TY - THES A1 - Konieczka, Szymon Zbigniew T1 - Untersuchungen zu neuen polyhalogenierten Aminocarba-\(closo\)-dodecaboraten T1 - Investigations of new polyhalogenated aminocarba-\(closo\)-dodecaborates N2 - Die Arbeit umfasst zum einen Untersuchungen zu hochhalogenierten 1-Aminocarba-closo-dodecaboraten, zum anderen Untersuchungen zu hochfluorierten Aminocarba-closo-dodecaboraten mit einer an ein Boratom gebundenen Amino-Funktion. Außerdem wurden im diesem Zuge closo-Undecaborat-Cluster untersucht, da diese als interessante Ausgangsverbindungen für funktionalisierte {CB11}-Derivate eingesetzt werden können. N2 - In this work a number of nido- and closo-undecaborates are presented that can be used as potential precursors for Aufbau reactions of {closo-1-CB11} derivatives. One part deals with derivatives having one or more cyano groups bound to boron, such as salts of [7-NC-nido-B11H12]2–,[58] the synthesis of which was optimmized in this work. ... KW - carborane KW - borate KW - Halogenierte {CB11}-Cluster Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122548 ER - TY - THES A1 - Weirauch, Katja T1 - Neue Herausforderungen an die professionellen Kompetenzen von Chemie-Lehrkräften durch die Implementation von Seminarfächern T1 - New Challenges to the Professional Competencies of Chemistry teachers caused by the Implementation of Science Seminar Courses N2 - Neuerungen in Bildungssystemen können nur erfolgreich sein, wenn sie planmäßig implementiert werden. Maßgeblich ist hierfür, dass die Lehrkräfte über die entsprechenden professionellen Kompetenzen verfügen. Die vorliegende Arbeit untersucht diesen Zusammenhang am Beispiel der Implementation von Seminarfächern im bayerischem Gymnasium. Es wird identifiziert, welche neuen Herausforderungen Chemie-Lehrkräfte mit Einführung der Wissenschaftspropädeutischen (W-) und Projekt-Seminare (P-) bewältigen müssen. Aus Interviews mit Lehrkräften wurden per qualitativer Inhaltsanalyse nach Mayring die Anforderungen an das Professionswissen der Lehrkräfte identifiziert. Für die W-Seminare konnte dargestellt werden, dass eine erfolgreiche Wissenschaftspropädeutik häufig an fehlendem Fachwissen der Lehrkräfte zu Nature of Science Inquiry (NOSI) scheiterte. Analog fehlte den Lehrkräften in den P-Seminaren Fachwissen zu Projektmanagement, sodass sie dies weder umsetzten, noch erfolgreich vermitteln konnten. Um die Lehrkräfte bei der Bewältigung der Herausforderungen zu unterstützen, wurden vielfältige Möglichkeiten der Kooperation von Seminarfächern mit der Universität als externem Partner erprobt. Methodenwerkzeuge für eine systematische Wissenschaftspropädeutik wurden entwickelt und im Rahmen von Lehrerfortbildungen weitergegeben. Weiterhin wurde ein Lehr-Lern-Labor „Analyseverfahren der Chemie“ für W-Seminare konzipiert und wiederholt erfolgreich durchgeführt. Damit wurden Erkenntnisse der empirischen Studie in nachweislich praxistaugliche Konzepte umgesetzt, die die erfolgreiche Implementation der Seminarfächer unterstützen können. N2 - Implementations of pedagogical innovations in school systems can only be successful if teachers are qualified for it – i. e. possess adequate pedagogical competencies to realize the new concept. In regard of this perspective, this thesis examines the implementation of Science- and Project-Seminar Courses (W- and P-Seminar) in Bavarian Gymnasium. The aim was to identify, which new challenges to their professional competencies teachers had to master when realizing the new teaching format. For that, interviews with teachers were analyzed according to Mayrings content analysis. It could be shown that Chemistry teachers generally could fulfill most of the tasks imposed on them. However, they lacked content knowledge about Nature of Science Inquiry (NOSI) and about project management. Consequently, they failed in teaching these contents successfully so that major aims of the Seminar Courses were not reached. These findings were directly transferred into concepts that provably may improve the implementation of W- and P-Seminars. Several new teaching tools were developed and repeatedly communicated in advanced training courses. Furthermore, lab-courses for students about chemical analytical methods were designed and extensively tested. Additionally, many other possibilities how Universities may cooperate with Science- and Project-Seminar-Courses are being described in this thesis. KW - Seminarfach KW - Wissenschaftspropädeutik KW - Implementation KW - Chemieunterricht KW - Organisationswissen KW - Beratungswissen KW - Fachspezifität KW - Wissenschaftspropädeutik KW - professionelle Kompetenz KW - Lehr-Lern-Labor KW - W-Seminar KW - P-Seminar KW - Bayerische Seminarfächer KW - Professionswissen KW - Lehrlernlabor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151330 ER - TY - THES A1 - Waag-Hiersch, Luisa T1 - „iClick“-Reaktionen von Ru- und Rh-Azid-Komplexen mit elektronenarmen Alkinen: Regioselektivität, Stabilität und Kinetik T1 - "iClick"-reactions of Ru and Rh azide complexes with electron-deficient alkynes: regioselectivity, stability and kinetic studies N2 - Die regioselektive Funktionalisierung von Bio(makro)molekülen erfordert Reaktionen, die mit einem biologischen System weder interagieren noch interferieren. Bestimmte funktionelle Gruppen, wie Azide oder Alkine, sind unter physiologischen Bedingungen inert, kommen nicht in der Natur vor, lassen sich selektiv miteinander verknüpfen und sind nicht-toxisch gegenüber Zellen und Organismen. Für die Einführung metallbasierter Funktionalitäten in solche Zielstrukturen stellen Click-Reaktionen daher einen schnellen Zugang dar, wobei Reaktionen, die ohne Zusatz von Katalysator und bei Raumtemperatur ablaufen von besonderem Interesse sind. Das Ziel der vorliegenden Arbeit war es daher die „iClick“-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen Formel [Ru(N3)(aren)(N-N)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2‘-Bipyridin-Coliganden (R = OCH3, H, COOCH3) gegenüber elektronenarmen Alkinen zu untersuchen. Röntgenstrukturanalysen der resultierenden Triazolat-Komplexe sollten den Koordinationsmodus bestätigten, da die Produkte der Click-Reaktionen prinzipiell als zwei verschiedene Regioisomere auftreten können. Die [Rh(Cp*)(N3)(bpyR,R)]CF3SO3-Komplexe mit 2,2‘-Bipyridin (bpy), dem elektronenziehenden Ligand 4,4‘-Bis(methoxycarbonyl)-2,2′-bipyridin (bpyCOOCH3,COOCH3) sowie dem elektronenschiebenden Ligand 4,4’-Dimethoxy-2,2‘-bipyridin (bpyOCH3,OCH3) wurden aus den entsprechenden Rhodium-Chlorido-Komplexen durch Fällung des Halogenids mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid hergestellt. In Lösung waren diese Verbindungen jedoch nur begrenzt stabil, wobei der Komplex mit bpyOCH3,OCH3 am wenigsten empfindlich war, während [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 aufgrund der sehr schnellen Zersetzung nicht isoliert werden konnte. Die „iClick“-Reaktion der Rhodium-Azid-Komplexe mit 4,4,4-Trifluorobut-2-insäureethylester ergab dann aber die stabilen Triazolat-Komplexe [Rh(Cp*)(triazolatCF3,COOEt)(bpyR,R)]CF3SO3 in sehr guter Ausbeute. Die Ruthenium-Azid-Komplexe [Ru(N3)(N-N)(p­cym)]PF6 mit N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, Bipyrimidin (bpym) sowie Dipyrido[3,2­a:2',3'­c]phenazin (dppz) wurden ausgehend von den jeweiligen Ruthenium-Chlorido-Komplexen durch Fällung des Halogenid-Liganden mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid in guter bis moderater Ausbeute hergestellt. Um den Einfluss des Aren-Liganden zu untersuchen wurde außerdem der entsprechende Hexamethylbenzol-Komplex [Ru(N3)(bpy)(hmb)]CF3SO3 in moderater Ausbeute hergestellt. Alle [Ru(N3)(aren)(N-N)]X-Komplexe mit X = PF6- oder CF3SO3- wurden mittels 1H, 13C NMR- und IR-Spektroskopie, CHN-Analyse sowie ESI-Massenspektrometrie charakterisiert. Die „iClick“-Reaktion dieser Komplexe erfolgte mit 4,4,4-Trifluorobut-2-insäureethylester und teilweise auch mit Dimethylacetylendicaboxylat (DMAD) in sehr guter bis guter Ausbeute. Außerdem konnten für die Röntgenstrukturanalyse taugliche Einkristalle von [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 und [Ru(triazolatCF3,COOEt)(bpyCOOCH3,COOCH3)(p­cym)]PF6 erhalten werden, die die N2-Koordination des Triazolat-Liganden an das Zentralatom bestätigten. Um diese als metallbasierte Marker einsetzen zu können, müssen die resultierenden Triazolat-Komplexe bei biologisch relevanten pH-Werten und gegenüber Ligandenaustausch, zum Beispiel mit den Aminosäureseitenketten von Proteinen, stabil sein. Durch HPLC-Untersuchungen an [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 wurde gezeigt, dass dieser Komplex in wässriger Lösung über einen pH-Bereich von 1 bis 8 bei Raumtemperatur mindestens 24 h stabil ist. Außerdem konnte eine weitgehende Stabilität gegenüber Ligandenaustausch mit den Seitenketten der Aminosäuren L­Cystein, L-Histidin, L­Methionin und L-Glutaminsäure bei 37 °C über mindestens 72 h festgestellt werden. Insbesondere die Geschwindigkeit der „iClick“-Reaktion ist in einem biologischen Kontext von Bedeutung, da die Konjugationsreaktionen schneller ablaufen müssen als interessierende biologische Prozesse. Mittels HPLC und IR-Spektroskopie wurde für die „iClick“-Reaktion der Rutheniumazid-Komplexe [Ru(N3)(bpyR,R)(p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 mit einem Überschuss an 4,4,4-Trifluorobut-2-insäureethylester Geschwindigkeitskonstanten pseudoerster Ordnung im Bereich von 1 ­ 3*10-3 s-1 bestimmt. Außerdem war es mittels IR-Spektroskopie in Lösung möglich die Geschwindigkeits-konstante pseudoerster Ordnung für die „iClick“-Reaktion der Rhodiumazid-Verbindungen [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 mit R = OCH3, H oder COOCH3 und 4,4,4-Trifluorobut-2-insäureethylester zu 2 ­ 4*10-3 s-1 zu ermitteln. Insgesamt zeigte sich, dass Komplexe mit elektronenreichen Coliganden schneller mit 4,4,4-Trifluorobut-2-insäureethylester reagieren als solche mit elektronenärmeren Liganden. Auch war die Geschwindigkeitskonstante für die Reaktion der Rhodium-Komplexe höher als für die Rutheniumverbindungen. Die Geschwindigkeitskonstanten zweiter Ordnung wurden aus der 19F NMR-spektroskopischen Untersuchung der Reaktion von 4,4,4-Trifluorobut-2-insäureethylester und [Ru(N3)(bpyR,R) (p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 bei 20 °C bestimmt. Bei annähernd gleichem Verhältnis von Alkin und Rutheniumazid-Komplexen wurden Geschwindigkeitskonstanten im Bereich von 1 - 2*10-2 L mol-1 s-1 erhalten. Diese sind größer als die der Staudinger-Ligation, aber kleiner als die der spannungsinduzierten Azid-Alkin Cycloaddition. Prinzipiell sollte damit also eine biologische Anwendung möglich sein. Außerdem wurde die Aktivierungsenergie der Reaktion von [Ru(N3)(bpy)(p­cym)]PF6 mit 4,4,4-Trifluorobut-2-insäureethylester aus der Untersuchung der Temperaturabhängigkeit im Bereich von -20 °C bis +20 °C mit VT-NMR zu 46.1 kJ mol-1 bestimmt. In den 19F NMR-Spektren des Reaktionsgemisches zeigte sich bei -20 °C neben dem Signal des N2-koordinierten Triazolats außerdem ein weiteres, das dem N1-Isomer zuzuordnen ist, welches bei Erwärmen jedoch wieder verschwand. In einer DFT-Rechnung wurde die Geometrie von [Ru(N3)(bpy)(hmb)]CF3SO3 optimiert. Dabei zeigte sich, dass nur etwa 25 – 30% aller Trajektorien angreifender Alkinmolekülen einen Zugang zum Azid ermöglichen, sodass die Reaktionsgeschwindigkeit um etwa einen Faktor vier niedriger liegen sollte als für nicht oder nur wenig abgeschirmte Organoazid-Verbindungen. Die „iClick“-Reaktion der hier untersuchten Metall-Azid-Komplexe mit elektronenarmen Alkinen zeigt also bereits jetzt Reaktionsgeschwindigkeiten vergleichbar etablierter Biokonjugationsreaktionen. In Zukunft sollte daher das Potential anderer Metall-Azid-Bausteine untersucht und auch das Alkin variiert werden. N2 - The regioselective functionalization of bio(macro)molecules requires reactions which do not interact or interfere with biological systems. Certain functional groups such as azides or alkynes are inert under physiological conditions, do not occur naturally, can selectively react with each other and are non-toxic to cells and organisms. To introduce metal-based functionalities in biological target structures, click reactions enable a fast access. In particular those which take place without catalyst and at room temperature are of special interest. Thus, the aim of the present thesis was to investigate the “iClick” reaction of ruthenium azide complexes [Ru(N3)(arene)(N-N)]+ with bidentate nitrogen ligands and also that of rhodium azide complexes [Rh(Cp*)(N3)(bpyR,R)]+ with different 4,4’-substituted 2,2‘-bipyridin coligands with R = OCH3, H or COOCH3 towards electron-deficient alkynes. X-ray studies on ruthenium triazolate complexes were to establish the coordination mode, since the triazolate productes derived from click chemistry can result in two different regioisomers. The [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 complexes with 2,2-bipyridine (bpy), electron-withdrawing ligand 4,4‘-bis(methoxycarbonyl)-2,2′-bipyridine (bpyCOOCH3,COOCH3) and also electron-donating ligand 4,4’-dimethoxy-2,2‘-bipyridine (bpyOCH3,OCH3) were synthesised from the corresponding rhodium chloride complexes by abstraction of the halide using silver trifluoromethanesulfonate followed by introduction of the azide ligand with sodium azide. However, these complexes have only limited stability in solution. The compound with bipyOCH3,OCH3 is the most stable, while [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 could not be isolated due to the fast decomposion. Still, the “iClick” reaction of rhodium azide complexes with 4,4,4-trifluoro-2-butynoic acid ethyl ester allowed isolation of the triazolate complexes [Rh(Cp*)(triazolateCF3,COOEt)(bpyR,R)]CF3SO3 in very good yield. The corresponding ruthenium azide complexes [Ru(N3)(N-N)(p¬cym)]PF6 with N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, bipyrimidine (bpym) and dipyrido[3,2¬a:2',3'-c]phenazine (dppz) were also synthesised in a moderate to good yield from the corresponding ruthenium chloride complexes by halide abstraction using silver trifluoromethanesulfonate followed by introduction of azide ligand with sodium azide. To investigate the effect of the arene, the hexamethylbenzene complex [Ru(N3)(bipy)(hmb)]CF3SO3 was also synthesised in a moderate yield. All [Ru(N3)(arene)(N¬N)]X complexes with X = PF6- or CF3SO3- were characterised by 1H, 13C NMR and IR spectroscopy, CHN analysis and ESI mass spectrometry. The “iClick” reaction of these complexes with 4,4,4-trifluoro-2-butynoic acid ethyl ester and in some cases with dimethyl acetylenedicarboxylate (DMAD) proceeded in good to excellent yield. Furthermore, single crystals suitable for X-ray structure analysis were obtained for the triazolate complexes [Ru(triazolateCF3,COOEt)(bpy)(hmb)]CF3SO3 and [Ru(triazolateCF3,COOEt)(bpyCOOCH3,COOCH3)(p¬cym)]PF6 and confirmed the N2 coordination of the triazolate to the metal center. To use these triazolate complexes as metal-based markers, they have to be stable at biologically relevant pH and towards ligand exchange, for example with amino acid side chains in proteins. Thus, HPLC studies on [Ru(triazolateCF3,COOEt)(bpy)(hmb)]CF3SO3 demonstrated the stability in a pH range of 1 to 8 for at least 24 h at room temperature. In addition, the stability towards ligand exchange with functional groups of amino acid side chains in L-cysteine, L-histidine, L-methionine and L-glutamic acid was studied over 72 h at 37 °C and essentially no ligand exchange was observed. The rate constant of the “iClick” reaction is important for its use in bioconjugation since the labeling reactions have to be faster than the biological processes of interests. Pseudo-first order rate constants were determined in the range of 1 ¬ 3×10-3 s-1 for the “iClick” reaction of [Ru(N3)(bpyR,R) (p¬cym)]PF6 with R = OCH3, H or COOCH3 and also [Ru(N3)(bpy)(hmb)]CF3SO3 with an excess of 4,4,4-trifluoro-2-butynoic acid ethyl ester by HPLC and IR spectroscopy. Using solution IR spectroscopy, pseudo-first order rate constants for the “iClick” reaction of [Rh(Cp*)(N3)(bpyR,R)]CF3SO3, R = OCH3, H or COOCH3 and an excess of 4,4,4-trifluoro-2-butynoic acid ethyl ester were also determined to be 2 ¬ 4×10-3 s-1. These experiments show that complexes with electron-rich coligands react faster than those with electron-deficient ligands. Furthermore, rate constants were higher for the rhodium versus ruthenium azide complexes. Second order rate constants were determined by 19F NMR spectroscopy investigation of the reaction of 4,4,4-trifluoro-2-butynoic acid ethyl ester with [Ru(N3)(bpyR,R)(p-cym)]PF6 with R = OCH3, H or COOCH3 as well as [Ru(N3)(bpy)(hmb)]CF3SO3 at 20 °C. The alkyne was used at approximately the same molar amount as the ruthenium azide complexes and rate constants were obtained in the range of 1 - 2×10-2 L mol-1 s-1. These are higher than those reported for the Staudinger ligation but lower than those of the strain-promoted alkyne-azide cycloaddition. Thus, the method appears to be suitable for biolabeling applications. Furthermore, the activation energy of the reaction of [Ru(N3)(bpy)(p-cym)]PF6 with 4,4,4-trifluoro-2-butynoic acid ethyl ester was determined as 46.1 kJ mol-1 by variable-temperature NMR studies at -20 to +20 °C. 19F NMR spectra recordet at -20 °C showed one additional signal for the N1-coordinated triazolate in addition to the N2-coordinated one which however disappeared upon warming to room temperature. Using DFT methods, the geometry of [Ru(N3)(bpy)(hmb)]CF3SO3 was optimized und showed that only about 25 – 30% of all possible trajectories enable access to the azide group for attacking alkyne molecules. Therefore, the reaction is expected to be slower than that of less-shielded organoazide compounds by a factor of four. Thus, the “iClick” reaction of the metal azide complexes evaluated with electron-deficient alkynes shows rate constants comparable to established bioconjugation reactions. In future work, the potential of additional metal azide building blocks should be investigated, and the influence of other alkyne coupling partners studied. KW - Ruthenium KW - Rhodium KW - Azide KW - Alkine KW - iClick Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146286 ER - TY - THES A1 - Nitsch [geb. Lube], Jörn S. T1 - Struktur, Reaktivität und Photophysik von Kupfer(I)-Komplexen T1 - Structure, Reactivity and Photophysics of Copper(I) complexes N2 - In der Arbeit wurden die Strukturen, Reaktivitäten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zunächst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festkörper auf. Es zeigte sich für diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zustände an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden mögliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zuständen diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabhängigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festkörpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC Übergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einführung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalität beinhalten. Es konnte gezeigt werden, dass diese Verknüpfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70% führen kann, wenn zusätzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abstände um den Faktor zwei erhöhen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden für die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalität tragen. Für eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner können die Substituenten am NHC ebenfalls die Strukturen im Festkörper beeinflussen. So kann für 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalität in das Kupfer- bzw. Chloridatom (LMXCT-Übergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zusätzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abstände in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einführung von Methylen, Ethylen und Propylenbrückeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abständen auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht gänzlich aufgeklärt ist. Möglich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erklären könnten. Die hochenergetische Bande kann für alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zuständen zugeordnet werden, während niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zustände populiert werden können, bzw. wenn dispersive Cu-Cu-Wechselwirkungen möglich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivität von d10 [M(NHC)n]-Komplexen beeinflussen können. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer Lösung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] für alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere höhere Koordination stark vom Metall bzw. von der Deformationsenergie abhängen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molekülorbitalbetrachtung die Ursache für die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgeklärt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsgerüsts zurückzuführen, während niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-Rückbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So können trotz hoher berechneter Werte für die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilität aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschränkt sein, und sind deswegen für Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden. N2 - In this work, the structures, reactivities and photophysical properties of different copper(I) complexes were investigated. In the first part, copper(I) halide and pseudohalide complexes of [CuX] and [Cu2I2] with phenanthroline and its derivatives were structurally and photophysically characterized in detail. These complexes display a broad XMLCT absorption between 450-600 nm and an emission band between ca. 550-850 nm in the solid state. Despite their structural simplicity, these complexes show a complicated and quite diverse photophysical behavior. Therefore not only structural parameters, such as e.g., π-interactions were investigated, but also the influence of the halogen- and pseudohalogen atoms on the photophysics were studied. It has been shown that at least two excited states are involved in the emission of [CuI(dtbphen)] (16) and [CuBr(dtbphen)] (17) in the solid state. Possible mechanisms, such as TADF were discussed as well as the contribution of two triplet states. Measurements in a glassy matrix (2-Methyltetrahydrofuran) for 17 and temperature dependent measurements for [Cu2(µ2-I)2(dmphen)2] (21) show in contrast no evidence for TADF. In summary, the photophysics of these complexes are influenced by molecular parameters, as well as solid state effects, which makes the assignment to one photophysical mechanism difficult. Two hitherto unprecedented cubane-like structures [L4Cu4X4] (X = Br (32) and Cl (33)) with a phosphinine ligand were photophysically investigated in another study. In contrast to other heavy metal complexes bearing a phosphinine ligand, such as [Ir(C^P)3] (with C^P = cyclometalated 2,4,6-triphenylphosphinine), these Cu(I) compounds show even at room temperature an intense phosphorescence. According to DFT calculations, the LE emission band corresponds to a 3XMLCT state. No cluster centered 3CC transition, which is normally observed for structurally analogous Cu(I) cuban complexes with pyridine as the ligand, is found for 32 and 33. A weak HE emission band in the emission spectrum of 32 can most probably be assigned to residual fluorescence of the phosphinine ligand 31. Further ligand modification was achieved with the introduction of NHCs as strong σ-donors. The photophysics of [Cu2Cl2(NHC^Pic)2]-systems (with NHC^Pic = N-Aryl-N'-(2-picolyl)-imidazoline-2-yliden), which bear hybrid ligands with an NHC and picolyl moiety, were investigated. It was shown that the combination of a strong σ-donor and π*-acceptor in a bridging ligand can lead to a high quantum yield of up to 70% in the solid state, if in addition dispersive Cu-Cu- interactions exist. Remarkably the efficiency of the emission is two times higher if these interactions are present in comparison to structures that have no short Cu-Cu-distances. The para-substituent of the picolyl arm determines whether a dinuclear structure is formed, as has been found for the complexes [Cu2Cl2(IMesPicR)2] (41-44) with donor substituents, or whether a mononuclear species [CuCl(IMesPicR)] is isolated, as in the case of the nitro compound 45. Furthermore, the substituent of the NHC also has an influence on the nuclearity of the complexes, leading to the polymeric arrangement of [CuCl(IDippPic)]∞ (46) in its crystal structure. The emission in these systems originates from a charge transfer from the pyridine and carbene moiety to the copper and chloride atom (LMXCT transition). In addition, the complexes [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) and [Cu2Cl2(IMesPicCl)2] (43) show signs of TADF. NHC ligands and dispersive Cu-Cu interaction were the subject of another structural and photophysical study. Here, the Cu-Cu distances in dinuclear copper(I) bis-NHC complexes [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) were systematically varied by the introduction of a methylene, ethylene and propylene bridging unit. The structures and photophysics of the resulting complexes were compared to a mononuclear complex [Cu(tBu2Im)2](PF6) (53). Thus, the influence of short Cu-Cu distances on the emission properties could be established, although the origins of an additional mechanochromic effect is only partially understood. It is feasible that this latter effect is caused by the existence of different conformers in the powder samples (polymorphism), which would explain the occurrence of a low energy emission band in the ground and amorphous powder sample of [Cu2(tBuIm2(C3H6))2](PF6)2 (52), but also the dual emission of [Cu2(tBuIm2(CH2))2](PF6)2 (50) and [Cu2(tBuIm2(C2H4))2](PF6)2 (51). Based on DFT and TD-DFT calculations, the high energy band for all complexes could be assigned to a 3LMCT transitions, whereas low energy bands are expected if population of 3MC states is possible, i.e. if dispersive Cu-Cu-interactions are present. However the ultimate proof of this assumption, i.e. the isolation and photophysical characterization of other polymorphs, has not yet been achieved. In the last part of this work, it was shown how deformation and interaction energy can influence the coordination and reactivity of d10-[M(NHC)n] complexes. For this, the formation of d10-[M(NHC)n] complexes (n = 1-4; M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) was calculated in the gas phase and in polar solution (DMSO), and the bonding situations were analyzed using DFT-D3(BJ) at ZORA-BLYP/TZ2P level. Although all investigated d10 metals form very stable, dicoordinated [M(NHC)2] species, the thermodynamics of further complexation strongly depend on the metal, i.e. on the deformation energy (ΔEdef). The origin for the different values for the deformation energies in NHC‒M‒NHC fragments could be established based on a quantitative Kohn-Sham molecular-orbital analysis. High values for deformation energies are caused by a high degree of s-d mixing, i.e. by the σ-bond framework, whereas low or even negative values of ΔEdef are associated with a strong π-backdonation in the metal carbene bond. Furthermore, a high electrostatic contribution to the interaction energy is also an important factor. Thus, despite high values for deformation energies found for the group 12 (Zn(II), Cd(II) und Hg(II)), tetrahedral complexes of the type [M(NHC)4] show high thermodynamic stability. These general findings are not restricted to NHC ligands, and thus should have wider implications for the synthesis of d10-MLn (n = 1-4) complexes and for understanding the catalytic cycles in which they are employed. KW - Kupferkomplexe KW - Photophysik KW - DFT KW - Copper complexes KW - photophysics KW - Fotophysik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123787 ER -