TY - THES A1 - Groß, Lennart T1 - Point-spread function engineering for single-molecule localization microscopy in brain slices T1 - Modulation der Punktspreizfunktion für Einzelmolekül-Lokalisationsmikroskopie in Hirnschnitten N2 - Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed. N2 - Einzelmolekül-Lokalisationsmikroskopie ist die Methode der Wahl zur Untersuchung biologische Proben im Bereich von Nanometern. Vorteile von Einzelmolekül-Lokalisationsmikroskopie sind vor allem ihre hohe Spezifität von molekularen Farbstoffbindungen sowie die erreichte hohe Auflösung, die vergleichbar ist mit der elektronenmikroskopischen Auflösung, wobei in der Einzelmolekül-Lokalisationsmikroskopie keine Konservierung der Probe vorgenommen werden muss. Vor allem in der Untersuchung der molekularen Organisation von Proteinstrukturen konnte sich die Einzelmolekül-Lokalisationsmikroskopie bewähren. Die Verteilung von Proteinen im gesamten Gehirn, sowie ihre Eigenschaft, sich entlang neuronaler Strukturen zu bewegen, kann mithilfe der Einzelmolekül-Lokalisationsmikroskopie untersucht werden und zu einem besseren Verständnis neuronaler Prozesse beitragen. Proben induzieren optische Aberrationen: Diese Dephasierungen der Wellenfront, welche als Summe von Zernike-Polynomen beschrieben werden kann, verhindert das Erreichen der Auflösungsgrenze. Zur Wiederherstellung einer optimalen Punktspreizfunktion kann die Wellenfront mittels adaptiver Optik aktiv geformt werden. Ziel dieser Arbeit ist der Aufbau eines Einzelmolekül-Lokalisationsmikroskopes mit integrierter adaptiver Optik, bestehend aus einem deformierbaren Spiegel und einem Wellenfrontsensor, um aktiv die Wellenfront zu formen und die Dephasierung zu korrigieren. Zu diesem Zweck werden fluoreszenzmarkierte Proteine, welche in verschiedenen Hirnregionen exprimiert werden, als Proben herangezogen. Optimalerweise könnte so in verschiedenen Tiefen eine ähnliche Auflösung wie bei einer oberflächlichen Messung erreicht werden. Um die Möglichkeiten des Setups zu evaluieren, welches im Verlauf dieser Arbeit aufgebaut wurde, wurden artifizielle Proben erstellt, indem eine Einzelzellschicht hippocampaler Neuronen der Maus, in welchen α-tubulin mit Alexa Fluor 647 angefärbt ist, auf einem 100 µm Maushirnschnitt plaziert wurden. Da letzterer ein hochgradig diffuses Medium zwischen dem Objektiv und den Fluorophoren darstellt, induziert es verschiedene optische Aberrationen, vor allem Sphärische Aberration und Astigmatismus. Indem die Wellenfront und die Punktspreizfunktion von 4 µm Fluosphere Beads, welche eine maximale Emission bei 505 nm haben, und 0.1 µm Tetraspeck Beads, welche eine maximale Emission bei 505 nm zeigen, aufgenommen wurde, konnten die Aberrationen von 521 nm zu 116 nm Quadratmittel des Wellenfrontfehlers reduziert werden. Weiterhin konnten mithilfe der adaptiven Optik Bruchpilot-Anhäufungen in einem Hirnschnitt der Honigbiene in den Calyx der Pilzkörper in einer Messtiefe von 80 µm sichtbar gemacht werden, welche im unkorrigierten Bild nicht sichtbar waren, indem das Quadratmittel des Wellenfrontfehlers von 587 nm auf 196 nm reduziert wird. Insgesamt zeigt die Reduktion des Quadratmittels des Wellenfrontfehlers eine erfolgreiche Korrektur an, aber ist weit entfernt von einer Mikroskopiertechnik, die eine gewinnbringende Forschung in lebenswissenschaftlichen Bereichen garantiert. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - dSTORM KW - Adaptive Optics KW - Single Molecule Localization Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282596 ER - TY - THES A1 - Fronczek, David Norman T1 - Integration of fluorescence and atomic force microscopy for single molecule studies of protein complexes N2 - The scope of this work is to develop a novel single-molecule imaging technique by combining atomic force microscopy (AFM) and optical fluorescence microscopy. The technique is used for characterizing the structural properties of multi-protein complexes. The high-resolution fluorescence microscopy and AFM are combined (FIONA-AFM) to allow for the identification of individual proteins in such complexes. This is achieved by labeling single proteins with fluorescent dyes and determining the positions of these fluorophores with high precision in an optical image. The same area of the sample is subsequently scanned by AFM. Finally, the two images are aligned and the positions of the fluorophores are displayed on top of the topographical data. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, fluorescence and AFM information can be aligned with an accuracy better than 10 nm, which is sufficient to identify single fluorescently labeled proteins in most multi-protein complexes. The limitations of localization precision and accuracy in fluorescence and AFM images are investigated, including their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two complementary techniques opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5–10 nm) information about the conformational properties of multi-protein complexes while the fluorescence can indicate spatial relationships of the proteins within the complexes. Additionally, computer simulations are performed in order to validate the accuracy of the registration algorithm. N2 - Im Rahmen dieser Diplomarbeit wurde ein bildgebendes Verfahren zur Identifizierung einzelner Proteine in rasterkraftmikroskopischen Aufnahmen entwickelt. Dazu wird ein integrierter Versuchsaufbau aus einem Rasterkraft- und einem optischen Mikroskop verwendet. Ziel der Technik ist die Identifizierung einzelner Proteine im biologischen Kontext (z. B. in Proteinkomplexen). Dazu werden ausgewählte Proteine fluoreszierend markiert und parallel zur Rasterkraftmessung optisch abgebildet. Für dieses Verfahren werden transparente und zugleich nano-glatte Substrate benötigt. Dazu wurden Probenträger aus Glas und Mica (Muskovit) verwendet und evaluiert. Als Fluoreszenzfarbstoffe kommen Quantenpunkte zum Einsatz, bestehend aus 5–10 nm großen Nanokristallen, die vermittels Antikörper stabil an Proteine gebunden werden können, ohne deren Funktion zu beeinträchtigen. Die optische Anregung erfolgt durch einen Argon-Laser, unter Verwendung des Prinzips der Totalreflektions-Fluoreszenz-Mikroskopie (TIRF). Im optischen Bild erscheinen die Fluorophore als einzelne Beugungsscheibchen. Durch eine Ausgleichsrechnung, bei der eine 2D-Gaußfunktion an die Daten angepasst wird, werden die Positionen der Fluorophore mit hoher Genauigkeit ermittelt (Superlocalization). Anschließend werden die Bilder durch eine affine Transformation ausgerichtet. Diese Transformation wird durch ein merkmalbasiertes Bildregistrierungsverfahren numerisch bestimmt, welches die Koordinaten einiger identischer Punkte in den Rasterkraft- und Fluoreszenzbildern als Eingabe benötigt. Die Programmierung und Evaluierung des zur Auswertung erforderlichen Algorithmus war Teil der Arbeit. Die Positionen der Fluorophore werden anschließend farbkodiert im topografischen Bild ausgegeben, was die Identifizierung einzelner Proteine/Objekte ermöglicht. Zur experimentellen Realisierung des Verfahrens wurden Abbildungen mit ungebundenen Quantenpunkten erstellt, wobei eine Überlagerungsgenauigkeit von ca. 6 nm (Glas) bzw. ca. 9 nm (Mica) erreicht werden konnte. Ergänzend dazu wurden Simulationen durchgeführt, um die Validität des Auswertungsalgorithmus zu bestätigen. Diese ermöglichen zusätzlich Vorhersagen über die zu erwartende Genauigkeit unter verschiedenen Abbildungsbedingungen. Schließlich wurde die Technik exemplarisch auf ein biologisches System angewendet. Dazu wurde der Schadenserkennungsapparat des bakteriellen DNS-Reparatursystems NER herangezogen. Bei gleichzeitig deutlicher Sichtbarkeit einzelner DNS-Moleküle und Proteine im Topographiebild konnte eine Überlagerungsgenauigkeit von 8.8 nm erreicht werden. KW - Kraftmikroskopie KW - Fluoreszenz KW - DNS-Reparatur KW - Registrierung KW - Multiproteinkomplex KW - AFM KW - Fluorescence imaging with one nanometer accuracy KW - FIONA KW - hybrid imaging Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70731 ER - TY - THES A1 - Hofmann, Michael T1 - Zeitaufgelöste Photoemissionsspektroskopie an Au-GaAs Schottky-Kontakten T1 - Time-resolved photoemission-spectroscopy of Au-GaAs Schottky-Contacts N2 - Es wurde die zeitabhängige Relaxation der Elektronenverteilung in einem Metall-Halbleiter (Galliumarsenid-Gold) Kontakt nach Anregung durch einen Femtosekundenlaserpuls untersucht. Der Einfluss von internen Photoströmen und extern angelegten Spannungen auf die zeitaufgelöste Messung der Elektronenverteilung durch ein Flugzeitspektrometer wird bestimmt und simuliert. N2 - The relaxation-kinetics of electrons in a metal-semiconductor device after excitation by a laserpuls was measured and analyzed. The consideration of internal photocurrents and external applied voltages are crucial for interpreting the results correctly. KW - Photoemission KW - Pump-Probe-Technik KW - Zeitauflösung KW - Metalloberfläche KW - Festkörperoberfläche KW - Galliumarsenid-Bauelement KW - Schottky-Kontakt KW - Flugzeit KW - Fermiverteilung Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27970 ER -