TY - THES A1 - Storz, Oliver T1 - Aufbau eines Rastertunnelmikroskops für Landau Level - Spektroskopie auf topologischen Isolator - Oberflächen T1 - Development of a scanning tunneling microscope for Landau level spectroscopy of topological insulator sufaces N2 - Im Rahmen dieser Arbeit wurde ein Rastertunnelmikroskop (STM) für Messungen bei tiefen Temperaturen und hohen Magnetfeldern konzipiert und aufgebaut. Die Probentemperatur kann dabei auf bis zu 1.4\,Kelvin reduziert werden, was spektroskopische Messungen mit extrem hoher Energieauflösung ermöglicht. Die thermische Verbreiterung spektroskopischer Merkmale liegt somit im Bereich eines Milli-Elektronenvolts, wie durch den Fit der Bandlücke eines supraleitenden Materials demonstriert wird. Ein linearer Bewegungsmechanismus ermöglicht die Positionierung des STM-Körpers innerhalb einer supraleitenden Spule, in der Magnetfelder von bis zu 12.5\,Tesla senkrecht zur Probenoberfläche erzeugt werden können. Das System erlaubt des Weiteren den Wechsel von Spitzen und Proben innerhalb des Kryostaten sowie das Aufdampfen von Einzelatomen auf die kalte Probenoberfläche ohne die Probe aus dem STM zu entfernen. Um den Einfluss mechanischer Vibrationen zu minimieren wurde ein innovatives Feder-Dämpfungssystem entwickelt, dass eine Stabilität des Tunnelkontakts von bis zu einem Pikometer gewährleistet. \\ \noindent Der zweite Teil dieser Arbeit präsentiert die Ergebnisse von STM-Messungen auf Antimon-Tellurid (Sb_{2}Te_{3}). Sb_{2}Te_{3}\, gehört zur relativ neu entdeckten Materialklasse der Topologischen Isolatoren (TI). Diese Verbindungen besitzen auf ihren Oberflächen Zustände mit linearer Dispersion, die durch die Zeitumkehr-Invarianz geschützt werden. Fokus unserer Messungen ist dabei der Einfluss eines magnetischen Feldes auf die Eigenschaften eines derartigen unkonventionellen 2D-Elektronengases. Dazu wurde die Entstehung von Landau Level (LL) innerhalb eines Magnetfelds genau untersucht. Die zwei in dieser Arbeit untersuchten Hauptaspekte sind: \medskip \noindent(i) Die energetische Verbreiterung, die Rückschlüsse auf die Lebensdauer zulässt\\ (ii) Die örtliche Fluktuation. \medskip \noindent Erstaunlicherweise kann die gemessene Verbreiterung der Landau Resonanzen nicht mit gängigen Mechanismen der Lebenszeit-Verbreiterung erklärt werden. Aus diesem Grund wird eine alternative Interpretation basierend auf der Heissenbergschen Unschärferelation vorgestellt, die im guten Einklang mit den von uns gewonnenen Daten steht. Des Weiteren zeigen örtlich aufgelöste Messungen systematische Abweichungen in der Dirac-Geschwindigkeit positiver und negativer Landau Resonanzen. Diese Fluktuationen stehen dabei in direktem Zusammenhang mit Änderungen im lokalen chemischen Potential. Da die physikalischen Ursachen dieser Abweichung im Rahmen dieser Arbeit nicht zweifelsfrei geklärt werden konnten, werden im letzten Teil die zugrundeliegenden Messergebnisse vorgestellt und mögliche Erklärungen des Verhaltens präsentiert. N2 - The scope of this thesis is the design and construction of a scanning tunneling microscope (STM) operating at low temperatures and high magnetic fields. The sample temperature can be reduced to 1.4\,Kelvin which permits to perform spectroscopic measurements with extremely high energy resolution. As demonstrated by fitting the gap of a superconducting material the thermal broadening of spectroscopic features is routinely found to be of the order of one milli-electronvolt. A linear travel mechanism allows to position the STM head inside a superconducting solenoid where magnetic fields up to 12.5\,Tesla can be applied perpendicular to the sample surface. Tips and samples can be exchanged in-situ and single atoms can be directly evaporated onto the cold sample surface without extracting the sample from the STM. To minimize the impact of mechanical vibrations, an innovative spring-damping system has been developed giving the tunneling junction a stability as low as one pico-meter. \\ \noindent The second part of this thesis presents the results of STM measurements on antimony telluride (\Sb_{2}Te_{3}). \Sb_{2}Te_{3}\, belongs to the relatively new class of materials known as topological insulators (TI). These compounds host on their surfaces linearly dispersing states which are protected by time-reversal symmetry. The focus of our measurements is the influence of a magnetic field on the properties of this unconventional 2D electron gas. The evolution of Landau levels (LL) in magnetic fields has been carefully analysed. Two are the main aspects which have been tackled: \medskip \noindent(i) Their energetic broadening, which can be directly linked to the lifetime \\ (ii) Their spacial fluctuation. \medskip \noindent Surprisingly, the energetic broadening of the landau peaks cannot be explained by any of the mechanisms commonly limiting the lifetime. An alternative interpretation based on Heissenberg's uncertainty principle is presented, which is found to be in good agreement with our data. Furthermore spatially resolved experiments reveal systematic deviations of the Dirac velocities for positive and negative LL. These fluctuations are intimately linked to variations of the local chemical potential. As the physical origin of this deviation could not be unambiguously identified, the last part presents the experimental data and suggests possible explanations of this finding. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Landau-Niveau KW - Rastertunnelspektoskopie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139525 ER - TY - THES A1 - Fijalkowski, Kajetan Maciej T1 - Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Elektronischer Transport in einem magnetischen topologischen Isolator (V,Bi,Sb)\(_2\)Te\(_3\) N2 - This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis. N2 - Im Mittelpunkt dieser Arbeit steht die Untersuchung der Magneto-Transporteigenschaften des ferromagnetischen topologischen Isolators (V,Bi,Sb)2Te3. Dieses Material ist vor allem dafür bekannt, dass es den quantenanormalen Hall-Effekt aufweist, einen neuartigen Quantenzustand der Materie, der Möglichkeiten für potenzielle Anwendungen in der Quantenmetrologie als Quantenstandard des Widerstands sowie für wissenschaftliche Untersuchungen zu ungewöhnlichen magnetischen Eigenschaften und der Axion-Elektrodynamik eröffnet hat. All diese Aspekte werden in dieser Arbeit untersucht. KW - Topologischer Isolator KW - Axion KW - Bismutselenide KW - Transportprozess KW - Surface states KW - Magnetic Topological Insulator KW - Quantum anomalous Hall effect Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282303 ER - TY - THES A1 - Seibel, Christoph T1 - Elektronische Struktur von Halbleiteroberflächen mit starker Spin-Bahn-Wechselwirkung: Topologie, Spinpolarisation und Robustheit T1 - Electronic structure of semiconductor surfaces with strong spin-orbit interactions: topology, spin polarisation and robustness N2 - Neue Erkenntnisse über elektronische Eigenschaften von Festkörpern legen den Grundstein für innovative Anwendungen der Zukunft. Von zentraler Bedeutung sind insbesondere die Eigenschaften der Elektronenspins. Um diese besser zu verstehen, befasst sich die vorliegende Arbeit mit der experimentellen Analyse der elektronischen Struktur von topologischen Isolatoren (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} und Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) und Kristallen mit starker Spin-Bahn-Wechselwirkung (BiTeI) mittels Photoelektronenspektroskopie. Zu Beginn werden die zum Verständnis dieser Arbeit benötigten Grundlagen erklärt sowie die unterschiedlichen zum Einsatz kommenden Techniken eingeführt. Der Hauptteil der Arbeit teilt sich in drei Forschungsschwerpunkte. Der erste Teil befasst sich mit den elektronischen Eigenschaften der Valenzbandstruktur von Sb2Te3 und den auftretenden Oberflächenzuständen. Durch gezielte Variation der Energie der anregenden Strahlung wird der Charakter der Wellenfunktion des topologischen Oberflächenzustands und dessen Wechselwirkung mit Valenzzuständen erforscht. Dabei spielt die Topologie der Volumenbandstruktur eine grundlegende Rolle. Der zusätzliche Vergleich zu Photoemissionsrechnungen ermöglicht detaillierte Einblicke in die Wechselwirkung zwischen Oberflächen- und Volumenzuständen und gibt Aufschluss darüber, wie diese vermittelt werden. Im zweiten Abschnitt wird durch die Analyse des gemessenen Photoelektronenspins das Zusammenspiel der Spintextur des Grundzustands und Endzuständen in Bi2Te3 untersucht. Dabei treten, im Gegensatz zu Grundzustandsrechnungen, Radialkomponenten des Polarisationsvektors in nichtsymmetrischer Messgeometrie auf. Sowohl deren Energieabhängigkeit als auch deren Auftreten in Photoemissionsrechnungen (1-Schritt-Modell) deutet darauf hin, dass diese ihren Ursprung in Übergangsmatrixelementen des Photoemissionsprozesses haben. Dieses Ergebnis wird mit Spinpolarisationsmessungen am Oberflächenzustand des nicht-topologischen Schichtsystems BiTeI verglichen. Im dritten Teil werden Auswirkungen unterschiedlicher Manipulationen der untersuchten Materialien auf deren elektronische Eigenschaften beschrieben. Die Adsorption von Bruchteilen einer monoatomaren Lage des Alkalimetalls Caesium auf die Oberfläche des topologischen Isolators Sb2Te3 wird systematisch untersucht. Dadurch kann dessen intrinsische p-Dotierung teilweise abgebaut werden, wobei die Valenzbandstruktur trotz der Reaktivität des Adsorbats intakt bleibt. Des Weiteren werden Auswirkungen von Änderungen der Kristallstöchiometrie durch Volumendotierung vergleichend diskutiert. Ausblickend befasst sich das Kapitel mit dem Verhalten geringer Mengen ferromagnetischer Materialen (Fe, Ni) auf den Oberflächen der topologischen Isolatoren. Für die verschiedenen Adsorbate werden Trends aufgezeigt, die von Temperatur und Zusammensetzung des Substratkristalls abhängen. N2 - New findings about electronic properties lay the foundation for future applications. The spin properties of systems with large spin-orbit coupling are particularly important. The content of this thesis therefore treats the experimental study of the surface electronic structure of topological insulators (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} and Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) and topologically trivial BiTeI crystals using photoelectron spectroscopy. At the beginning basic knowledge to understand this thesis, as well as exploited techniques are addressed. The main part of this thesis separates into three research topics. The first part focuses on the electronic properties of the valence band structure and the wave functions of the occuring surface states. Via variation of the energy of the exciting radiation the character of the wavefunction of the respective topologically non trivial surface state as well as its interaction with valence states is explored. The bulk boundary correspondence and the topology of the bulk electronic structure is of special importance for this interaction. Additionally, it is concluded from photoemission calculations, that the interaction between surface and bulk valence states is mediated by a surface resonance state. The second section presents an analysis of photoelectron spins to investigate the respective contributions of the spin texture of the initial state and final states. This thesis reports on non-vanishing radial components of the polarization vector which do not appear in groundstate calculations. The energy dependance in combination with one-step photoemission calculations indicates that these radial components find their origin in transition matrix elements of the photoemission process. The result is compared to spin resolved measurements of the surface state of the layered material BiTeI which is not a topological insulator. In the third part the consequences of various manipulations of the analyzed materials on their respective electronic structure are described. The systematic adsorption of submonolayer amounts of the alkalimetal Caesium on the surface of the topological insulator Sb2Te3(0001) reduces its intrinsic p-doping without altering its valence band structure despite the reactivity of the adsorbate. Furthermore the effects of stoichiometric changes of elemental composition and bulk doping are being discussed. Finally the behavior of small amounts of ferromagnetic materials (Fe, Ni) on the surface of the respective topological insulators are being addressed. For the different adsorbates trends are shown, which depend on temperature and chemical composition of the substrate. KW - Elektronenstruktur KW - Topologischer Isolator KW - Sb2Te3 KW - ARPES Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140418 ER - TY - THES A1 - Knebl, Georg T1 - Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen T1 - Epitaxial growth and transport characterisation of topolological insulating materials: GaSb/InAs double quantum wells and Bi\(_2\)Se\(_3\) nanostructures N2 - Topologische Isolatoren gehören zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die Lösung dieser Fragen voran. Topologische Rand- bzw. Oberflächenzustände wurden für unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch für GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bedürfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit präsentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess ermöglicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse für Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate präsentiert. Auch mit verbessertem Prozess zeigten sich Leckströme zum Substrat. Diese erschweren eine elektrostatische Kontrolle über Backgates. Die erstmals durch optische Anregung präsentierte Manipulation der Ladungsträgerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erhöhten Oberfläche-zu-Volumen Verhältnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodrähte und -flocken mittels Molekularstrahlepitaxie für die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung – Kapitel 1 führt über die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zustände realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingeführt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfläche aber topologisch geschützte Zustände auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen – abhängig vom Aufbau der Heterostruktur – eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat für die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb gehören zur 6,1 Ångström-Familie, welche für ihre opto-elektronischen Eigenschaften bekannt ist und häufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 Ångström-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein Überblick über die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskanäle eine Herausforderung für die Detektion der topologischen Randkanäle dar. Kapitel 3 behandelt Lösungsansätze hierfür und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zukünftige Realisation topologischer Randkanäle. In Abschnitt 3.1 werden numerische Simulationen präsentiert, die sich mit der Inversion der elektronischen Niveaus in Abhängigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs beschäftigen. Ein geeigneter Schichtaufbau für Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird präsentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualität begründet. Ein Wechseln von binärem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinlängliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster Ätzprozesse – eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes – liefert zusammen mit der Entfernung von Oberflächenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver Ätzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderstände, ohne Kurzschlusskanäle zu erzeugen. Abschnitt 3.4 gibt einen kompakten Überblick, über den im weiteren Verlauf der Arbeit verwendeten „best practice“ Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 präsentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde über numerische Simulationen so gewählt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am Übergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen für konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen bestätigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierfür kommen mehrere Ursachen in Betracht: Eine Überschätzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitfähigkeit wurden Al-haltigen Schichten am GaSb/InAs Übergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungsträgertyps der InAs/GaSb-Doppelquantentöpfe gibt eine zusätzliche Kontrollmöglichkeit im Phasendiagramm. Optische Anregung ermöglicht den Wechsel der Majoritätsladungsträger von Elektronen zu Löchern. Dabei wird ein Regime durchlaufen, in dem beide Ladungsträger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitfähigkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zustände belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die Möglichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zustände in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erklärt. Sie wird in Abhängigkeit von der Temperatur, der Anregungswellenlänge sowie der Anregungsintensität untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines Übergitters auf der Substratseite der Quantenfilmstruktur essentiell für die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren Möglichkeiten, wie optisch definierte topologischen Phasen-Grenzflächen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erhöhten Oberfläche-zu-Volumen Verhältnisses ist die Verwendung von Nanostrukturen für das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt für die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodrähten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erläutert (Abschnitt 6.1). Ausgehend von einer Einführung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erklärung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochauflösender Röntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodrähte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus für Nanodrähte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtröpfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3). N2 - Topological insulators are among the concepts being worked on in the second quantum mechanical revolution. On the one hand, numerous questions on these materials and their utilization have not yet been answered; on the other hand, promising applications in the field of quantum computing and spintronics are driving the solution of these questions. Topological edge and surface states have been predicted theoretically for a wide variety of materials and structures, including GaSb/InAs double quantum wells and Bi2Se3. Despite intensive research and great progress, many processes, especially in the field of sample preparation and processing, still require optimization. This thesis presents detailed studies on growth, fabrication and electro-optically modulated transport analysis of GaSb/InAs double quantum films as well as the epitaxial fabrication of Bi2Se3 nanostructures. In the first part of this thesis, the parameters for molecular beam epitaxy and sample preparation for GaSb/InAs double quantum films are described. The protocols for sample preparation have been adapted to the necessities of the material and experimental requirements. The achieved reproducibility of the presented process enables the production of quantitatively comparable sample series. Subsequently, results for structures with variable InAs layer thickness under electrostatic control with a front gate are presented. Despite of an improved process, leakage currents to the substrate were still observed. These hinder electrostatic control via back gates. The manipulation of the charge carrier type and the phase state in GaSb/InAs double quantum films are presented for the first time by optical excitation and offer an alternative to problematic electrostatically operated gates. The second part shows the epitaxial production of Bi2Se3 nanostructures. The increased surface-to-volume ratio of nanostructures is advantageous to supress the bulk conductivity in reference to surface conduction. Here, the molecular beam epitaxy of Bi2Se3 nanowires and flakes is shown for the first time. Chapter 1 introduces the topic of quantum technology, and in particular protected quantum (edge) states, starting with the proverb “Quantum Leap” (german “Quantensprung”). The application of quantum mechanics to quantum ensembles and its technical realization nowadays is called the first quantum mechanical revolution and is an indispensable part of our everyday life. Within the framework of the second quantum mechanical revolution, the application to individual states is now to be realized and made technically usable. Here topological insulators are a promising building block. The concept of the topological insulator as well as the properties of the two systems considered in this thesis are briefly described: GaSb/InAs double quantum films and Bi2Se3 nanostructures. GaSb/InAs double quantum films Chapter 2 describes the physical and technical basics of topological insulators as well as methods used for fabrication and analysis. Starting with the discovery of the Hall effect in 1879, the quantum Hall effects are introduced. Quantum spin Hall insulators or general topological insulators are materials with an insulating bulk but have topologically protected states at the surface. Double quantum films of GaSb/InAs embedded in AlSb matrix show – depending on the structure of the heterostructure – a typical inverted band structure and are a promising candidate for the utilization of topological insulators. GaSb, InAs and AlSb belong to the 6.1 Ångstrom family, which is known for its opto-electronic properties and is frequently used. The properties as well as the technological basics of epitaxial fabrication of heterostructures from the materials of the 6.1 Ångstrom family by molecular beam epitaxy are reviewed. Finally, the characterization and measurement methods are shown. At the beginning of the work leading up to this thesis, various short circuit channels hindered the detection of topological edge channels. Chapter 3 deals with possible solutions and describes the improvement of the fabrication of GaSb/InAs double quantum film structures with regard to the future realization of topological edge channels. In section 3.1 numerical simulations are presented. The inversion of the electronic level is calculated as a function of GaSb and InAs layer thicknesses dGaSb and dInAs. A suitable layer structure for structures with inverted band order lies within the parameter space of 8 nm ≾ dInAs ≾ 12 nm and 8 nm ≾ dGaSb ≾ 10 nm. Section 3.2 describes the epitaxial production of GaSb/InAs double quantum films by molecular beam epitaxy. The production of a GaSb quasi-substrate on a GaAs substrate is presented. Subsequently, the change to native GaSb substrates is motivated with a reduced defect density as well as reproducibly high sample quality. Changing from binary AlSb to lattice-matched AlAsSb allows the use of thicker barriers. Attempts to achieve sufficient isolation of the back gate by introducing a thicker lower barrier are discussed in this section. Section 3.3 shows the optimization of sample processing. The combination of two adapted etching processes – a dry chemical and a successive wet chemical step – in combination with the removal of surface oxides provide reproducible good results. A material selective etching process with subsequent direct contacting of the InAs quantum film provides good contact resistance without creating short circuit channels. Section 3.4 gives a compact overview of the "best practice" process used in the further course of this thesis. With this improved process, samples with variable InAs layer thickness were produced and examined at 4.2 K regarding their transport properties. This is presented and discussed in chapter 4. Section 4.1 describes a series of three samples with GaSb/InAs double quantum films in AlSb matrix with a variable InAs layer thickness. The InAs layer thickness was selected by numerical simulations in such a way that one sample is in the trivial regime, one in the inverted regime and one at the transition point. In section 4.2 magneto-transport measurements for constant front gate voltage and measurements with constant magnetic field versus the front gate voltage are shown. The measurements confirm a production of quantitatively comparable samples, but also show that none of the samples are in the topological regime. This might be explained by several possible reasons: an overestimation of hybridization by numerical simulation, insufficient InAs layer thicknesses in production or asymmetric shifting with only one gate (section 4.3). To reduce the volume conductivity, Al-containing layers were introduced at the GaSb/InAs transition. The expected increase in resistance could not be shown in first experiments. The optical manipulation of the dominant charge carrier type of the InAs/GaSb double quantum wells shown in chapter 5 provides an additional possibility of control in the phase diagram. Optical excitation allows the change of the majority charge carriers from electrons to holes. The transition involves a regime in which both charge carriers coexist. This strongly suggests electron-hole hybridization with a non-trivial topological phase. Here, two different physical processes play a role, which act analogously to a front gate or a back gate. The front gate effect is based on the negative persistent photoconductivity, the back-gate effect is based on the accumulation of electrons on the substrate side. The optically controlled shifting of the states shown here proves the realization of opto-electronic switching between different topological phases. This shows the possibility of an optical control of the phase diagram of the topological states in GaSb/InAs double quantum films. Section 5.1 displays and explains the optical detuning of GaSb/InAs quantum films. It is investigated as a function of temperature, excitation wavelength and excitation intensity. Control experiments on samples with a different structure show that the presence of a superlattice on the substrate side of the quantum film structure is essential for the formation of the back-gate effect (section 5.2). Finally, Section 5.3 summarizes the findings on optical control and discusses its possibilities for optical defined interfaces between topological phases in this system. Bi2Se3 Nanostructures Due to the increased surface-to-volume ratio, it is beneficial to use nanostructures for the application of three-dimensional Tis. With the aim to exploit this effect for the realization of a Bi2Se3 topological insulator, the growth of Bi2Se3 nanowires and flakes with molecular beam epitaxy was first realized in the context of this work. Chapter 6 explains the technical and physical basics (Section 6.1). Starting from an introduction to three-dimensional topological isolators, the properties of the topological state in Bi2Se3 are shown. This is followed by the crystal properties of Bi2Se3 and the explanation of the epitaxial growth of nanostructures with molecular beam epitaxy. Section 6.2 describes the epitaxial production. The crystal structure was identified as Bi2Se3 by high-resolution X-ray diffraction and transmission electron microscopy. Scanning electron microscopy images show nanowires and nanoflakes on samples that were either pre-treated with gold or not pre-treated with gold. While the growth mechanism for the nanowires cannot be defined beyond doubt, the absence of gold droplets at the wire tip suggests a root-catalysed growth mechanism (section 6.3). KW - GaSb/InAs KW - Bi2Se3 KW - Quantenfilm KW - Quantum well KW - Molekularstrahlepitaxie KW - molecular beam epitaxy KW - nano structure KW - Nanostruktur KW - topological insulator KW - Topologischer Isolator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191471 ER - TY - THES A1 - Bauernfeind, Maximilian Josef Xaver T1 - Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC T1 - Epitaxie und Spektroskopie zweidimensionaler Adatom Systeme: der elementare Topologische Isolator Indenene auf SiC N2 - Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene. N2 - Zweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf. Um Stanene daher in der topologisch nicht-trivialen Phase experimentell realisieren zu können, muss ein geeignetes Substrat gefunden werden, das Stanene aufnehmen kann, ohne die topologischen Eigenschaften zu beeinträchtigen. Eine Heterostruktur aus einem SiC-Substrat mit einer Pufferschicht aus adsorbierten Gruppe-III Elementen stellt hier eine mögliche Lösung für dieses Problem dar. Im Hinblick darauf wurden für diese Arbeit 2D-Adatomsysteme aus Al und In epitaktisch auf SiC(0001) gewachsen und mittels Rastertunnelmikroskopie (engl.: scanning tunneling microscopy, STM) und Photoelektronenspektroskopie strukturell und spektroskopisch untersucht. Al-Schichten mit hoher Bedeckung \( (\Theta_{ML}\approx2\) ML\( ) \) weisen ungewöhnlich große, dreieckig und rechteckig geformte Oberflächeneinheitszellen auf. Hierbei wird das Beugungsmuster der niederenergetischen Elektronenbeugung (engl.: low-energy electron diffraction, LEED) mit der aus STM abgeleiteten Oberflächentopographie in Einklang gebracht. Eine andere Al-Rekonstruktion, die quasi-eindimensionale (1D) Al-Phase, zeigt eine gestreifte Oberflächenkorrugation, die ein Ergebnis der Verspannung durch die Fehlanpassung des Al-Gitters auf dem Substratgitter sein könnte. Es wird vorgeschlagen, dass Al-Atome in verschiedenen Oberflächenbereichen sowohl jeweils hexagonal-dichtgepackte als auch kubisch flächenzentrierte Gitterplätze einnehmen können. In Übergangsregionen zwischen beiden Bereichen erzeugt dies dicht gepackte Al-Atome, die wiederum die streifenartigen Korrugationen hervorrufen. Auf der Basis der bekannten Fischgrätenrekonstruktion von Au(111) wird ein erstes Strukturmodell vorgeschlagen, das gut mit strukturellen STM-Daten übereinstimmt. Letztendlich konnten jedoch durch thermische Behandlungen der Probe keine Phasen mit geringerer Bedeckung, das heißt insbesondere die Pufferschichtstruktur, erzeugt werden. In-Hochbedeckungsphasen \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) weisen ein ausgeprägtes metallisches Verhalten auf in der Rastertunnelspektroskopie (engl.: scanning tunneling spectroscopy, STS) und winkelaufgelösten Photoelektronenspektroskopie (engl.: angle-resolved photoelectron spectroscopy, ARPES). Zudem bilden diese Phasen eine \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \)-Oberflächenrekonstruktion aus. In all diesen Phasen folgen die Elektronen dem Modell der quasifreien Elektronen. Ähnlich zu den Al-Filmen konnte auch hier nach thermischen Behandlungen der Probe keine Pufferschichtstruktur erzeugt werden. Überraschenderweise tritt im Laufe dieser Untersuchung ein Dreiecksgitter aus In-Atomen mit einer \( (1\times1) \)-Periodizität auf, das bei \( K/K^{\prime} \) massive Dirac-artige Bänder in ARPES zeigt. Aufgrund der starken Ähnlichkeit mit der Graphene-Bandstruktur am Brillouinzonenrand, wird dieses neuartige Materialsystem \textit{Indenene} benannt. Eine umfangreiche theoretische Untersuchung legt die Entstehung eines elektronischen Honigwabennetzwerks offen, dass sich aufgrund von dreieckig angeordneten In \textit{p}-Orbitalen bildet. Durch starke atomare Spin-Bahn-Wechselwirkung und einen vergleichsweisen schwachen substratinduzierten Inversionssymmetriebruch in der Ebene, ist dieses Materialsystem topologisch nicht-trivial. In Indenene ist die Topologie eng mit einer Volumenobservablen, genauer die energieabhängige Ladungsakkumulationsequenz innerhalb der Oberflächeneinheitszelle, verknüpft. Diese Sequenz wird mittels STS experimentell ausgenutzt, um den topologisch nicht-trivialen Charakter zu bestätigen. Die Bandlücke bei \( K/K^{\prime} \), charakteristisch für massive Dirac-Fermionen, wird mittels ARPES auf ungefähr 125 meV abgeschätzt. Weitere Untersuchungen basierend auf stehenden Röntgenwellen, STM, und LEED bestätigen die strukturellen Eigenschaften von Indenene. Dementsprechend wird in dieser Arbeit dasWachstum und auch die Charakterisierung des neuartigen Quanten Spin Hall Isolators Indenene vorgestellt. KW - Dreiecksgitter KW - Monoschicht KW - Indium KW - Topologischer Isolator KW - Siliciumcarbid KW - Monolage KW - Siliziumkarbid KW - STM KW - Triangular lattice KW - Monolayer KW - Silicon carbide KW - ARPES KW - Rastertunnelmikroskop Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311662 ER - TY - THES A1 - Thienel, Cornelius T1 - Exploring the transport properties of the three-dimensional topological insulator material HgTe T1 - Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe N2 - In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. N2 - In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronischer Transport KW - 3D topological insulator KW - Festkörperphysik KW - Hochmagnetfeld KW - Tieftemperatur KW - Quanten-Hall-Effekt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122031 ER - TY - THES A1 - Bathon, Thomas T1 - Gezielte Manipulation Topologischer Isolatoren T1 - Deliberate manipulation of topological insulators N2 - Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. N2 - New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Dotierung KW - Magnetismus KW - Röntgendichroismus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239204 ER - TY - THES A1 - Stühler, Rudolf Raul Albert T1 - Growth and Spectroscopy of the Two-dimensional Topological Insulator Bismuthene on SiC(0001) T1 - Wachstum und Spektroskopie des zweidimensionalen topologischen Isolators Bismuthen auf SiC(0001) N2 - A plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ‘’quantum materials’’ with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. One particular material class, the so called topological materials, play a central role. As far as their technological applicability is concerned, however, they are still facing outstanding challenges to date. Predicted for the first time in 2005 and experimentally verified in 2007, two-dimensional topological insulators (2D TIs) (a.k.a. quantum spin Hall insulators) exhibit the outstanding property of hosting spin-polarized metallic states along the boundaries of the insulating 2D bulk material, which are protected from elastic single-particle backscattering and give rise to the quantum spin Hall effect (QSHE). Owing to these peculiar properties the QSHE holds promise for dissipationless charge and/or spin transport. However, also in today’s best 2D TIs the observation of the QSHE is still limited to cryogenic temperatures of maximum 100 K. Here, the discovery of bismuthene on SiC(0001) has marked a milestone towards a possible realization of the QSHE at or beyond room-temperature owing to the massively increased electronic bulk energy gap on the order of 1 eV. This thesis is devoted to and motivated by the goal of advancing its synthesis and to build a deeper understanding of its one-particle and two-particle electronic properties that goes beyond prior work. Regarding the aspect of material synthesis, an improved growth procedure for bismuthene is elaborated that increases the domain size of the material considerably (by a factor of ≈ 3.2 - 6.5 compared to prior work). The improved film quality is an important step towards any future device application of bismuthene, but also facilitates all further basic studies of this material. Moreover, the deposition of magnetic transition metals (Mn and Co) on bismuthene is investigated. Thereby, the formation of ordered magnetic Bi-Mn/Co alloys is realized, their structure is resolved with scanning tunneling microscopy (STM), and their pristine electronic properties are resolved with scanning tunneling spectroscopy (STS) and photoemission spectroscopy (PES). It is proposed that these ordered magnetic Bi-Mn/Co-alloys offer the potential to study the interplay between magnetism and topology in bismuthene in the future. In this thesis, a wide variety of spectroscopic techniques are employed that aim to build an understanding of the single-particle, as well as two-particle level of description of bismuthene's electronic structure. The techniques involve STS and angle-resolved PES (ARPES) on the one hand, but also optical spectroscopy and time-resolved ARPES (trARPES), on the other hand. Moreover, these experiments are accompanied by advanced numerical modelling in form of GW and Bethe-Salpeter equation calculations provided by our theoretical colleagues. Notably, by merging many experimental and theoretical techniques, this work sets a benchmark for electronic structure investigations of 2D materials in general. Based on the STS studies, electronic quasi-particle interferences in quasi-1D line defects in bismuthene that are reminiscent of Fabry-Pérot states are discovered. It is shown that they point to a hybridization of two pairs of helical boundary modes across the line defect, which is accompanied by a (partial) lifting of their topological protection against elastic single-particle backscattering. Optical spectroscopy is used to reveal bismuthene's two-particle elecronic structure. Despite its monolayer thickness, a strong optical (two-particle) response due to enhanced electron-hole Coulomb interactions is observed. The presented combined experimental and theoretical approach (including GW and Bethe-Salpeter equation calculations) allows to conclude that two prominent optical transitions can be associated with excitonic transitions derived from the Rashba-split valence bands of bismuthene. On a broader scope this discovery might promote further experiments to elucidate links of excitonic and topological physics. Finally, the excited conduction band states of bismuthene are mapped in energy and momentum space employing trARPES on bismuthene for the first time. The direct and indirect band gaps are succesfully extracted and the effect of excited charge carrier induced gap-renormalization is observed. In addition, an exceptionally fast excited charge carrier relaxation is identified which is explained by the presence of a quasi-metallic density of states from coupled topological boundary states of domain boundaries. N2 - Zahlreiche neuartige Materialkonzepte werden derzeit in der Festkörperforschung untersucht. Einige von ihnen haben das Potenzial, unsere Alltagswelt in einer Weise zu beeinflussen, wie es Halbleitermaterialien auf Siliziumbasis und die damit verbundene Entwicklung von Halbleiterbauelemente in der Vergangenheit getan haben. In diesem Zusammenhang gab es in den letzten Jahrzehnten eine regelrechte Flut von Untersuchungen zu sogenannten „Quantenmaterialien“ mit völlig neuen Funktionalitäten. Diese könnten in Zukunft schließlich zu einer neuen Generation von elektronischen und/oder spintronischen Bauelementen führen. Eine spezielle Materialklasse, die so genannten topologischen Materialien, spielen dabei eine wichtige Rolle. Hinsichtlich ihrer technologischen Anwendbarkeit stehen sie jedoch bis heute vor großen Herausforderungen. Zweidimensionale topologische Isolatoren (2D TIs) (auch bekannt als Quanten Spin Hall Isolatoren) wurden erstmals 2005 vorhergesagt und schließlich 2007 experimentell bestätigt. Diese Materialien haben die außergewöhnliche Eigenschaft, dass sie spinpolarisierte metallische Zustände entlang der Grenzen des isolierenden 2D-Volumenmaterials aufweisen, die vor elastischer Ein-Teilchen-Rückstreuung geschützt sind und damit den Quanten-Spin-Hall-Effekt (QSHE) begründen. Aufgrund dieser besonderen Eigenschaften verspricht der QSHE einen dissipationsfreien Ladungs- und/oder Spintransport. Allerdings ist die Beobachtung des QSHE auch in den gegenwärtig am besten entwickelten 2D-TIs immer noch auf kryogene Temperaturen von maximal 100 K beschränkt. In diesem Zusammenhang war die Entdeckung von Bismuthen (engl. bismuthene) auf SiC(0001) ein Meilenstein in Bezug auf eine mögliche Realisierung des QSHE bei oder oberhalb von Raumtemperatur aufgrund der massiv vergrößerten elektronischen Volumenenergielücke in der Größenordnung von 1 eV. Dieser Arbeit liegt das Ziel und die Motivation zugrunde, die Synthese von Bismuthen zu verbessern und darüber hinaus das derzeitige Verständnis der elektronischen Ein- und Zweiteilchen-Eigenschaften dieses Materials zu erweitern. Was den Aspekt der Materialsynthese betrifft, so wird ein verbessertes Wachstumsverfahren für Bismuthen erarbeitet, das die Domänengröße des Materials beträchtlich erhöht (um einen Faktor von ≈ 3.2 - 6.5 im Vergleich zu früheren Arbeiten). Die verbesserte Filmqualität stellt einen wichtigen Schritt in Hinblick auf zukünftige Anwendungen von Bismuthen dar, erleichtert darüber hinaus aber auch alle grundlegenden Untersuchungen mit diesem Material. Darüber hinaus wird die Deposition von magnetischen übergangsmetallen (Mn und Co) auf Bismuthen erforscht. So konnten geordnete magnetische Bi-Mn/Co-Legierungen hergestellt werden, deren Struktur mit Rastertunnelmikroskopie (STM) und deren elektronische Eigenschaften mit Rastertunnelspektroskopie (STS) und Photoemissionsspektroskopie (PES) aufgelöst wurden. Es wird nahegelegt, dass diese geordneten magnetischen Bi-Mn/Co-Legierungen das Potenzial bieten, die Wechselwirkung zwischen Magnetismus und Topologie in Bismuthen in Zukunft zu untersuchen. In dieser Dissertation werden eine Vielzahl von spektroskopischen Techniken eingesetzt, die darauf abzielen, die elektronische Struktur von Bismuthen auf der Ein-Teilchen- und Zwei-Teilchen-Ebene zu verstehen. Die Techniken umfassen einerseits STS und winkelaufgelöste PES (ARPES), andererseits aber auch optische Spektroskopie und zeitaufgelöste ARPES (trARPES). Darüber hinaus werden diese Experimente durch umfangreiche numerische Modellierungen in Form von GW-Rechnungen und Lösungen der Bethe-Salpeter-Gleichung unterstützt, die von unseren theoretischen Kollegen durchgeführt wurden. Durch die Verknüpfung zahlreicher experimenteller und theoretischer Methoden setzt diese Arbeit auch einen Maßstab für die Untersuchung der elektronischen Struktur von 2D-Materialien im Allgemeinen. Basierend auf den Untersuchungen mit STS werden elektronische Quasiteilchen Interferenzen in quasi-1D Liniendefekten in Bismuthen entdeckt, die an Fabry-Pérot Zustände erinnern. Dabei wird gezeigt, dass diese Interferenzen auf eine Hybridisierung zweier Paare helikaler Grenzmoden über den Liniendefekt hinweg hinweisen, was mit einer (teilweisen) Aufhebung ihres topologischen Schutzes gegen elastische Ein-Teilchen-Rückstreuung einhergeht. Mit Hilfe optischer Spektroskopie wird die elektronische Zwei-Teilchen-Struktur von Bismuthen untersucht. Dabei ist trotz der Einzelschichtdicke eine starke optische, d.h. Zwei-Teilchen-, Antwort aufgrund der starken Elektron-Loch Coulomb-Wechselwirkungen zu beobachten. Der kombinierte experimentelle und theoretische Zugang (einschließlich GW Rechnungen und Lösungen der Bethe-Salpeter-Gleichung) erlaubt den Nachweis, dass zwei markante optische Übergänge Exzitonenanregungen sind, die von Valenzbändern von Bismuthen stammen, welche durch die Rashba-Wechselwirkung getrennt sind. Im weiteren Kontext könnte diese Entdeckung Anlass zu künftigen Experimenten sein, um die Zusammenhänge zwischen exzitonischer und topologischer Physik zu untersuchen. Schließlich werden erstmals die angeregten Leitungsbandzustände von Bismuthen mit Hilfe von trARPES energie- und impulsaufgelöst gemessen. Dabei ist es gelungen, die direkte und indirekte Bandlücke zu ermitteln und zudem den Effekt einer Ladungsträger induzierten Bandlücken-Renormalisierung zu beobachten. Darüber hinaus wird eine außergewöhnlich schnelle Relaxation angeregter Ladungsträger nachgewiesen, die durch das Vorhandensein einer quasi-metallischen Zustandsdichte aufgrund gekoppelter topologischer Randmoden an Domänengrenzen erklärt wird. KW - Topologischer Isolator KW - Rastertunnelmikroskop KW - Zweidimensionales Material KW - Bismuthene KW - helical edge states KW - honeycomb lattice KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - trARPES KW - exciton KW - magnetic KW - Photoelektronenspektroskopie KW - Siliziumcarbid Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320084 ER - TY - THES A1 - Kessel, Maximilian T1 - HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport T1 - HgTe ummantelte CdTe Nanodrähte: Ein nieder-dimensionaler Topologischer Isolator vom Kristallwachstum zum Quantentransport N2 - A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 % along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case. N2 - Topologische Isolatoren (TI) sind ein faszinierendes Forschungsfeld der Festkörperphysik. Im Inneren sind diese Materialien isolierend, am Rand zeigen sich jedoch topologisch geschützte, leitfähige Oberflächen-Zustände. Ihre lineare Energiedispersion und die Kopplung des Elektronenspins an die Bewegungsrichtung ermöglichen die Untersuchung von Teilchen, die sich als Dirac-Fermionen beschreiben lassen. Für Nanodrähte, als Vertreter mesoskopischer Strukturen, spielen die Eigenschaften der Oberfläche eine größere Rolle, als für Strukturen mit makroskopischem Volumen. Ihr geringer Umfang beschränkt durch zusätzliche periodische Randbedingungen die erlaubten elektronischen Zustände. Durch ein externes Magnetfeld lassen sich TI-Nanodrähte vom trivialen in den helikalen Zustand überführen. Bringt man einen solchen Draht in direkten Kontakt mit einem Supraleiter, so werden Quasiteilchen vorhergesagt, die sich wie Majorana-Fermionen verhalten sollen. Zur Untersuchung dieser Phänomene sind zunächst entscheidende technologische Hürden zu überwinden. Verschiedene TI sind derzeit bekannt. HgTe ist einer von ihnen und zeichnet sich bei tiefen Temperaturen durch eine hohe Beweglichkeit der Oberflächen-Elektronen und gleichzeitig einer geringen Leitfähigkeit im Volumen aus. Die bisherigen Untersuchungen in diesem Materialsystem beschränken sich auf zwei- und dreidimensionale Strukturen. In dieser Arbeit wurde ein Verfahren zur Herstellung von quasi eindimensionalen TI-Nanodrähten entwickelt. Mittels vapor-liquid-solid Methode gewachsene CdTe Nanokristallite werden epitaktisch mit HgTe umwachsen. Die hergestellten Heterostrukturen werden mit Beugungsexperimenten charakterisiert, um den Einfluss der Wachstumsparameter wie Temperatur und Teilchenstrom auf die Qualität der Proben zu bestimmen und diese zu verbessern. In dieser Arbeit wird zum ersten mal eine Rekonstruktion der Oberflächenatome von Nanodrähten beschrieben. Für den Rückschluss auf die atomare Konfiguration mittels Elektronenbeugung müssen die einzelnen Kristallite eine hohe Selbstähnlichkeit aufweisen. Wie Bilder in atomarer Auflösung und hochaufgelöste Röntgenbeugung zeigen, werden einkristalline und verspannte CdTe-HgTe Strukturen erzeugt. Diese sollten die typischen TI Eigenschaften haben. Zur weiteren Untersuchung wurden Verfahren für die Manipulation und exakte Ausrichtung der Nanodrähte, sowie für die Kontaktierung mit verschiedenen Metallen entwickelt. Die blanken CdTe Nanodraht-Kerne selbst sind wie erwartet isolierend, mit HgTe umwachsene Proben jedoch leiten einen elektrischen Strom. Die aktuelle Forschung beschäftigt sich nun intensiv mit dem Transport von Ladungs-trägern durch diese Nanodrähte. Dazu wird die Leitfähigkeit der Proben unter anderem bei tiefen Temperaturen und in Abhängigkeit äußerer elektrostatischer und magnetischer Felder bestimmt. Es werden verschiedene Effekte beobachtet. Universelle Fluktuationen des gemessenen Widerstandes, als ein Beispiel, resultieren aus einer Veränderung der geometrischen Phase der Ladungsträger. Dieser Effekt deutet auf elastische Rückstreuung der Ladungsträger in den HgTe Nanodrähten hin. Die Beobachtung kohärenter Transportphänomene erlaubt den Rückschluss, dass inelastische Streuprozesse bei tiefen Temperaturen kaum eine Rolle spielen. Für Drähte mit supraleitenden Kontakten können induzierte Supraleitung und multiple Andreev-Reflektionen beobachtet werden. Zusammen mit dem beschriebenen excess current ist dies ein klares Zeichen für einen guten elektrischen Kontakt zwischen TI und Supraleiter. Zusätzlich beobachten wir eine Signatur nahe der Kante der Energielücke des Supraleiters, die eventuell durch pairing an der Grenzfläche zu erklären ist. Für die Verbindung von Spin-Bahn-Kopplung des TI und der Cooper-Paare des konventionellen Supraleiters wird die Entstehung eines unkonventionellen Supraleiters vorhergesagt. Dies ist ein weiteres interessantes Feld der modernen Festkörperphysik und Gegenstand aktueller Forschung. Besonders bemerkenswert ist in diesem Zusammenhang, dass der metallische Tropfen, welcher ursprünglich das Nanodraht-Wachstum katalysiert hat, bei tiefen Temperaturen supraleitend wird. Der in dieser Arbeit vorgestellte selbst-organisierte Wachstumsprozess resultiert in einer sauberen Grenzfläche zwischen TI und Supraleiter. Zur Untersuchung der Effekte an dieser Grenzfläche muss nicht zwingend in einem separaten Schritt ein supraleitender Kontakt aufgebracht werden. Die in dieser Arbeit vorgestellten Methoden und Erkenntnisse sind die Grundlage für die Realisierung von Experimenten, die geeignet wären, die erwarteten Majorana-Zustände in TI-Nanodrähten nachzuweisen. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - vapor-liquid-solid KW - RHEED KW - MBE KW - CdTe KW - HgTe KW - Cadmiumtellurid KW - Topologischer Isolator KW - Kern-Schale-Struktur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149069 ER - TY - THES A1 - Maier, Luis T1 - Induced superconductivity in the topological insulator mercury telluride T1 - Induzierte Supraleitung im topologischen Isolator Quecksilbertellurid N2 - The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb’s superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2p periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4p regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90° bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable. N2 - Aus theoretischen Betrachtungen geht hervor, dass die Kombination eines topologischen Isolators (TI) und eines Supraleiters (S) zu einer TI/S Grenzfläche die möglichen Oberflächenzustände im TI beeinflussen kann. Von besonderem Interesse ist dabei die Vorhersage der Ausbildung von Majorana Zuständen bei Null-Energie. Diese Arbeit beschäftigt sich mit der experimentellen Realisierung einer solchen Grenzfläche zwischen dem TI verspanntes HgTe und dem S Nb und analysiert, ob die oben genannten Effekte tatsächlich in diesem System auftreten. Da diese Grenzflächen zum ersten Mal produziert wurden, musste zunächst ein neuer lithographischer Prozess dafür entwickelt werden. Nach der Optimierung der Depositionstechnik des S sowie der Anwendung von Reinigungsschritten, war eine reproduzierbare Fertigung von Probenstrukturen möglich. Parallel dazu wurde das Messsystem ausgebaut, damit die sensitiven Messungen bei geringer Energie durchgeführt werden konnten. So wurden mehrere Frequenzfilter eingebaut, um Hochfrequenzrauschen zu reduzieren und die Magnetfeldsteuerung ersetzt, damit die benötigte Auflösung im μT Bereich ereicht werden konnte. Es wurden zwei grundlegende Geometrien untersucht: Josephson Kontakte (engl. Josephson junctions, JJ) und supraleitende Quanteninterferenzeinheiten (engl. superconducting quantum interference devices, SQUIDs). Eine JJ besteht aus zwei Nb Kontakten mit einem kleinen Abstand zueinander, die auf einer HgTe Schicht aufgebracht werden. Diese S/TI/S Kontakte bilden eine der grundlegendsten Strukturen, die möglich sind und wurden mit Hilfe von Transportmessungen untersucht. Der Ladungstransport in dieser Geometrie wird stark durch die beiden S/TI Grenzflächen beeinflusst. In spannungsabhängigen Messungen des differenziellen Widerstandes konnten mehrfache Andreev Reflexionen in den JJ nachgewiesen werden, was zeigt, dass Elektronen und Löcher die HgTe Lücke zwischen beiden Nb Kontakten wiederholt phasenkoherent überwinden können. Zusätzlich konnte mit Hilfe der BTK Theorie die Transparenz der Grenzflächen bestimmt werden. Dies erlaubte eine iterative Optimierung zum Erreichen der höchst möglichen Transparenz durch lithographische Verbesserungen an den Grenzflächen. Eine verbesserte Transparenz erlaubt eine stärkere Kopplung der Supraleitung des Nb an das HgTe und somit ein tieferes Eindringen der induzierten Supraleitung in die HgTe Schicht. Aufgrund der verbesserten Ankopplung war es möglich, das Regime zu erreichen, in dem ein Suprastrom durch die HgTe Schicht zwischen den Nb Kontakten getragen werden kann. Erstmals konnte ein induzierter Suprastrom durch verspanntes HgTe geleitet werden und ermöglichte es, in diesem Forschungsbereich mit detaillierten Analysen zu beginnen. Es wurde die magnetische Abhängigkeit des Suprastroms in der JJ aufgenommen, auch bekannt als Fraunhofer Muster. Die Periodizität dieses Musters im Magnetfeld im Vergleich zur geometrischen Ausdehnung der JJ erlaubt Rückschlüsse darüber, wie der Suprastrom der JJ von der Phasendifferenz zwischen beiden supraleitenden Kontakten abhängt. Theoretische Berechnungen haben vorhergesagt, dass die Periodizität dieser Phasenbeziehung von ursprünglich 2p auf 4p wechselt, falls ein TI als Material zwischen den beiden Nb Kontakten verwendet wird, da Majorana Moden auftreten. Es konnte jedoch klar gezeigt werden, dass trotz Verwendung eines TI die Phasendifferenz immer noch 2p periodisch war. Durch die Variation weiterer Einflussfaktoren, wie die Anzahl der möglichen Moden oder die Phasenkohärenzlänge in der JJ könnte es in Zukunft trotz allem immer noch möglich sein, einen Bereich zu erreichen, in dem eine 4p Periodizität mit Majorana Zuständen vorliegt. Ein erfolgversprechender Kandidat für diese Experimente konnte in verspanntem HgTe mit CdHgTe Deckschicht gefunden werden, jedoch muss der Fabrikationsprozess für diese Material erst noch entwickelt werden, um in der Lage zu sein, Strukturen zu produzieren, die qualitativ vergleichbar mit denen ohne Deckschicht sind. Der zweite Geometrie-Typ, der untersucht wurde, ist ein DC-SQUID, das aus zwei parallelen JJs besteht und analog auch als Interferometer zweier JJs gesehen werden kann. Es wurden zwei Arten von DC-SQUIDs produziert: Das symmetrische SQUID, bestehend aus zwei identischen JJs und das asymmetrische SQUID, bei dem eine JJ nicht linear aufgebaut ist, sondern beide Nb Kontakte statt dessen einen Winkel von 90° zueinander aufweisen. Diese beiden Arten erlauben es die fehlende Winkelabhängigkeit der supraleitenden Bandlücke zu überprüfen, die für induzierte Supraleitung in einem TI prognostiziert wurde. Die Phase des symmetrischen SQUIDs wird nicht durch die Form der supraleitenden Bandlücke beeinflusst. Daher kann es als Referenz verwendet werden, um eine eventuelle Phasenverschiebung des asymmetrischen SQUIDs zu erkennen. Ist keine Phasenverschiebung vorhanden, ist dies eine Bestätigung der Uniformität der Bandlücke. Falls jedoch eine Phasenverschiebung aufgrund des 90° Kontaktes auftritt, würde der Transport hauptsächlich durch p- oder d-artige Supraleitung getragen werden. Da beide SQUIDs nacheinander vermessen werden, muss sichergestellt werden, dass Drifteffekte in der magnetfelderzeugenden Spule keinen Einfluss auf den Vergleich haben. Die typische Oszillationsfrequenz der SQUIDs beträgt 0.5 mT und die Driftrate der Spule liegt im Bereich von 5.5 μT/h. Um einen aussagekräftigen Vergleich durchführen zu können, müssen die Messungen an beiden SQUIDs in wenigen Stunden durchgeführt werden, damit der Gesamtdrift klein genug bleibt. Um diese Messgeschwindigkeit zu erreichen, wurde ein neues Messsystem zur Aufnahme des kritischen Stroms, basierend auf einem Echtzeit Microcontroller, entwickelt. Dies reduziert die Zeitskala der benötigten Messungen von Tagen auf Stunden und erlaubt es so, den gewünschten Vergleich durchzuführen. Nachdem alle Optimierungen im Messsystem realisiert wurden, konnte gezeigt werden, dass der Vergleich nun tatsächlich möglich ist. Erste Testmessungen mit dem alten Messsystem legen nahe, dass das asymmetrische SQUID ein Maximum bei B = 0 T zeigt und somit die homogene Bandlücke das wahrscheinlichere Resultat ist. Da nun alle messspezifischen Optimierungen abgeschlossen sind, sollte es den Nachfolgern dieses Projektes zukünftig möglich sein, die finale Messung durchzuführen. Diese Arbeit hat gezeigt, dass es möglich ist, Supraleitung in verspanntem HgTe zu induzieren. Es wurde somit die grundlegendste Probengeometrie realisiert, die von Fu und Kane in 2008 für das Auftreten von Majorana Zuständen vorgeschlagen wurde. Ausgehend von dieser Vorarbeit kann nun das Regime der induzierten Supraleitung in verspanntem HgTe weiter erforscht werden, um schlussendlich in einen Bereich vorzustoßen, in dem Majorana Zustände zugleich stabil und messbar sind. KW - superconductivity KW - induced KW - mercury KW - telluride KW - topological KW - insulator KW - TI KW - proximity effect KW - josephson junction KW - SQUID KW - topological insulator KW - Quecksilbertellurid KW - Topologischer Isolator KW - Supraleitung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119405 ER -