TY - JOUR A1 - Gorlova, Anna A1 - Svirin, Evgeniy A1 - Pavlov, Dmitrii A1 - Cespuglio, Raymond A1 - Proshin, Andrey A1 - Schroeter, Careen A. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Understanding the role of oxidative stress, neuroinflammation and abnormal myelination in excessive aggression associated with depression: recent input from mechanistic studies JF - International Journal of Molecular Sciences N2 - Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions. KW - major depressive disorder (MDD) KW - aggression KW - neuroinflammation KW - oxidative stress KW - insulin receptor KW - myelination Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304917 SN - 1422-0067 VL - 24 IS - 2 ER - TY - JOUR A1 - Strekalova, Tatyana A1 - Pavlov, Dmitrii A1 - Trofimov, Alexander A1 - Anthony, Daniel C. A1 - Svistunov, Andrei A1 - Proshin, Andrey A1 - Umriukhin, Aleksei A1 - Lyundup, Alexei A1 - Lesch, Klaus-Peter A1 - Cespuglio, Raymond T1 - Hippocampal over-expression of cyclooxygenase-2 (COX-2) is associated with susceptibility to stress-induced anhedonia in mice JF - International Journal of Molecular Sciences N2 - The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram. KW - major depression KW - inducible cyclooxygenase-2 (COX-2) KW - hippocampus KW - anhedonia KW - chronic stress KW - stress resilience KW - fear conditioning KW - celecoxib KW - citalopram KW - mouse Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284056 SN - 1422-0067 VL - 23 IS - 4 ER - TY - JOUR A1 - Svirin, Evgeniy A1 - Veniaminova, Ekaterina A1 - Costa-Nunes, João Pedro A1 - Gorlova, Anna A1 - Umriukhin, Aleksei A1 - Kalueff, Allan V. A1 - Proshin, Andrey A1 - Anthony, Daniel C. A1 - Nedorubov, Andrey A1 - Tse, Anna Chung Kwan A1 - Walitza, Susanne A1 - Lim, Lee Wei A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes JF - Cells N2 - The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{−/−}\)) mice. In heterozygous male mice (Tph2\(^{+/−}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/−}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/−}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2\(^{+/−}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior. KW - tryptophan hydroxylase-2 (Tph2) KW - female aggression KW - 5-HT receptors KW - glycogen synthase kinase-3 β (GSK-3β) KW - myelination KW - predation stress Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267250 SN - 2073-4409 VL - 11 IS - 6 ER - TY - JOUR A1 - Jansch, Charline A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Gredy, Sina A1 - Wäldchen, Sina A1 - Vitale, Maria Rosaria A1 - Svirin, Evgeniy A1 - Zöller, Johanna E. M. A1 - Waider, Jonas A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Sauer, Markus A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter T1 - Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly JF - Journal of Neural Transmission N2 - Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders. KW - neuropsychiatric disorders KW - human induced pluripotent stem cell (hiPSC) KW - serotonin-specific neurons KW - median and dorsal raphe KW - synapse formation KW - Cadherin-13 (CDH13) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268519 SN - 1435-1463 VL - 128 IS - 2 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Radtke, Franziska A1 - Vitale, Maria Rosaria A1 - Preuße, André A1 - Klopocki, Eva A1 - Herms, Stefan A1 - Lesch, Klaus-Peter T1 - Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers JF - Stem Cell Research N2 - Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries. KW - congenital heart-deffects KW - transporter gene SLC2A3 KW - copy-number variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264696 VL - 56 ER - TY - JOUR A1 - Vitale, Maria Rosaria A1 - Zöller, Johanna Eva Maria A1 - Jansch, Charline A1 - Janz, Anna A1 - Edenhofer, Frank A1 - Klopocki, Eva A1 - van den Hove, Daniel A1 - Vanmierlo, Tim A1 - Rivero, Olga A1 - Kasri, Nael Nadif A1 - Ziegler, Georg Christoph A1 - Lesch, Klaus-Peter T1 - Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9 JF - Stem Cell Research N2 - Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype. KW - CRISPR-Cas Systems KW - cadherins KW - female KW - heterozygote KW - humans KW - Induced Pluripotent Stem Cells KW - middle aged KW - neurodevelopmental disorders / genetics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260331 VL - 51 ER - TY - JOUR A1 - Aboagye, B. A1 - Weber, T. A1 - Merdian, H. L. A1 - Bartsch, D. A1 - Lesch, K. P. A1 - Waider, J. T1 - Serotonin deficiency induced after brain maturation rescues consequences of early life adversity JF - Scientific Reports N2 - Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKOxMS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders. KW - emotion KW - molecular medicine KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258626 SN - 2045-2322 VL - 11 IS - 1 ER - TY - JOUR A1 - Rivero, Olga A1 - Alhama-Riba, Judit A1 - Ku, Hsing-Ping A1 - Fischer, Matthias A1 - Ortega, Gabriela A1 - Álmos, Péter A1 - Diouf, David A1 - van den Hove, Daniel A1 - Lesch, Klaus-Peter T1 - Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation JF - Frontiers in Genetics N2 - Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity. KW - sialyltransferase KW - sialic acid KW - psychiatric disorders KW - attention-deficit/hyperactivity disorder (ADHD) KW - prefrontal cortex KW - hippocampus KW - mouse model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246855 SN - 1664-8021 VL - 12 ER - TY - JOUR A1 - de Munter, Johannes A1 - Pavlov, Dmitrii A1 - Gorlova, Anna A1 - Sicker, Michael A1 - Proshin, Andrey A1 - Kalueff, Allan V. A1 - Svistunov, Andrey A1 - Kiselev, Daniel A1 - Nedorubov, Andrey A1 - Morozov, Sergey A1 - Umriukhin, Aleksei A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana A1 - Schroeter, Careen A. T1 - Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant JF - Frontiers in Nutrition N2 - Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here. KW - antioxidant nutrients KW - oxidative stress KW - depression KW - post-traumatic stress disorder KW - pro-inflammatory cytokines KW - prefrontal cortex KW - forced swimming KW - mice Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236326 SN - 2296-861X VL - 8 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Ehlis, Ann-Christine A1 - Weber, Heike A1 - Vitale, Maria Rosaria A1 - Zöller, Johanna E. M. A1 - Ku, Hsing-Ping A1 - Schiele, Miriam A. A1 - Kürbitz, Laura I. A1 - Romanos, Marcel A1 - Pauli, Paul A1 - Kalisch, Raffael A1 - Zwanzger, Peter A1 - Domschke, Katharina A1 - Fallgatter, Andreas J. A1 - Reif, Andreas A1 - Lesch, Klaus-Peter T1 - A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD JF - Genes N2 - The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD. KW - ADHD KW - CDH13 KW - neurodevelopment KW - executive functions KW - working memory KW - Big Five KW - agreeableness Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245220 SN - 2073-4425 VL - 12 IS - 9 ER -