TY - THES A1 - Hammer, Sebastian Tobias T1 - Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors T1 - Einfluss der Kristallstruktur auf angeregte Zustände in kristallinen organischen Halbleitern N2 - This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs. N2 - Ziel dieser Arbeit war es, den Einfluss der zugrunde liegenden Kristallstruktur und der damit einhergehenden molekularen Anordnung auf die angeregten Zustände in molekularen Aggregaten zu untersuchen. Zu diesem Zweck wurden zwei Modellsysteme ausgewählt. Der optisch anregbare und detektierbare Ladungstransferzustand im Donor-Akzeptor Komplex Pentacen-Perfluoropentacen (PEN-PFP) und die Möglichkeit, hoch definierte kristalline Grenzflächen herzustellen, ermöglichten detaillierte Einblicke in die räumlich anisotrope Ausbildung des Ladungstransferzustands. Durch Ausnutzen der gewonnenen Erkenntnisse beim Design von Bauteilen auf Basis dieser Donor-Akzeptor Grenzflächen konnte gezeigt werden, wie wichtig die morphologische Kontrolle ist, um das Auftreten von Fallenzuständen in Zusammenhang mit solchen Ladungstransferprozessen zu minimieren und damit die elektronischen Bauteileigenschaften zu verbessern. Für Zinkphthalocyanin (ZnPc) und dem ihm eigenen Polymorphismus konnte der Einfluss der molekularen Packung auf angeregte Zustände untersucht werden, ohne die chemische Struktur zu verändern. Durch die Kombination von Strukturuntersuchungen, optischer Absorptions- und Emissionsspektroskopie und Franck-Condon Modellierungen wurde der Ursprung der Emission der angeregten Zustände in der strukturellen \(\alpha \) und \(\beta \)Phase über einen großen Temperaturbereich von 4 K bis 300 K offen gelegt. Mithilfe der erlangten Einsichten wurde die Kinetik des \(\alpha \rightarrow \beta\) Phasenübergangs erster Ordnung charakterisiert und zur Herstellung von dual-lumineszenten OLEDs verwendet. KW - Organischer Halbleiter KW - Phthalocyanin KW - Pentacen KW - Ladungstransfer KW - Optoelektronik KW - Exziton KW - Charge-Transfer KW - Donor-Acceptor Interface Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244019 ER - TY - THES A1 - Auth, Michael Tilman T1 - Quantitative Electron Paramagnetic Resonance Studies of Charge Transfer in Organic Semiconductors T1 - Quantitative Elektron Paramagnetische Resonanz Untersuchungen von Ladungstransfer Prozessen in Organischen Halbleitern N2 - In the present work we investigated various charge transfer processes, as they appear in the versatile world of organic semiconductors by probing the spin states of the corresponding charge carrier species via electron paramagnetic resonance (EPR) spectroscopy. All studied material systems are carbon-based compounds, either belonging to the group of polymers, fullerenes, or single-wall carbon nanotubes (SWNTs). In the first instance, we addressed the change of the open circuit voltage (Voc) with the fullerene blend stoichiometry in fullerene-based solar cells for organic photovoltaics (OPV). The voltage depends strongly on the energy separation between the lowest unoccupied molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) of the acceptor. By exploiting the Gaussian distribution of the charge carriers in a two-level system, and thus also their spins in the EPR experiment, it could be shown that the LUMOs get closer by a few to a few hundred meV when going from pure fullerene materials to a fullerene mixture. The reason for this strong energetic effect is likely the formation of a fullerene alloy. Further, we investigated the chemical doping mechanism of SWNTs with a (6,5)-chirality and their behaviour under optical excitation. In order to determine the unintentional (pre)-doping of SWNTs, EPR spectra of the raw material as well as after different purification steps were recorded. This facilitated the determination of nanotube defects and atmospheric p-doping as the causes of the measured EPR signals. In order to deliberately transfer additional charge carriers to the nanotubes, we added the redox-active substance AuCl3 where we determined an associated doping-yield of (1.5±0.2)%. In addition, a statistical occupation model was developed which can be used to simulate the distribution of EPR active, i.e. unpaired and localised charge carriers on the nanotubes. Finally, we investigated the charge transfer behaviour of (6,5)-SWNTs together with the polymer P3HT and the fullerene PC60BM after optical excitation. N2 - Die vorliegende Arbeit untersuchte mit Hilfe der Elektron Paramagnetischen Resonanz Spektroskopie (EPR) die Ladungsträgerspins bei Ladungstransfer-Prozessen in organischen Halbleitern. Insbesondere wurden hier verschiedene Kohlenstoffverbindungen betrachtet, welche zur Gruppe der Polymere, Fullerene, oder Kohlenstoff-Nanoröhren gehören. Zu Beginn gingen wir auf die Veränderung der Leerlaufspannung in Fulleren Solarzellen für organische photovoltaic (OPV) ein, welche mit der Fulleren Stöchiometry variiert. Die Leerlaufspannung ist entscheidend für das Ladungsstransfer-Verhalten nach erfolgreicher optischer Anregung. Sie hängt stark vom Energieabstand des niedrigsten unbesetzten Molekülorbitals (engl. LUMO) des Donators zum höchsten besetzten Molekülorbital (engl. HOMO) des Akzeptors ab. Hierbei wurde die Gaußsche Verteilungs-Statistik der Ladungsträger, und damit auch deren Spins, in einem zwei Niveau System im EPR Experiment ausgenutzt. Es konnte gezeigt werden, dass sich deren Abstand um wenige bis hin zu wenigen Hundert meV annähert wenn man vom reinen Fulleren Material zu einem Fulleren Gemisch übergeht. Die Ursache für diesen starken energetischen Effekt ist wahrscheinlich die Bildung einer Fulleren-Legierung. Des weiteren betrachteten wir speziell einwandige Kohlenstoff-Nanoröhren der Chiralität (6,5). Untersucht wurde zunächst die chemische Dotierung dieser Systeme und anschließend ihr Verhalten bei optischer Anregung. Um zunächst die ungewünschte (vor)-Dotierung der Nanoröhren zu ermitteln, wurden EPR Spektren in unbehandelter Form, als auch nach unterschiedlichen Aufreinigungsschritten aufgenommen. Dies ermöglichte die Bestimmung von Nanorohr-Defekten und atmosphärischer p-Dotierung als Ursache für das gemessene EPR Signal. Um bewusst zusätzliche Ladungsträger auf die Nanoröhren zu übertragen gaben wir die redox-aktive Substanz AuCl3 hinzu, wo wir eine zugehörige Dotiereffizienz von (1,5±0,2)% ermittelten. Darüber hinaus wurde ein statistisches Modell erarbeitet welches die Verteilung von EPR aktiven, d.h. ungepaarten und lokalisierten Ladungsträgern auf den Nanoröhren simulieren kann. Zum Abschluss betrachteten wir das Ladungstransfer-Verhalten von (6,5)-Nanoröhren zusammen mit dem Polymer P3HT und dem Fulleren PC60BM nach optischer Anregung. KW - Organische Halbleiter KW - EPR Spektroskopie KW - Dotierung KW - Ladungstransfer KW - organic semiconductor KW - carbon nanotube KW - epr spectroskopy KW - doping KW - quantitative epr KW - charge transfer KW - organic photovoltaic KW - spin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189513 ER -