TY - JOUR A1 - Verner, Martin A1 - Herrmann, Martin J. A1 - Troche, Stefan J. A1 - Roebers, Claudia M. A1 - Rammsayer, Thomas H. T1 - Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach JF - Frontiers in Human Neuroscience N2 - The present study investigated changes in cortical oxygenation during mental arithmetic using near-infrared spectroscopy (NIRS). Twenty-nine male volunteers were examined using a 52-channel continuous wave system for analyzing activity in prefrontal areas. With the help of a probabilistic mapping method, three regions of interest (ROIs) on each hemisphere were defined: The inferior frontal gyri (IFG), the middle frontal gyri (MFG), and the superior frontal gyri (SFG). Oxygenation as an indicator of functional brain activation was compared over the three ROI and two levels of arithmetic task difficulty (simple and complex additions). In contrast to most previous studies using fMRI or NIRS, in the present study arithmetic tasks were presented verbally in analogue to many daily life situations. With respect to task difficulty, more complex addition tasks led to higher oxygenation in all defined ROI except in the left IFG compared to simple addition tasks. When compared to the channel positions covering different gyri of the temporal lobe, the observed sensitivity to task complexity was found to be restricted to the specified ROIs. As to the comparison of ROIs, the highest oxygenation was found in the IFG, while MFG and SFG showed significantly less activation compared to IFG. The present cognitive-neuroscience approach demonstrated that NIRS is a suitable and highly feasible research tool for investigating and quantifying neural effects of increasing arithmetic task difficulty. KW - cortical activation KW - working memory KW - individual differences KW - prefrontal cortex KW - FMRI KW - brain-regions KW - subsctraction KW - activation KW - bold KW - intelligibility KW - NIRS KW - oxygen consumption KW - task difficulty KW - mental arithmetic KW - near-infrared spectroscopy Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122449 SN - 1662-5161 VL - 7 IS - 217 ER - TY - JOUR A1 - Üçeyler, Nurcan A1 - Kewenig, Susanne A1 - Kittel-Schneider, Sarah A1 - Fallgatter, Andreas J. A1 - Sommer, Claudia T1 - Increased cortical activation upon painful stimulation in fibromyalgia syndrome JF - BMC Neurology N2 - Background Fibromyalgia syndrome (FMS) is a chronic condition characterized by widespread pain and associated symptoms. We investigated cerebral activation in FMS patients by functional near-infrared spectroscopy (fNIRS). Methods Two stimulation paradigms were applied: a) painful pressure stimulation at the dorsal forearm; b) verbal fluency test (VFT). We prospectively recruited 25 FMS patients, ten patients with unipolar major depression (MD) without pain, and 35 healthy controls. All patients underwent neurological examination and all subjects were investigated with questionnaires (pain, depression, FMS, empathy). Results FMS patients had lower pressure pain thresholds than patients with MD and controls (p < 0.001) and reported higher pain intensity (p < 0.001). Upon unilateral pressure pain stimulation fNIRS recordings revealed increased bilateral cortical activation in FMS patients compared to controls (p < 0.05). FMS patients also displayed a stronger contralateral activity over the dorsolateral prefrontal cortex in direct comparison to patients with MD (p < 0.05). While all three groups performed equally well in the VFT, a frontal deficit in cortical activation was only found in patients with depression (p < 0.05). Performance and cortical activation correlated negatively in FMS patients (p < 0.05) and positively in patients with MD (p < 0.05). Conclusion Our data give further evidence for altered central nervous processing in patients with FMS and the distinction between FMS and MD. KW - fibromyalgia syndrome KW - depression KW - cortical activation KW - pain KW - near-infrared spectroscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125230 VL - 15 IS - 210 ER -