbeit wurden drei Hauptansätze zur Bewertung und Untersuchung der veränderten Hämodynamik wie Wandschubspannung, des oszillatorischen Scherindex und der arteriellen Pulswellengeschwindigkeit bei der Entwicklung und Progression der Atherosklerose durchgeführt: 1. Die Etablierung einer schnellen Methode zur gleichzeitigen Bestimmung der 3D-Wandschubspannung und der Pulswellengeschwindigkeit im gesamten Aortenbogen der Maus mittels hochauflösender 4D-Fluss-MRT 2. Die Verwendung von seriellen in vivo Messungen in atherosklerotischen Mausmodellen mittels hochauflösender 4D-Fluss-MRT, die in Studien zur Beschreibung der veränderten Hämodynamik bei später und früher Atherosklerose aufgeteilt wurden 3. Die Entwicklung von tissue-engineerten Arterienmodellen für die kontrollierte Anwendung und Variation von hämodynamischen und biologischen Parametern, unterteilt in native Arterienmodelle und biofabrizierte Arterienmodelle, mit dem Ziel, die Beziehung zwischen Atherogenese und veränderter Hämodynamik zu untersuchen Kapitel 2 beschreibt die Etablierung einer Methode zur gleichzeitigen Messung von 3D-Wandschubspannung und Pulswellengeschwindigkeit im Aortenbogen der Maus unter Verwendung der Ultrahochfeld-MRT bei 17,6T [16], die auf der zuvor veröffentlichten Methode zur schnellen, selbstnavigierten Messung der Wandschubspannung im Aortenbogen der Maus unter Verwendung der radialen 4D-Phasenkontrast-MRT bei 17,6T [4] basiert. Dieses Projekt basiert auf der gemeinsamen Arbeit von Dr. Patrick Winter, der diese Methode entwickelt hat, und der Autorin dieser Thesis, Kristina Andelovic, die die Experimente und statistischen Analysen durchgeführt hat. Da die in diesem Kapitel beschriebene Methode die Grundlage für die folgenden in vivo Studien darstellt und sich nicht in die einzelnen Beiträge der Autoren aufteilen lässt, ohne dass wichtige Informationen verloren gehen, wurde dieses Kapitel nicht in die einzelnen Teile aufgeteilt, um grundlegende Informationen über die Mess- und Analysemethoden zu liefern und somit eine bessere Verständlichkeit für die folgenden Studien zu gewährleisten. Die größte Herausforderung in diesem Kapitel bestand darin, die Anforderung an eine hohe räumliche Auflösung zur Bestimmung der Geschwindigkeitsgradienten an der Gefäßwand für die WSS-Quantifizierung und an eine hohe zeitliche Auflösung für die Bestimmung der Pulswellengeschwindigkeit zu erfüllen, ohne die Messzeit aufgrund der Notwendigkeit von zwei separaten Messungen zu verlängern. Darüber hinaus ist für eine vollständige Erfassung der Hämodynamik im murinen Aortenbogen eine vollständige 3D-Messung des Aortenbogens erforderlich, die durch die Nutzung der retrospektiven Navigation und radialen Trajektorien erreicht wurde. Dies wurde durch ein hoch flexibles Rekonstruktionssystem ermöglicht, das entweder Bilder mit geringerer räumlicher Auflösung und höheren Bildraten für die Erfassung der Pulswellengeschwindigkeit oder mit höherer räumlicher Auflösung und niedrigeren Bildraten für die Erfassung der 3D-WSS in einer angemessenen Messzeit von nur 35 Minuten rekonstruieren konnte. Die in vivo-Bestimmung aller relevanter hämodynamischen Parameter, die mit der Entwicklung und dem Fortschreiten der Atherosklerose zusammenhängen, wurde somit in einer einzigen experimentellen Sitzung ermöglicht. Die Methode wurde an gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen validiert, wobei keine Unterschiede in der Robustheit der Messungen zwischen pathologischen und gesunden Mäusen festgestellt werden konnten. Die heterogene Verteilung der Plaqueentwicklung und Arterienversteifung in der Atherosklerose [10, 12] weist jedoch auf die Wichtigkeit lokaler PWV-Messungen hin. Zukünftige Studien sollten sich daher auf die 3D-Erfassung der lokalen PWV im murinen Aortenbogen auf Grundlage der vorgestellten Methode konzentrieren, um räumlich aufgelöste Korrelationen der lokalen arteriellen Steifigkeit mit anderen hämodynamischen Parametern und der Plaquezusammensetzung zu ermöglichen. In Kapitel 3 wurden die zuvor etablierten Methoden zur Untersuchung der sich verändernden Hämodynamik in der Aorta während des Alterns und der Atherosklerose bei gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen verwendet [4, 16], die auf hochauflösender 4D-Fluss MRT basieren. In dieser Arbeit wurden serielle Messungen an gesunden und atherosklerotischen Mäusen durchgeführt, um alle Veränderungen der Hämodynamik im gesamten Aortenbogen über die Zeit zu verfolgen. Zudem wurden in dieser Arbeit räumlich aufgelöste 2D-Projektionskarten der WSS und des OSI des gesamten Aortenbogens generiert. Diese Methode ermöglichte die pixelweise statistische Analyse der Unterschiede und hämodynamischen Veränderungen zwischen und innerhalb von Gruppen im Zeitverlauf und die Visualisierung auf einen Blick. Die Studie ergab sich gegensätzlich entwickelnde lokale hämodynamische Profile bei gesunden WT- und atherosklerotischen Apoe-/- Mäusen, wobei die longWSS über die Zeit abnahm und der OSI zunahm, während die PWV bei gesunden Mäusen konstant blieb. Im Gegensatz nahm die longWSS zu und der OSI bei kranken Mäusen ab, während die PWV über die Zeit zunahm. Darüber hinaus wurden räumlich aufgelöste Korrelationen zwischen WSS, PWV, Plaque und Gefäßwandeigenschaften ermöglicht, die detaillierte Einblicke in die Zusammenhänge zwischen Hämodynamik und Plaquezusammensetzung in der Atherosklerose bieten. Dabei wurde die zirkumferentielle WSS als potenzieller Marker für die Plaquegröße und -zusammensetzung bei fortgeschrittener Atherosklerose identifiziert. Darüber hinaus ergaben Korrelationen mit der PWV, dass der maximale radiale Druck als potenzieller Marker für die vaskuläre Elastizität dienen könnte. Zusammengefasst demonstriert diese Studie die Nützlichkeit der hochauflösenden 4D-Fluss MRT zur räumlichen Auflösung, Visualisierung und Analyse statistischer Unterschiede in allen relevanten hämodynamischen Parametern im Zeitverlauf und zwischen gesunden und erkrankten Mäusen, was unser Verständnis der Plaqueprogression in Richtung Vulnerabilität erheblich verbessern könnte. In zukünftigen Studien sollte jedoch der Zusammenhang zwischen Gefäßelastizität und radialem Druck weiter untersucht und mit lokalen PWV-Messungen und CFD validiert werden. Darüber hinaus spiegelten die histologischen 2D-Datensätze nicht die 3D-Eigenschaften und regionalen Charakteristika der atherosklerotischen Plaques wider. Daher sollten künftige Studien eine Analyse des 3D-Plaquevolumens und der 3D-Plaquenzusammensetzung sowie morphologische Messungen mittels MRT oder der Lichtblattmikroskopie mit einbeziehen, um das fundamentale Verständnis der Beziehung zwischen veränderter Hämodynamik und der Atherosklerose weiter zu verbessern. In Kapitel 4 ging es um die Beschreibung und Untersuchung der Hämodynamik in frühen Stadien der Atherosklerose. Darüber hinaus umfasste diese Studie zum ersten Mal Messungen der basalen Hämodynamik in gesunden WT- und atherosklerotischen Mausmodellen. Aufgrund des Mangels an Studien, die die Hämodynamik in Ldlr-/- Mäusen beschreiben, die zusammen mit dem Apoe-/- Mausmodell die am häufigsten verwendeten Mausmodelle in der Atheroskleroseforschung sind, wurde dieses Modell in diese Studie integriert, um erstmals die sich verändernde Hämodynamik im Aortenbogen zu Beginn und während der Entwicklung und Progression der frühen Atherosklerose zu beschreiben. In dieser Studie wurden erstmals deutliche Unterschiede in den basalen Aortengeometrien dieser Mausmodelle identifiziert, die zu signifikant unterschiedlichen Fluss- und WSS-Profilen im Ldlr-/- Mausmodell führen. Eine weitere basale Charakterisierung verschiedener Parameter ergab nur modell-charakteristische Unterschiede in den Lipidprofilen, was beweist, dass die Geometrie die lokale WSS in diesen Modellen stark beeinflusst. Interessanterweise ergab die Berechnung des atherogenen Plasma-Indexes ein signifikant höheres Risiko bei Ldlr-/- Mäusen mit fortschreitender Atheroskleroseentwicklung, aber signifikant größere Plaqueflächen im Aortenbogen der Apoe-/- Mäuse. Aufgrund des gegebenen basalen WSS- und OSI-Profils in diesen beiden Mausmodellen - zwei Parameter, die die Plaque-Entwicklung und -Progression stark beeinflussen - gibt es Hinweise darauf, dass sich die regionale Plaque-Entwicklung zwischen diesen Mausmodellen während der Atherogenese stark unterscheidet. Daher sollten sich künftige Studien auf die räumlich-zeitliche Bewertung der Plaqueentwicklung und -Zusammensetzung in den drei definierten Aortenregionen konzentrieren, wobei morphologische Messungen mittels MRT oder histologische 3D-Analysen wie LSFM zum Einsatz kommen. Darüber hinaus bietet diese Studie eine hervorragende Grundlage für künftige Studien mit CFD-Simulationen, in denen die verschiedenen gemessenen Parameterkombinationen (z. B. die Aortengeometrie der Ldlr-/-Maus mit dem Lipidprofil der Apoe-/- Maus) analysiert und die daraus resultierende Plaqueentwicklung und -Zusammensetzung simuliert werden. Dies könnte zum Verständnis des komplexen Zusammenspiels zwischen veränderter Hämodynamik, Serumlipiden und Atherosklerose beitragen und unser grundlegendes Verständnis der Schlüsselfaktoren für die Entstehung von Atherosklerose deutlich verbessern. In Kapitel 5 wird die Etablierung eines tissue-engineerten Arterienmodells beschrieben, das auf nativen, von Schweinehalsschlagadern hergestellten, dezellularisierten Gerüststrukturen basiert. Diese wurden zudem in einem MRT-geeigneten Bioreaktorsystem [23] kultiviert, um die hämodynamisch bedingte Atheroskleroseentwicklung auf kontrollierbare Weise zu untersuchen, wobei hierfür die zuvor etablierten Methoden zur WSS- und PWV-Bewertung [4, 16] verwendet wurden. Dieses in vitro Arterienmodell zielte auf die Reduzierung von Tierversuchen ab und bot gleichzeitig eine vereinfachte, aber vollständig kontrollierbare physikalische und biologische Umgebung. Zu diesem Zweck wurde in einem ersten Schritt ein sehr schnelles und schonendes Dezellularisierungsverfahren etabliert, das zu Gerüststrukturen basierend auf Schweinehalsschlagadern führte, die eine vollständige Azellularität aufwiesen, wobei gleichzeitig die Zusammensetzung der extrazellulären Matrix, die allgemeine Ultrastruktur und die mechanischen Eigenschaften der nativen Arterien erhalten blieben. Darüber hinaus wurde eine gute Zelladhäsion und -proliferation erreicht, die mit isolierten menschlichen Endothelzellen aus humanem Vollblut untersucht wurde. Darüber hinaus wurde zum ersten Mal eine MRT-geeignete Arterienkammer für die gleichzeitige Kultivierung der generierten Modelle und der Untersuchung der hochauflösenden 4D-Hämodynamik in diesen Arterienmodellen entwickelt. Unter Verwendung der hochauflösenden 4D-Fluss-MRT erwies sich das Bioreaktorsystem als sehr geeignet, den Volumenstrom, die beiden Komponenten der WSS inklusive dem radialen Druck und die PWV in den Arterienmodellen zu quantifizieren, wobei die erhaltenen Werte sehr gut mit den in der Literatur gefundenen Werten für in vivo-Messungen vergleichbar sind. Darüber hinaus lassen sich durch die dreidimensionale Untersuchung der Gefäßwandmorphologie in den in vitro-Modellen erste atherosklerotische Prozesse wie die Verdickung der Intima erkennen. Eine Einschränkung ist jedoch das Fehlen einer medialen glatten Muskelzellschicht aufgrund der dichten ECM des Gewebegerüsts. Die Verwendung der Laserschneidetechnik zur Erzeugung von Löchern und / oder Gruben im Mikrometerbereich, die eine Besiedlung des Mediums mit SMCs ermöglichen, zeigte in einem ersten Versuch vielversprechende Ergebnisse und sollte in zukünftigen Studien daher dringend weiter untersucht werden. Das präsentierte Arterienmodell verfügt somit über alle relevanten Komponenten für die Erweiterung zu einem Atherosklerosemodell und ebnet den Weg für ein deutlich besseres Verständnis der Schlüsselmechanismen in der Atherogenese. Kapitel 6 beschreibt die Entwicklung eines einfach herzustellenden, kostengünstigen und vollständig an gegebene Bedürfnisse anpassbaren Arterienmodells auf Grundlage von Biomaterialien. Hier wurden thermoresponsive Opfergerüststrukturen, die mit der MEW-Technik hergestellt wurden, zur Herstellung variabler, biomimetischer Formen verwendet, um die geometrischen Eigenschaften des Aortenbogens, bestehend aus Verzweigungen und Krümmungen, zu imitieren. Nach der Einbettung der Opfergerüststruktur in ein Gelatin-Hydrogel, das zudem SMCs enthält, wurde es mit bakterieller Transglutaminase vernetzt, bevor es aufgelöst und gespült wurde. Der so entstandene Hydrogelkanal wurde anschließend mit Endothelzellen besiedelt, wodurch ein einfach zu erstellendes, schnelles und kostengünstiges Arterienmodell entstand. Im Gegensatz zum nativen Arterienmodell ist dieses Modell daher deutlich variabler in Größe und Form und bietet die wichtige Möglichkeit, von Anfang an glatte Muskelzellen mit einzubringen. Darüber hinaus wurde speziell für die gegebene Gerüststruktur eine maßgeschneiderte und hochgradig anpassungsfähige Perfusionskammer entwickelt, die eine sehr schnelle und einstufige Herstellung des Arterienmodells ermöglicht und gleichzeitig die Möglichkeit zur dynamischen Kultivierung der Modelle bietet, was eine hervorragende Grundlage für die Entwicklung von in vitro Krankheits-Testsystemen für z.B. die Atheroskleroseforschung im Zusammenhang mit der Hämodynamik darstellt. Aus Zeitgründen konnte die Ausweitung auf ein Atherosklerosemodell jedoch im Rahmen dieser Arbeit nicht realisiert werden. Daher werden sich zukünftige Studien auf die Entwicklung und Validierung eines in vitro-Atherosklerosemodells konzentrieren, das auf den hier entwickelten zwei- und dreischichtigen Arterienmodellen basiert. Zusammenfassend lässt sich sagen, dass diese Arbeit den Weg für eine schnelle Erfassung und detaillierte Analyse der sich verändernden Hämodynamik während der Entwicklung und der Progression der Atherosklerose geebnet hat, einschließlich räumlich aufgelöster Analysen aller relevanten hämodynamischen Parameter im Zeitverlauf innerhalb einer Gruppe und zwischen verschiedenen Gruppen. Darüber hinaus wurden vielversprechende Arterienmodelle etabliert, die das Potenzial haben, als neue Plattform für die Atherosklerose-Grundlagenforschung zu dienen, um Tierversuche zu minimieren und gleichzeitig die Kontrolle über verschiedene Parameter zu erlangen, die die Atheroskleroseentwicklung beeinflussen. KW - Hämodynamik KW - Arteriosklerose KW - Tissue Engineering KW - Atherosclerosis KW - MRI KW - Hemodynamics KW - Tissue Engineering KW - Biofabrication KW - Artery Models Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303601 ER - TY - THES A1 - Altmann, Stephan T1 - Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks T1 - Charakterisierung von Metabolic Glycoengineering in mesenchymalen Stromazellen für die Anwendung in thermoresponsiven Biotinten N2 - This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 ‘From the Fundamentals of Biofabrication toward functional Tissue Models’ and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. Jürgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. Jürgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed. N2 - Diese Arbeit entstand aus dem Projekt B05 während der ersten Förderperiode im Rahmen des interdisziplinären Sonderforschungsbereiches TRR 225 „Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“ und beinhaltete eine Kooperation zwischen dem Lehrstuhl für Orthopädie repräsentiert durch Prof. Dr. Regina Ebert und dem Institut für Organische Chemie repräsentiert durch Prof. Dr. Jürgen Seibel. Das Projekt beschäftigte sich mit den Auswirkungen des 3D Drucks auf Zellen während und nach dem Druck mit thermoresponsiven Biotinten. Hierbei lag der Fokus auf Scherkräften, die Zellen während des Drucks erfahren, und der Möglichkeit, deren nachteilige Auswirkungen durch gezielte Erhöhung der Zellsteifigkeit via Metabolic Glycoengineering zu minimieren. Zur Etablierung dieser Methode wurden vier azetylierte sowie vier nicht-azetylierte modifizierte Einfachzucker (zwei Mannosen und zwei Sialinsäuren) hinsichtlich ihrer Zellkompatibilität und Einbaurate in primären humanen mesenchymalen Stromazellen (hMSC) und Telomerase-immortalisierten hMSC (hMSC-TERT) charakterisiert. Bei der Viabilität zeigte sich für alle untersuchten Zucker ein konzentrationsabhängiges Verhalten, wobei die hMSC-TERT generell empfindlicher reagierten. Eine Untersuchung von verschiedenen Zielgenen nach Zuckerinkubation gab keine Hinweise auf biologisch veränderte Expressionsmuster und auch das phänotypische Differenzierungspotenzial (adipogen und osteogen) blieb erhalten. Der Einbau der modifizierten Zucker in Proteoglykane sowie Glykoproteine der Glykokalyx wurde mikroskopisch mittels Fluoreszenzfarbstoffen charakterisiert. Dabei zeigte sich ebenfalls ein konzentrationsabhängiges Verhalten für alle Mannosen und Sialinsäuren, wohingegen die Glukose- und Galaktosevarianten nicht nachgewiesen werden konnten. Die Mannosezucker zeigten die höchsten Einbauraten, welche in primären hMSC noch stärker ausfielen als in hMSC-TERT. Ein Langzeitversuch zur Beurteilung der zeitlichen Stabilität der Glykokalyxmodifikation konnte für die azetylierte Azidomannose ein abnehmendes Fluoreszenzsignal bis zum sechsten Tag nach der Klickreaktion ermitteln. Im Gegensatz dazu konnte die azetylierte Alkinmannose bereits ab dem zweiten Tag nicht mehr nachgewiesen werden. Nach der erfolgreichen Optimierung der Methodik wurde der Effekt eines Kumarinderivates oder eines künstlichen Galektin 1 Liganden auf die Zellsteifigkeit sowie die -fluidität mit Hilfe der Deformationszytometrie untersucht. Die Modifikation der Glykokalyx mit beiden untersuchten Molekülen führte zu einer leichten Erhöhung der Steifigkeit in Kombination mit einer leicht erniedrigten Fluidität. In einem weiteren Teil des Projekts sollte die Lektin-vermittelte Adhäsion von Zellen an Polymerstränge initiiert werden, indem sie mit künstlichen Galektin 1 Liganden modifiziert werden. Da diese Hypothese in der Forschungsgruppe von Prof. Dr. Jürgen Seibel bearbeitet wurde, unterstützte diese Arbeit mit einer anfänglichen Charakterisierung von Galektin 1 als Teil der hMSC Zellbiologie. In hMSC und hMSC-TERT konnte eine VI stabile Expression auf Gen- und Proteinebene nachwiesen werden, wobei das Lektin in der Glykokalyx lokalisiert war. Ein Inkubationsversuch mit einem spezifischen Liganden zeigte in hMSC-TERT unabhängig von der Konzentration keine veränderte Galektin 1 Genexpression. In Verbindung mit den Steifigkeitsuntersuchungen bestätigt diese anfängliche Charakterisierung die Anwendbarkeit von künstlichen Galektin 1 Liganden in der Biofabrikation um hMSC zu modifizieren. Somit konnte gezeigt werden, dass Metabolic Glycoengineering sich für die gezielte Einbringung von Molekülen in die Zellglykokalyx von primären hMSC sowie der entsprechenden TERT-Zelllinie zur mittelfristigen Modifikation eignet. Dies wurde durch einen funktionellen Ansatz bestätigt, indem die Zellsteifigkeit und -fluidität durch den Einsatz zwei verschiedener Moleküle erwartungsgemäß beeinflusst wurden. Für die Charakterisierung der Scherstressauswirkungen auf Zellen nach 3D Druck in thermoresponsiven Biotinten wurden hMSC und hMSC-TERT in Pluronic F127 oder Polyoxazolin-Polyoxazin (POx-POzi) Polymerlösung prozessiert (gemischt oder zusätzlich verdruckt) und direkt danach analysiert. Während letztere die Viabilität nicht verschlechterte, zeigten hMSC-TERT nach Verarbeitung in Pluronic F127 eine leicht erniedrigte Viabilität sowie leicht erhöhte Apoptoseraten. Im Zuge von Analysen der Mechanotransduktion und deren Auswirkungen konnte unabhängig von der Biotinte sowie der Behandlung kein Umbau des Zytoskeletts immunzytochemisch nachgewiesen werden. Im Gegensatz dazu zeigten Genexpressionsanalysen eine starke Hochregulierung des mechanoresponsiven Proto-Onkogens c Fos unter allen Bedingungen, wobei diese stärker ausfiel bei Verwendung der Pluronic F127 Biotinte und nur nach Mischen (gilt für beide Biotinten). Um den Scherstress quantitativ zu beurteilen, wurde die Reporterzelllinie hMSC-TERT-AP1 verwendet, welche das Auslesen der Mechanotransduktion durch eine gekoppelte Luziferase-Proteinexpression ermöglicht. Interessanterweise zeigte sich eine leicht erhöhte Luziferaseaktivität nur nach Verarbeitung mit der POx-POzi Polymerlösung, welche stärker ausfiel wenn die Zellen mit der Biotinte lediglich gemischt wurden. Zusammengenommen bestätigten die Ergebnisse die zelluläre Wahrnehmung von Scherstress in thermoresponsiven Biotinten, allerdings scheint dieser nur schwache Auswirkungen auf die Zellen zu haben, was auf die rheologischen Eigenschaften beider untersuchten Biotinten zurückgeführt werden kann. Die Druckergebnisse legten außerdem nahe, dass die Zellen nicht mehr Scherstress erfahren, wenn sie zusätzlich verdruckt wurden. KW - Glykobiologie KW - Glykokalyx KW - Tissue Engineering KW - Galectine KW - Metabolic Glycoengineering KW - Biofabrication KW - Galectin 1 KW - Glycocalyx KW - Shear Stress KW - Scherstress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291003 ER - TY - THES A1 - Reuter, Christian Steffen T1 - Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin T1 - Entwicklung eines primären humanen Hautinfektionsmodells basierend auf Gewebezüchtung zur Erforschung der Pathogenese von Tsetsefliegen-übertragenen Afrikanischen Trypanosomen in der Säugetierhaut N2 - Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods. N2 - Zahlreiche Arthropoden wie Stechmücken, Zecken, Wanzen und Fliegen sind Überträger für krankheitserregende Parasiten, Bakterien und Viren. Hierzu gehört der einzellige Parasit Trypanosoma brucei (T. brucei), welcher durch Tsetsefliegen übertragen wird und die Afrikanische Trypanosomiasis bei Menschen und Tieren verursacht. Der Entwicklungszyklus des Parasiten in der Fliege ist komplex und endet in der Speicheldrüse mit der Differenzierung in das metazyklische Lebensstadium. Diese metazyklischen Formen werden durch den Biss der blutsaugenden Tsetsefliege in die dermale Hautschicht des Säugetierwirts injiziert. Die zellzyklusarretierten metazyklischen Formen werden in der Dermis aktiviert und der Widereintritt in den Zellzyklus sowie die Differenzierung zu proliferativen Trypanosomen eingeleitet. Anschließend breitet sich der Parasit systemisch im Säugetierwirt aus. Obwohl T. brucei bereits seit Jahrzehnten erforscht wird, ist nur sehr wenig über das frühe Infektionsgeschehen in der Haut bekannt. Der genaue Zeitpunkt und die Mechanismen, die der Differenzierung des Parasiten in der Haut zugrunde liegen, sind unbekannt. Ebenso wurden die proliferativen Trypanosomen in der Haut bisher nur unzureichend charakterisiert. Das Verständnis über die ersten Schritte einer Infektion ist jedoch von entscheidender Bedeutung für die Entwicklung von neuen Strategien, die die Krankheitsentstehung und deren Fortschreiten verhindern sollen. Ein großes Hindernis bei der Erforschung der humanen Afrikanischen Trypanosomiasis ist der Mangel an geeigneten Infektionsmodellen, die den Krankheitsverlauf authentisch nachbilden. Außerdem werden für die Erzeugung der infektiösen metazyklischen Parasiten Tsetsefliegen benötigt, die aufwändig zu züchten sind. Tiermodelle haben es ermöglicht - hauptsächlich Mäuse -, viele Erkenntnisse über die Pathogenese von Trypanosomen im Säugetierwirt zu erlangen. Allerdings wurden diese überwiegend durch Nadelinjektion in den Bauchraum oder die Kaudalvene infiziert, wodurch die Haut als erste Eintrittspforte umgangen wurde. Darüber hinaus lassen Tiermodelle nicht immer Rückschlüsse auf den Infektionsverlauf beim Menschen zu. Zusätzlich erschwert die geringe Anzahl von metazyklischen Parasiten, die von Tsetsefliegen injiziert werden, die Isolation, Nachweis und Untersuchung im tierischen Wirt. Das Ziel der vorliegenden Arbeit war es, ein rekonstruiertes menschliches Hautäquivalent zu entwickeln und als Infektionsmodell zu validieren, um die Entwicklung von natürlich übertragenen metazyklischen Parasiten von T. brucei in der Säugetierhaut zu untersuchen. Der erste Teil dieser Arbeit beschreibt die Entwicklung und Charakterisierung eines primären menschlichen Hautäquivalents mit verbesserten mechanischen Eigenschaften. Zu diesem Zweck wurde ein computergesteuertes Kompressionssystem entworfen und hergestellt. Dieses System ermöglichte die gleichzeitige Verbesserung der mechanischen Stabilität von zwölf kollagenbasierten dermalen Äquivalenten durch plastische Kompression, die mittels Rheologie evaluiert wurden. Die verbesserten dermalen Äquivalente dienten als Fundament für die Erzeugung der Hautäquivalente und reduzierten deren Kontraktion und Gewichtsverlust während der Gewebebildung. Dadurch wurde ein hohes Maß an Standardisierung und Reproduzierbarkeit erreicht. Die Hautäquivalente wurden durch immunhistochemische und histologische Techniken charakterisiert und bildeten wichtige anatomische, zelluläre und funktionelle Aspekte der nativen menschlichen Haut nach. Des Weiteren wurde die zelluläre Heterogenität durch Einzelzell-RNA-Sequenzierung untersucht. Mit dieser Technik wurde ein umfangreiches Spektrum an extrazellulären Matrix-assoziierten Genen identifiziert, die von verschiedenen Zellsubpopulationen in der künstlichen Haut exprimiert werden. Zusätzlich wurden experimentelle Bedingungen etabliert, damit Tsetsefliegen eingesetzt werden konnten, um die Hautäquivalente auf natürlichem Weg mit Trypanosomen zu infizieren. Im zweiten Teil dieser Arbeit wurde die Entwicklung der Trypanosomen in der künstlichen Haut im Detail untersucht. Dies umfasste die Etablierung von Methoden zur erfolgreichen Isolierung der Trypanosomen aus der Haut, um deren Proteinsyntheserate, Zellzyklus- und Stoffwechselstatus, sowie Morphologie und Transkriptom zu bestimmen. Zusätzlich wurden Mikroskopietechniken zur Untersuchung der Trypanosomenmotilität und migration in der Haut optimiert. Nach der Injektion in die künstliche Haut durch Tsetsefliegen wurden die metazyklischen Parasiten schnell aktiviert und etablierten innerhalb eines Tages eine proliferative Population. Dieser Entwicklungsprozess wurde begleitet von (I) einer Reaktivierung der Proteinsynthese, (II) einem Wiedereintritt in den Zellzyklus, (III) einer Veränderung der Morphologie und (IV) einer erhöhten Motilität. Des Weiteren wurden diese Beobachtungen mit potentiell zugrundeliegenden entwicklungsbiologischen Mechanismen in Verbindung gebracht, indem eine Einzelzell RNA-Sequenzierung der Trypanosomen zu fünf verschiedenen Zeitpunkten nach der Infektion durchgeführt wurde. Nach der ersten proliferativen Phase traten die Tsetse-übertragenen Trypanosomen in der Haut in ein reversibles Ruhestadium ein. Diese ruhenden Trypanosomen waren durch eine sehr langsame Zellteilung, einen stark reduzierten Stoffwechsel und ein Transkriptom gekennzeichnet, dass sich deutlich von dem der injizierten metazyklischen Formen und der ersten proliferativen Trypanosomen unterschied. Durch Nachahmung der Migration von der Haut in den Blutkreislauf konnte dieser Phänotyp reaktiviert werden und die Parasiten kehrten in einen aktiven, proliferierenden Zustand zurück. Unter Berücksichtigung, dass vorangegangene Forschungsarbeiten die Haut als anatomisches Reservoir für T. brucei während des Krankheitsverlaufs identifiziert haben, ist anzunehmen, dass das Ruheprogramm eine authentische Facette im Verhalten des Parasiten in einem infizierten Wirt darstellt. Zusammenfassend zeigt diese Arbeit, das primäre menschliche Hautäquivalente eine neue und vielversprechende Möglichkeit bieten, vektorübertragene Parasiten unter naturnahen Bedingungen als Alternative zu Tierversuchen zu untersuchen. Durch die Verwendung des natürlichen Infektionsweges - dem Biss einer infizierten Tsetsefliege -, konnten die frühen Prozesse einer Trypanosomen-Infektion mit noch nie dagewesener Detailtiefe nachvollzogen werden. Des Weiteren könnte der hier erbrachte Nachweis einer ruhenden, hautresidenten Trypanosomen-Population die Persistenz von T. brucei in der Haut von aparasitämischen und asymptomatischen Personen erklären. Dies könnte eine wichtige Rolle bei der Aufrechterhaltung einer Infektion über lange Zeiträume spielen. KW - Trypanosoma brucei KW - Tissue Engineering KW - Trypanosomiasis KW - 3D-Zellkultur KW - Transkriptomanalyse KW - developmental differentiation KW - skin equivalent KW - artificial human skin KW - single-cell RNA sequencing KW - quiescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251147 ER - TY - THES A1 - Schweinlin, Matthias Oliver T1 - Development of advanced human intestinal in vitro models T1 - Entwicklung von erweiterten humanen intestinalen in vitro Modellen N2 - The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine. N2 - Die Hauptfunktion des Dünndarms besteht in der Aufnahme von lebenswichtigen Nährstoffen, Wasser und Vitaminen. Zudem stellt er eine Barriere dar, die uns vor toxischen Fremdstoffen und Pathogenen schützt. Um diese Prozesse besser zu verstehen, ist die Entwicklung neuer in vitro Modellen des Darms von großem Interesse um pharmakologische und pathologische Studien durchzuführen. Abhängig von der wissenschaftlichen Fragestellung können Modelle von unterschiedlicher Komplexität zur Anwendung kommen. In vitro Transwell® Systeme basierend auf einer porösen PET-Membran ermöglichen die Untersuchung von Transportmechanismen über die intestinal Barriere und den Einfluss von Wirkstoffen auf deren Integrität. Dieser künstliche Aufbau ähnelt jedoch nur eingeschränkt der Physiologie des Dünndarms und kann eine zusätzliche physikalische Barriere darstellen. Die Anwendungsmöglichkeiten dieses Modells im Tissue Engineering sind daher begrenzt. Gewebemodelle basierend auf einer dezellularisierten biologischen Matrix hergestellt aus Schweinedarmgewebe haben sich als gute Alternative zum herkömmlichen Transwell® System herausgestellt. Diese Studie zeigt, dass die erhaltenen Komponenten der biologischen Extrazellulärmatrix wie Kollagen und Elastin eine natürliche Umgebung für die Epithelzellen bieten und Zelladhäsion und Wachstum der Zellen fördern. Darmepithelzellen wie Caco-2 Zellen, welche auf einer solchen Matrix kultiviert wurden, bildeten einen konfluenten, dichten Monolayer auf der apikalen Oberfläche aus. Zusätzlich ermöglichte dieser Aufbau die Migration von Myofibroblasten in die Matrix, was die Bildung der intestinalen Barriere unterstützt. In dieser Doktorarbeit wurden zusätzlich dendritische Zellen als wichtige Komponente des adaptiven Immunsystems in das Modell integriert. Dieses Ko-Kultur Modell erwies sich als geeignet um partikuläre Formulierungen zu testen, welche als Transportsysteme für Tumorantigene entwickelt wurden. Es wurden Partikel basierend auf PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA und Chitosan untersucht. Aufnahmestudien ergaben nur geringfügige Unterschiede in den Transportraten zwischen den verschiedenen Partikeln. Es konnte ausserdem gezeigt werden, dass dendritische Zellen die Partikel phagozytieren, nachdem sie die intestinale Barriere überwunden haben. Die Partikel erwiesen sich als effektives Transportsystem um Peptide über die intestinale Barriere zu schleusen und stellen daher ein nützliches Werkzeug für die Entwicklung neuartiger Medikamente dar. Um die komplexe Struktur und Physiologie des Darms noch besser nachzustellen, wurde für den Aufbau des Modells die Caco-2 Zelllinie durch primäre Darmzellen ersetzt. Die Darmkrypten, welche undifferenzierte Stammzellen und Vorläuferzellen enthalten, wurden aus humanen Dünndarmgewebe, dem Jejunum, isoliert und in vitro expandiert. Die Zellen wurden zusammen mit Myofibroblasten auf der dezellularisierten Schweinedarmmatrix, unter statischen und dynamischen Bedingungen, kultiviert. Die primären Darmepithelzellen bildeten einen konfluenten Monolayer, welcher alle differenzierten intestinalen Zelltypen aufwies, gezeigt durch Zellen positiv für Mucin (Becherzellen), Villin (Enterozyten), Chromogranin A (enteroendokrine Zellen) und Lysozym (Paneth-Zellen). Mit Hilfe von Elektronenmikroskopie ließen sich essentielle funktionelle Einheiten eines intakten Epithels darstellen, wie die Mikrovilli und Tight Junctions. Um die Dichtigkeit des Epithels zu überprüfen wurde mit FITC-Dextran die Permeabilität bestimmt und TEER-Messungen durchgeführt. Die Modelle zeigten einen charakteristischen Transport für mehrere Referenzsubstanzen. Mechanische Stimulation durch ein dynamisches Kultivierungssystem hatte einen starken Einfluss auf die Barriereintegrität und Transporteraktivität der Modelle, was sich in einer dichteren Barriere und erhöhten Efflux-Transporteraktivität widerspiegelte. Alles in allem bietet die Verwendung primärer intestinaler Zellen in Kombination mit einer dezellularisierten biologischen Matrix eine neue, vielversprechende Möglichkeit physiologischere in vitro Modelle des Darms aufzubauen. Der Erhalt intestinaler Stammzellen mit ihrem Proliferations- und Differenzierungspotential zusammen mit angepassten Protokollen könnte dabei helfen die Modelle weiter zu verbessern. Insbesondere die dynamische Kultivierung und die Ko-Kultur-Modelle erwiesen sich als entscheidender Schritt auf dem Weg zu physiologischeren Modellen. Solche Gewebemodelle könnten sich als nützlich erweisen, wenn es darum geht die Vorhersagekraft der in vitro Modelle, sowie die in vitro-in vivo Korrelation zu verbessern. Solche Gewebemodelle können ein nützliches Werkzeuge in der präklinischen Forschung für die Testung von pharmazeutischen Wirkstoffen, probiotisch aktiven Organismen, sowie humaner pathogener Keime sein und sogar zum Aufbau personalisierter Modelle für die regenerative Medizin dienen. KW - Tissue Engineering KW - in vitro KW - Dünndarm KW - intestinal in vitro model KW - intestine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142571 ER - TY - THES A1 - Jihyoung, Choi T1 - Development of an Add-On Electrode for Non-Invasive Monitoring in Bioreactor Cultures and Medical Devices T1 - Entwicklung einer Zusatzelektrode für das nicht-invasive Monitoring von Bioreaktorkulturen und Medizinprodukten N2 - Electrochemical impedance spectroscopy (EIS) is a valuable technique analyzing electrochemical behavior of biological systems such as electrical characterization of cells and biomolecules, drug screening, and biomaterials in biomedical field. In EIS, an alternating current (AC) power signal is applied to the biological system, and the impedance of the system is measured over a range of frequencies. In vitro culture models of endothelial or epithelial barrier tissue can be achieved by culturing barrier tissue on scaffolds made with synthetic or biological materials that provide separate compartments (apical and basal sides), allowing for further studies on drug transport. EIS is a great candidate for non-invasive and real-time monitoring of the electrical properties that correlate with barrier integrity during the tissue modeling. Although commercially available transendothelial/transepithelial electrical resistance (TEER) measurement devices are widely used, their use is particularly common in static transwell culture. EIS is considered more suitable than TEER measurement devices in bioreactor cultures that involve dynamic fluid flow to obtain accurate and reliable measurements. Furthermore, while TEER measurement devices can only assess resistance at a single frequency, EIS measurements can capture both resistance and capacitance properties of cells, providing additional information about the cellular barrier's characteristics across various frequencies. Incorporating EIS into a bioreactor system requires the careful optimization of electrode integration within the bioreactor setup and measurement parameters to ensure accurate EIS measurements. Since bioreactors vary in size and design depending on the purpose of the study, most studies have reported using an electrode system specifically designed for a particular bioreactor. The aim of this work was to produce multi-applicable electrodes and established methods for automated non-invasive and real-time monitoring using the EIS technique in bioreactor cultures. Key to the electrode material, titanium nitride (TiN) coating was fabricated on different substrates (materials and shape) using physical vapor deposition (PVD) and housed in a polydimethylsiloxane (PDMS) structure to allow the electrodes to function as independent units. Various electrode designs were evaluated for double-layer capacitance and morphology using EIS and scanning electron microscopy (SEM), respectively. The TiN-coated tube electrode was identified as the optimal choice. Furthermore, EIS measurements were performed to examine the impact of influential parameters related to culture conditions on the TiN-coated electrode system. In order to demonstrate the versatility of the electrodes, these electrodes were then integrated into in different types of perfusion bioreactors for monitoring barrier cells. Blood-brain barrier (BBB) cells were cultured in the newly developed dynamic flow bioreactor, while human umblical vascular endothelial cells (HUVECs) and Caco-2 cells were cultured in the miniature hollow fiber bioreactor (HFBR). As a result, the TiN-coated tube electrode system enabled investigation of BBB barrier integrity in long-term bioreactor culture. While EIS measurement could not detect HUVECs electrical properties in miniature HFBR culture, there was the possibility of measuring the barrier integrity of Caco-2 cells, indicating potential usefulness for evaluating their barrier function. Following the bioreactor cultures, the application of the TiN-coated tube electrode was expanded to hemofiltration, based on the hypothesis that the EIS system may be used to monitor clotting or clogging phenomena in hemofiltration. The findings suggest that the EIS monitoring system can track changes in ion concentration of blood before and after hemofiltration in real-time, which may serve as an indicator of clogging of filter membranes. Overall, our research demonstrates the potential of TiN-coated tube electrodes for sensitive and versatile non-invasive monitoring in bioreactor cultures and medical devices. N2 - Die elektrochemische Impedanzspektroskopie (EIS) ist eine nützliche Methode, um das elektrochemische Verhalten von biologischen Systemen zu analysieren, wie z.B. die elektrische Charakterisierung von Zellen und Biomolekülen, Drug Screening und Biomaterialien im biomedizinischen Bereich. Für die EIS wird ein Wechselstrom an das biologische System angeschlossen und die Impedanz des Systems über einen Frequenzbereich gemessen. In vitro-Modelle von Gewebekulturen epithelialer Barrieren können mithilfe künstlicher oder biologischer Materialien, die über unterschiedliche Kompartimente (apikale und basolaterale Seite) verfügen, hergestellt werden und ermöglichen weitere Untersuchungen zum Transport von Arzneistoffen. Die EIS bietet dabei eine hervorragende Methode für das nicht-invasive Echtzeit-Monitoring der elektrischen Eigenschaften, die mit der Barriere-Integrität während der Gewebeentwicklung korreliert. Obwohl kommerziell erhältliche Geräte zur Messung des transendothelialen/transepithelialen elektrischen Widerstands (TEER) umfangreich verwendet werden, ist ihre Verwendung besonders bei statischen Transwell-Kulturen verbreitet. Durch die EIS kann im Gegensatz zur TEER-Messung für Bioreaktor-Kulturen, die einen dynamischen Medienfluss aufweisen, genauere und verlässliche Messungen erhalten werden. Zudem können EIS-Messungen anders als die TEER-Messung, die nur den Widerstand einer einzelnen Frequenz misst, gleichzeitig den elektrischen Widerstand und die Kapazität von Zellen erfassen und damit zusätzliche Informationen über die zellulären Barriereeigenschaften über verschiedene Frequenzen hinweg liefern. Der EIS-Einbau in ein Bioreaktor-System bedarf einer sorgfältigen Optimierung der Elektrodenintegration in das Bioreaktor-Setup und der Messparameter, um akkurate EIS-Messungen durchführen zu können. Da Bioreaktoren abhängig vom Untersuchungszweck in ihrer Größe und ihrem Design variieren, verwenden die meisten Studien speziell entwickelte Elektrodensysteme für einzelne Bioreaktoren. Das Ziel dieser Arbeit war die Herstellung von vielseitig anwendbaren Elektroden und etablierten Methoden für das automatisierte nicht-invasive Echtzeit-Monitoring von Bioreaktor-Kulturen mithilfe der EIS. Entscheidend für das Elektrodenmaterial war die Titannitrid (TiN)-Beschichtung, die auf verschiedenen Substraten (Materialien und Formen) durch Physical Vapor Deposition (PVD) hergestellt und in einer Polydimethylsiloxan (PDMS)-Struktur untergebracht wurde, damit die Elektroden unabhängig voneinander arbeiten können. Verschiedene Elektrodendesigns wurden auf Doppelschicht-Kapazität mithilfe der EIS bzw. auf die Morphologie mit Rasterelektronenmikroskopie untersucht. Die TiN-beschichteten Elektroden in Röhrenform erwiesen sich als optimal. Weiterhin wurden EIS-Messungen durchgeführt, um die Auswirkung von beeinflussenden Parametern auf die Kulturbedingungen durch das TiN-beschichtete Elektrodensystem zu untersuchen. Um die Vielseitigkeit der Elektroden aufzuzeigen, wurden diese anschließend zum Monitoring von Barriere-bildenden Zellen in unterschiedliche Perfusionsbioreaktoren integriert. Zellen der Blut-Hirn-Schranke (BHS) wurden im neu entwickelten dynamischen Flussreaktor kultiviert, wohingegen humane umbilikale vaskuläre Endothelzellen (HUVEC) und Caco-2-Zellen in Hohlfaserbioreaktoren (HFBR) in Miniaturform kultiviert wurden. Das TiN-beschichtete Röhrenelektrodensystem ermöglichte die Untersuchung der BHS-Barrieren-Integrität in einer Langzeit-Bioreaktorkultur. Während die EIS-Messung in der Miniaturform-HFBR-Kultur keine elektrischen Eigenschaften der HUVECs detektieren konnte, war es möglich, eine Barriere-Integrität der Caco-2-Zellen zu messen, die den potentiellen Nutzen für die Evaluierung deren Barrierefunktion aufzeigt. Nach den Bioreaktorkulturen wurde die Anwendung der TiN-beschichteten Röhrenelektrode auf die Hämofiltration erweitert, auf Grundlage der Hypothese, dass das EIS-System ein Gerinnen oder Verstopfen während der Hämofiltration überwachen könnte. Die Ergebnisse zeigen, dass das EIS-Monitoring-System Veränderungen in der Ionenkonzentration des Blutes vor und nach Hämofiltration in Echtzeit verfolgen kann, welches eventuell als Messgröße für ein Verstopfen der Filtermembranen genutzt werden kann. Insgesamt weisen TiN-beschichtete Röhrenelektroden unseren Forschungen zufolge ein großes Potential für ein empfindliches und vielfältiges nicht-invasives Monitoring von Bioreaktorkulturen und Medizingeräte auf. KW - Monitoring KW - Tissue Engineering KW - Electrode KW - Perfusion Bioreactor KW - Hemofiltration KW - Medizinprodukt KW - Electrochemical Impedance Spectroscopy Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358232 ER - TY - THES A1 - Rossi, Angela Francesca T1 - Development of functionalized electrospun fibers as biomimetic artificial basement membranes T1 - Entwicklung funktionalisierter elektrogesponnener Fasern als biomimetische künstliche Basalmembranen N2 - The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model. N2 - Die Basalmembran trennt das Epithel vom Stroma eines jeden Wandgewebes und ist entscheidend bei der Regulierung des Zellverhaltens, als mechanische Barriere, und als strukturelle Unterstützung. Darüber hinaus spielt sie eine wichtige Rolle sowohl bei der Neubildung von Gewebe und der Homöostase, als auch bei pathologischen Prozessen, wie Diabetes mellitus oder Krebs. Es wird angenommen, dass die Überquerung der Basalmembran eine entscheidende Rolle bei der Tumorinvasion und Metastasierung spielt. Wegen der großen Bedeutung der Membran für eine Vielzahl an Körperfunktionen, ist die Entwicklung von strukturierten und funktionalen künstlichen Basalmembranen für den Aufbau von im Labor entwickeltem funktionalem Gewebe unerlässlich; nichtsdestotrotz stellt die Herstellung aufgrund der komplexen Struktur eine Herausforderung dar. Das elektrostatische Verspinnen ermöglicht es, Fasern im Nano oder Mikrometer Maßstab mit morphologischen Ähnlichkeiten zu den zufällig orientierten Kollagen und elastischen Fasern in der Basalmembran herzustellen. Allerdings fehlt den elektrogesponnenen Fasern häufig die funktionale Ähnlichkeit um die Zellbewegung innerhalb des Gewebes zu regulieren und gewebespezifische Funktionen aufrecht zu erhalten. Daher sind ihre Anwendungsmöglichkeiten als Membranen für das Tissue Engineering begrenzt. In dieser Arbeit wurde das Potential eines Polyestergerüsts beurteilt, das mit einem sechsarmigen sternförmigen Additiv und Zelladhäsion vermittelnden Peptiden modifiziert worden war, als isotrope und bipolare künstliche Basalmembran. Zunächst wurden die Materialeigenschaften der Faservliese untersucht. Dabei konnte gezeigt werden, dass die Vliese biokompatibel, und auch unter dynamischen Bedingungen stabil sind. Zudem korrelierte der Abbau der Vliese mit dem Aufbau von neuem Gewebe. Die Modifizierung der Faseroberfläche mit Peptidsequenzen beeinflusste nicht die Morphologie und die Integrität der Fasern. Die funktionalisierten Gerüste zeigten proteinabweisende Eigenschaften über 12 Monate, was die langfristige Stabilität der quervernetzten Stern Polymer Oberflächen bestätigte. Zellkulturversuche mit primären Fibroblasten und einer humanen Keratinozyten Zelllinie (HaCaT) ergaben, dass die Zelladhäsion und das Wachstum stark von den Peptidsequenzen und deren Kombinationen abhängig sind. HaCaT Zellen wuchsen zur Konfluenz auf Vliesen, die mit einer Kombination aus Laminin/Kollagen Typ IV stammenden Peptidsequenzen und mit einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Peptidsequenzen funktionalisiert worden waren. Fibroblasten dagegen adhärierten und proliferierten stark auf Vliesen, die mit Fibronektin, und einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Bindungssequenzen modifiziert worden waren. Die Adhäsion und das Wachstum von Fibroblasten und HaCaT Zellen waren dagegen auf mit Laminin sowie mit Kollagen Typ IV funktionalisierten Membranen deutlich geringer. Fibroblasten und HaCaT Zellen adhärierten kaum auf Vliesen ohne Peptidsequenzen. Ko Kultur Versuche an der Luft Flüssigkeits Grenzfläche mit Fibroblasten und HaCaT Zellen bestätigten, dass es möglich ist, basierend auf funktionalisierten Fasern, biokompatible, biofunktionale und biomimetische isotrope und anisotrope Basalmembranen aufzubauen. HaCaT Zellen wuchsen mehrschichtig, differenzierten und polarisierten, dies wurde belegt durch den Nachweis von Zytokeratin 14 in den basalen und Zytokeratin 10 in den oberen Schichten des Epithels. Die Vimentin Färbung zeigte, dass die Fibroblasten in das Vlies einwandern. Durch spezifische Färbung von Laminin V, Kollagen I, III, IV und Fibronektin konnte gezeigt werden, dass die Zellen beginnen das Vlies umzubauen und extrazelluläre Matrix Proteine zu produzieren. Die Kultivierung von primären Keratinozyten, sowohl aus der humanen Haut als auch aus der humanen Mundschleimhaut, erwies sich als komplex auf elektrogesponnenen Fasern. Die Zellen adhärierten auf der Membran, bildeten aber weder mit noch ohne Fibroblasten ein mehrschichtiges, verhorntes Epithel aus. Die Anpassung der Faserzusammensetzung und der Fixierungsmethoden begünstigte die Entwicklung des Epithels nicht. Weiterführende experimentelle Studien belegten, dass der Porendurchmesser des Vlieses eine wichtige Rolle für die Entwicklung des Epithels spielt und dass primäre Keratinozyten stärker auf pH Veränderungen reagieren als HaCaT Zellen. Da die funktionalisierten Fasern sich nicht als geeignete Struktur für primäre Keratinozyten erwiesen, wurden Polycarbonat Membranen anstelle von elektrogesponnenen Strukturen als Träger für den Aufbau von Mundschleimhautmodellen verwendet. Die Modelle zeigten wichtige Eigenschaften der nativen Mundschleimhaut. Es bildete sich ein mehrschichtiges, polarisiertes Epithel aus basalen Zellen, einer Stachelzellschicht, Körnerzellschicht und Hornschicht. Die Modelle entwickelten eine physikalische Barriere und exprimierten Zellmarker ähnlich der nativen Mundschleimhaut. Die Ergebnisse des ET 50 Assays und der Irritationsstudie legten dar, dass die Modelle reproduzierbar hergestellt werden können. Das elektrostatische Spinnen ermöglicht es, fibrilläre Strukturen, die der Basalmembran sehr ähnlich sind, herzustellen. Die Funktionalisierung der Fasern mit Zelladhäsionssignalen stellt eine vielversprechende Möglichkeit dar, diese Fasern so zu modifizieren, dass sie als Basalmembranen für verschiedene Anwendungen des Tissue Engineerings geeignet sind. Die biomimetischen Membranen können mit Bindungssequenzen von sehr unterschiedlichen Proteinen modifiziert werden. Darüber hinaus können sie genutzt werden, den Einfluss von isotropen und anisotropen Basalmembranen auf die Gewebebildung und den Matrixumbau systematisch in Bezug auf die biochemische Zusammensetzung und den Einfluss sowie die Bedeutung von Mono und Ko Kultur zu untersuchen. Die Mundschleimhautmodelle können für toxikologische Untersuchungen, Permeationsstudien, sowie als Krankheitsmodelle eingesetzt werden. Außerdem können sie verwendet werden, um das Irritationspotenzial von Mundhygieneprodukten und Biomaterialien einzuschätzen. KW - Tissue Engineering KW - Basalmembran KW - Skin KW - Basement membrane KW - Bipolar Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137618 N1 - die Online-Version weicht insofern von der gedruckten Fassung ab als im Appendix die Arbeitsanweisungen aus dem Labor fehlen (diese dürfen nicht im WWW veröffentllicht sein) ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Schmidt [geb. Schmid], Freia Florina T1 - Ein dreidimensionales kutanes Melanommodell für den Einsatz in der präklinischen Testung T1 - A three-dimensional cutaneous melanoma model for use in preclinical testing N2 - Das maligne Melanom nimmt als Tumorerkrankung mit hoher Metastasierungsrate und steigenden Inzidenzraten bei höchster Mortalität aller Hauttumoren eine zunehmende Bedeutung in der modernen Onkologie ein. Frühzeitige Diagnosemöglichkeiten und moderne Behandlungen konnten das Überleben der Patienten bereits erheblich verbessern. Jedoch besteht nach wie vor Bedarf an geeigneten Modellen, um die Melanomprogression vollständig zu verstehen und neue wirksame Therapien zu entwickeln. Hierfür werden häufig Tiermodelle verwendet, diese spiegeln jedoch nicht die menschliche Mikroumgebung wider. Zweidimensionalen Zellkulturen fehlen dagegen entscheidende Elemente der Tumormikroumgebung. Daher wurde in dieser Arbeit ein dreidimensionales epidermales Tumormodell des malignen Melanoms, welches aus primären humanen Keratinozyten und verschiedenen Melanomzelllinien besteht, entwickelt. Die eingesetzten Melanomzelllinien variieren in ihren Treibermutationen, wodurch das Modell in der Lage ist, Wirkstoffe zu untersuchen, die spezifisch auf diese Mutationen wirken. Mit Techniken des Tissue Engineerings konnte ein dreidimensionales Hautmodell aufgebaut werden, das alle charakteristischen Schichten der Epidermis aufweist und im Bereich des stratum basale Melanomcluster ausbildet. Diese reichen je nach Größe und Ausdehnung bis in suprabasale Epidermisschichten hinein. Die Tumor-Histopathologie, der Tumorstoffwechsel sowie tumorassoziierte Proteinsekretionen ließen sich im in vitro Modell nachweisen. Darüber hinaus konnte ein Protokoll entwickelt werden, mit dem einzelne Zellen aus den Modellen reisoliert werden können. Dies ermöglichte es, den Proliferationszustand innerhalb des jeweiligen Modells zu charakterisieren und die Wirkung von Antitumortherapien gezielt zu bewerten. Die Anwendbarkeit als Testsystem im Bereich der Tumortherapeutika wurde mit dem in der Klinik häufig verwendeten v-raf-Maus-Sarkom-Virus-Onkogen-Homolog B (BRAF)-Inhibitor Vemurafenib demonstriert. Der selektive BRAF-Inhibitor reduzierte erfolgreich das Tumorwachstum in den Modellen mit BRAF-mutierten Melanomzellen, was durch eine Verringerung der metabolischen Aktivität, der proliferierenden Zellen und des Glukoseverbrauchs gezeigt wurde. Für die Implementierung des Modells in die präklinische Therapieentwicklung wurde B-B-Dimethylacrylshikonin, ein vielversprechender Wirkstoffkandidat, welcher einen Zellzyklusarrest mit anschließender Apoptose bewirkt, im Modell getestet. Bei einer Anwendung der Modelle im Bereich der Testung topischer Behandlungen ist eine Barrierefunktion der Modelle notwendig, die der in vivo Situation nahe kommt. Die Barriereeigenschaften der Hautäquivalente wurden durch die Melanomzellen nachweislich nicht beeinflusst, sind aber im Vergleich zur in vivo Situation noch unzureichend. Eine signifikante Steigerung der Hautbarriere konnte durch die Bereitstellung von Lipiden und die Anregung hauteigener Regenerationsprozesse erreicht werden. Über den Nachweis des transepidermalen Wasserverlusts konnte eine Messmethode zur nicht-invasiven Bestimmung der Hautbarriere etabliert und über den Vergleich zur Impedanzspektroskopie validiert werden. Hierbei gelang es, erstmals die Korrelation der Hautmodelle zur in vivo Situation über ein solches Verfahren zu zeigen. Das entwickelte epidermale Modell konnte durch die Integration eines dermalen Anteils und einer Endothelzellschicht noch weiter an die komplexe Struktur und Physiologie der Haut angepasst werden um Untersuchungen, die mit der Metastierung und Invasion zusammenhängen, zu ermöglichen. Die artifizielle Dermis basiert auf einem Kollagen-Hydrogel mit primären Fibroblasten. Eine dezellularisierte Schweinedarmmatrix ließ sich zur Erweiterung des Modells um eine Endothelzellschicht nutzen. Dabei wanderten die primären Fibroblasten apikal in die natürliche Schweindarmmatrix ein, während die Endothelzellen basolateral eine geschlossene Schicht bildeten. Die in dieser Arbeit entwickelten Gewebemodelle sind in der Lage, die Vorhersagekraft der in vitro Modelle und die in vitro - in vivo Korrelation zu verbessern. Durch die Kombination des Melanommodells mit einer darauf abgestimmten Analytik wurde ein neuartiges Werkzeug für die präklinische Forschung zur Testung von pharmazeutischen Wirkstoffen geschaffen. N2 - Malignant melanoma, as a tumor disease with a high metastasis rate and rising incidence rates with the highest mortality of all skin tumors, is assuming increasing importance in modern oncology. Early diagnosis and modern treatments significantly improved patient survival. There is still an unmet need for appropriate models to fully understand melanoma progression and to develop new effective therapies. Animal models are widely used but do not reflect the human microenvironment, while two-dimensional cell cultures lack crucial elements of this tumor microenvironment. Therefore, a three-dimensional epidermal tumor model of malignant melanoma consisting of primary human keratinocytes and various melanoma cell lines was developed in this work. The melanoma cell lines vary in their driver mutations, enabling the model to investigate compounds specifically designed to target one mutation. Tissue engineering techniques were used to generate a three-dimensional skin model that shows all characteristic layers of the epidermis and forms melanoma clusters in the stratum basale. Depending on size and extension, these extend into suprabasal epidermal layers. Tumor histopathology, tumor metabolism, and tumor-associated protein secretions could be demonstrated in the in vitro model. In addition, a protocol could be developed to reisolate single cells from the models. This made it possible to characterize the proliferation state within the respective model and to specifically evaluate the effect of antitumor therapies. Applicability as a test system in the field of tumor therapeutics was demonstrated with the v-raf mouse sarcoma virus oncogene homolog B (BRAF) inhibitor commonly used in the clinic. This selective BRAF inhibitor successfully reduced tumor growth in models with BRAF-mutated melanoma cells, indicated by a reduction in metabolic activity, proliferating cells, and glucose consumption. For the implementation of the model in preclinical development, B-B-dimethylacrylshikonin, a promising drug candidate, which induces cell cycle arrest followed by apoptosis, was tested in the model. An application of the models in the field of testing topical treatments requires a barrier function of the models close to the in vivo situation. The barrier properties of the skin equivalents were demonstrably not influenced by the melanoma cells, but are still insufficient compared to the in vivo situation. A significant increase in the skin barrier could be achieved by providing lipids and stimulating the skin's own regeneration processes. A measurement method for the non-invasive determination of the skin barrier was established by detection of transepidermal water loss and validated by comparison with impedance spectroscopy. For the first time, the correlation of the skin models to the in vivo situation was demonstrated by such a method. The developed epidermal model could be further adapted to the complex structure and physiology of the skin by integrating a dermal portion and an endothelial cell layer to allow studies related to metastasis and invasion. The artificial dermis is based on a collagen hydrogel with primary fibroblasts. A decellularized porcine intestinal matrix could be used to extend the model with an endothelial cell layer. Here, the primary fibroblasts migrated apically into the natural porcine intestinal matrix, while the endothelial cells formed a closed layer basolaterally. The tissue models developed in this work are able to improve the predictive power of the in vitro models and the in vitro - in vivo correlation. By combining the melanoma model with matched analytics, a novel tool for preclinical research for testing of pharmaceutical agents was established. KW - Tissue Engineering KW - Melanom KW - Hautmodell KW - Alternative zum Tierversuch Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329255 ER -