TY - THES A1 - Scheffler, Lukas T1 - Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb T1 - Molekularstrahlepitaxie des halb-Heusler Antiferromagneten CuMnSb N2 - This work presents a newly developed method for the epitaxial growth of the half-Heusler antiferromagnet CuMnSb. All necessary process steps, from buffer growth to the deposition of a protective layer, are presented in detail. Using structural, electrical, and magnetic characterization, the material parameters of the epitaxial CuMnSb layers are investigated. The successful growth of CuMnSb by molecular beam epitaxy is demonstrated on InAs (001), GaSb (001), and InP (001) substrates. While CuMnSb can be grown pseudomorphically on InAs and GaSb, the significant lattice mismatch for growth on InP leads to relaxation already at low film thicknesses. Due to the lower conductivity of GaSb compared to InAs, GaSb substrates are particularly suitable for the fabrication of CuMnSb layers for lateral electrical transport experiments. However, by growing a high-resistive ZnTe interlayer below the CuMnSb layer, lateral transport experiments on CuMnSb layers grown on InAs can also be realized. Protective layers of Ru and Al2O3 have proven to be suitable for protecting the CuMnSb layers from the environment. Structural characterization by high resolution X-ray diffraction (full width at half maximum of 7.7 ′′ of the rocking curve) and atomic force microscopy (root mean square surface roughness of 0.14 nm) reveals an outstanding crystal quality of the epitaxial CuMnSb layers. The half-Heusler crystal structure is confirmed by scanning transmission electron microscopy and the stoichiometric material composition by Rutherford backscattering spectrometry. In line with the high crystal quality, a new minimum value of the residual resistance of CuMnSb (𝜌0 = 35 μΩ ⋅ cm) could be measured utilizing basic electrical transport experiments. An elaborate study of epitaxial CuMnSb grown on GaSb reveals a dependence of the vertical lattice parameter on the Mn/Sb flux ratio. This characteristic enables the growth of tensile, unstrained, and compressive strained CuMnSb layers on a single substrate material. Additionally, it is shown that the Néel temperature has a maximum of 62 K at stoichiometric material composition and thus can be utilized as a selection tool for stoichiometric CuMnSb samples. Mn-related defects are believed to be the driving force for these observations. The magnetic characterization of the epitaxial CuMnSb films is performed by superconducting quantum interference device magnetometry. Magnetic behavior comparable to the bulk material is found, however, an additional complex magnetic phase appears in thin CuMnSb films and/or at low magnetic fields, which has not been previously reported for CuMnSb. This magnetic phase is believed to be localized at the CuMnSb surface and exhibits both superparamagnetic and spin-glass-like behavior. The exchange bias effect of CuMnSb is investigated in combination with different in- and out-of-plane ferromagnets. It is shown that the exchange bias effect can only be observed in combination with in-plane ferromagnets. Finally, the first attempts at the growth of fully epitaxial CuMnSb/NiMnSb heterostructures are presented. Both magnetic and structural studies by secondary-ion mass spectrometry indicate the interdiffusion of Cu and Ni atoms between the two half-Heusler layers, however, an exchange bias effect can be observed for the CuMnSb/NiMnSb heterostructures. Whether this exchange bias effect originates from exchange interaction between the CuMnSb and NiMnSb layers, or from ferromagnetic inclusions in the antiferromagnetic layer can not be conclusively identified. N2 - In dieser Arbeit wird eine neu entwickelte Methode für das epitaktische Wachstum des antiferromagnetischen halb-Heuslers CuMnSb vorgestellt. Alle notwendigen Prozessschritte, vom Pufferschichtwachstum bis hin zum Aufbringen einer Schutzschicht, werden detailliert dargestellt. Mittels struktureller, elektrischer und magnetischer Charakterisierung werden die Materialparameter der epitaktischen CuMnSb-Schichten untersucht. Das erfolgreiche Wachstum von CuMnSb durch Molekularstrahlepitaxie wird auf InAs (001), GaSb (001) und InP (001) Substraten demonstriert. Während CuMnSb auf InAs und GaSb pseudomorph gewachsen werden kann, führt die signifikante Gitterfehlanpassung beim Wachstum auf InP bereits bei geringen Schichtdicken zur Relaxation. Aufgrund der geringeren Leitfähigkeit von GaSb im Vergleich zu InAs sind GaSb-Substrate besonders geeignet für die Herstellung von CuMnSb-Schichten für laterale elektrische Transportexperimente. Durch Einbringen einer hochohmigen ZnTe-Zwischenschicht unterhalb der CuMnSb-Schicht können jedoch auch laterale Transportexperimente an CuMnSb-Schichten, die auf InAs gewachsen werden, durchgeführt werden. Schutzschichten aus Ru und Al2O3 haben sich als geeignet erwiesen, die CuMnSb-Schichten vor der Umgebung zu schützen. Die strukturelle Charakterisierung mittels hochauflösender Röntgendiffraktometrie (Halbwertsbreite der Rocking-Kurve von 7.7′′) und Rasterkraftmikroskopie (quadratisches Mittel der Oberflächenrauhigkeit von 0.14nm) zeigt eine hervorragende Kristallqualität der epitaktischen CuMnSb-Schichten. Die halb-Heusler Kristallstruktur wird durch Rastertransmissionselektronenmikroskopie und die stöchiometrische Materialzusammensetzung durch Rutherford- Rückstreuungsspektrometrie bestätigt. In Übereinstimmung mit der hohen Kristallqualität konnte ein neuer Minimalwert des Restwiderstands von CuMnSb (𝜌0 = 35μΩ⋅cm) mit Hilfe von einfachen elektrischen Transportexperimenten gemessen werden. Eine ausführliche Untersuchung von epitaktischem CuMnSb, das auf GaSb gewachsen wurde, zeigt eine Abhängigkeit der vertikalen Gitterkonstante vom Mn/Sb-Flussverhältnis. Diese Eigenschaft ermöglicht das Wachstum von zugverspannten, unverspannten und druckverspannten CuMnSb Schichten auf einem einzigen Substratmaterial. Darüber hinaus wird gezeigt, dass die Néel-Temperatur bei stöchiometrischer Materialzusammensetzung ein Maximum von 62 K aufweist und somit als Auswahlinstrument für stöchiometrische CuMnSb Proben dienen kann. Es wird angenommen, dass Mn-bezogene Defekte ursächlich für diese Beobachtungen sind. Die magnetische Charakterisierung der epitaktischen CuMnSb-Filme erfolgt mittels Magnetometrie. Das magnetische Verhalten ist mit dem des Volumenmaterials vergleichbar. Allerdings tritt in dünnen CuMnSb Filmen und/oder bei niedrigen Magnetfeldern eine zusätzliche komplexe magnetische Phase auf, die bisher noch nicht für CuMnSb beobachtet wurde. Es wird angenommen, dass diese magnetische Phase an der CuMnSb-Oberfläche lokalisiert ist und sowohl superparamagnetisches als auch Spin-Glas-artiges Verhalten zeigt. Der Exchange Bias Effekt von CuMnSb wird in Kombination mit verschiedenen Ferromagneten mit vertikaler und horizontaler remanenter Magnetisierung untersucht. Es wird gezeigt, dass der Exchange Bias Effekt nur in Kombination mit Ferromagneten mit horizontaler remanenter Magnetisierung beobachtet werden kann. Schließlich werden die ersten Versuche zum Wachstum von vollständig epitaktischen CuMnSb/NiMnSb-Heterostrukturen vorgestellt. Sowohl magnetische als auch strukturelle Untersuchungen mittels Sekundärionen-Massenspektrometrie weisen auf die Interdiffusion von Cu- und Ni-Atomen zwischen den beiden halb-Heusler Schichten hin. Der Exchange Bias Effekt kann an den CuMnSb/NiMnSb Heterostrukturen beobachtet werden. Ob dieser Exchange Bias Effekt auf Austauschwechselwirkungen zwischen den CuMnSb- und NiMnSb-Schichten oder auf ferromagnetische Einschlüsse in der antiferromagnetischen Schicht zurückzuführen ist, lässt sich nicht eindeutig feststellen. KW - Molekularstrahlepitaxie KW - Heuslersche Legierung KW - half-Heusler KW - Antiferromagnetikum KW - CuMnSb KW - Antiferromagnet KW - Heusler Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322839 ER -