TY - THES A1 - Rauch, Florian T1 - 1,3-Bis(trifluoromethyl)benzene: A Versatile Building Block for the Synthesis of New Boron-Containing Conjugated Systems T1 - 1,3-Bis(trifluoromethyl)benzol: Ein vielseitiger Baustein für die Synthese neuer borhaltiger konjugierter Systeme N2 - Chapter 1 Thermally activated delayed fluorescence (TADF) materials provide a strategy to improve external quantum efficiencies of organic light emitting diodes (OLEDs). Because of spin-statistics, 25% singlet and 75% triplet excitons are generated in an electronic device. Conventional organic emitters cannot harvest the triplet excitons, due to low spin orbit coupling, and exhibit low external quantum efficiencies. TADF materials have to be designed in such a way, that the energy gap between the lowest singlet and triplet states (ΔES-T) is sufficiently small to allow reverse intersystem crossing (rISC) in organic systems. An established structure property relationship for the generation of TADF materials is the spatial separation of HOMO and LUMO via an orthogonal arrangement of donor and acceptor in donor-π-acceptor (D-π-A) compounds. This is achieved by increasing the steric bulk of the π-bridge. However, this is not always the most efficient method and electronic parameters have to be considered. In a combined experimental and theoretical study, a computational protocol to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new TADF emitters is presented. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states was examined. To prove the computationally aided design concept, the D-π-B(FXyl)2 compounds Cbz-π (1), Cbz-Meπ (2), Phox-Meπ (3), Phox-MeOπ (4), and MeO₃Ph-FMeπ (5) were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data (Figure 5.1). A simple structure-property relationship based on the molecular fragment orbitals of the donor and the π-bridge which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters is presented.   Chapter 2 Three-coordinate boron is widely used as an acceptor in conjugated materials. In recent years the employment of trifluoromethylated aryls was shown to improve the acceptor properties of such boranes. Astonishingly, the use of ortho-trifluoromethylated aryls in boron containing systems also improves the stability of those systems in regard to their inherent reactivity towards nucleophiles. Borafluorenes are stronger acceptors than their non-annulated triarylborane derivatives. In previous studies, the effect of trifluoromethylated aryls as the exo-aryl moieties in borafluorenes, as well as the effect of fluorination on the backbone, were examined. As the latter suffers from a very low stability, systems using trifluoromethyl groups, both on the exo-aryl as well as the borafluorene backbone were designed in order to maximize both the stability as well as the acceptor strength. Three different perfluoroalkylated borafluorenes were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para-substituents on their exo-aryl moieties, being a proton (FXylFBf), a trifluoromethyl group (FMesFBf) or a dimethylamino group (p NMe2-FXylFBf), respectively. Furthermore, an acetonitrile adduct of FMesFBf was obtained and characterized. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron deficient derivative FMesFBf was also chemically reduced and its radical anion isolated and characterized. Furthermore, the photophysical properties of all compounds were investigated. All compounds exhibit weakly allowed lowest energy absorptions and very long fluorescent lifetimes of ca. 250 ns up to 1.6 μs; however, the underlying mechanisms differ. The donor substituted derivative p-NMe2-FXylFBf exhibits thermally activated delayed fluorescence from a charge transfer (CT) state, while the FMesFBf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition dipole moments, as suggested by DFT and TD-DFT calculations.   Chapter 3 Conjugated dendrimers find wide application in various fields, such as charge transport/storage or emitter materials in organic solar cells or OLEDs. Previous studies on boron containing conjugated dendrimers are scarce and mostly employ a convergent synthesis approach, lacking a simple, generally applicable synthetic access. A new divergent approach was designed and conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C–H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2] or [N(nBu)4][HF2]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators (Figure 5.7). Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. The conjugation does not further increase upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane sub-units, suggesting a potential application as photonic antennas.   Chapter 4 A surprisingly high electronically-driven regioselectivity for the iridium-catalyzed C–H borylation using [Ir(COD)OMe]2 (COD = 1,5-cyclooctadiene) as the precatalytic species, bis(pinacolato)diboron (B2pin2) as the boron source and 4,4’-ditertbutyl-2,2’-bipyridin (dtbpy) as the ligand of D-π-A systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(FXyl)2) as the acceptor, and 1,4-phenylene as the π-bridge was observed. Under these conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor groups. As boronate esters are versatile building blocks for organic synthesis (C–C coupling, functional group transformations), the C–H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters. N2 - Kapitel 1 Materialien mit thermisch aktivierter verzögerter Fluoreszenz (TADF) eröffnen einen Weg zur Verbesserung der externen Quanteneffizienz von organischen Leuchtdioden (OLEDs). Aufgrund der Spin-Statistik werden in einem elektronischen Bauelement 25% Singulett- und 75% Triplett-Exzitonen erzeugt. Konventionelle organische Emitter können Triplett-Exzitonen aufgrund ihrer geringen Spin-Bahnkopplung nicht nutzen und weisen niedrige externe Quanteneffizienzen auf. TADF-Materialien müssen so entworfen werden, dass die Energielücke zwischen dem niedrigsten Singulett- und dem niedrigsten Triplett-Zustand (ΔES T) ausreichend klein ist, um Rück-Interkombination (rISC) in organischen Systemen zu ermöglichen (Schema 5.1). Eine etablierte Struktur-Eigenschafts-Beziehung für die Erzeugung von TADF-Materialien ist die räumliche Trennung von HOMO und LUMO über eine orthogonale Anordnung von Donor und Akzeptor in Donor-π-Akzeptor-Verbindungen (D-π-A). Dies wird durch eine Vergrößerung des sterischen Anspruchs der π-Brücke erreicht. Dies ist jedoch nicht immer die effizienteste Methode und elektronische Parameter müssen berücksichtigt werden. In einer kombinierten experimentellen und theoretischen Studie wird ein Berechnungsprotokoll zur Vorhersage der angeregten Zustände in D-π-A-Verbindungen, die die Akzeptorgruppe B(FXyl)2 (FXyl = 2,6-Bis(trifluoromethyl)phenyl) enthalten, für das Design neuer TADF-Emitter vorgestellt. Zu diesem Zweck wurde die Wirkung verschiedener Donor- und π-Brückeneinheiten auf die Energielücken zwischen lokalen und ladungsübertragenden Singulett- und Triplett-Zuständen untersucht. Um das durch quantenchemische Rechnungen gestützte Designkonzept zu beweisen, wurden die D-π-B(FXyl)2-Verbindungen Cbz-π (1), Cbz-Meπ (2), Phox-Meπ (3), Phox-MeOπ (4) und MeO₃Ph-FMeπ (5) synthetisiert und vollständig charakterisiert. Die photophysikalischen Eigenschaften dieser Verbindungen in verschiedenen Lösungsmitteln, im Polymerfilm und in einer gefrorenen Glas-Matrix wurden im Detail untersucht und zeigen eine ausgezeichnete Übereinstimmung mit den berechneten Daten. Eine einfache Struktur-Eigenschafts-Beziehung wird vorgestellt, die auf den molekularen Fragment-Orbitalen des Donors und der π-Brücke basiert, welche die relevanten Singulett-Triplett-Lücken minimieren, um effiziente TADF-Emitter zu erhalten.   Kaptiel 2 Dreifach koordiniertes Bor ist als Akzeptor in konjugierten Materialien weit verbreitet. In den letzten Jahren hat sich gezeigt, dass der Einsatz trifluoromethylierter Aromaten die Akzeptoreigenschaften solcher Borane verbessert. Erstaunlicherweise verbessert die Verwendung von ortho-trifluormethylierten Aromaten in borhaltigen Systemen auch die Stabilität dieser Systeme hinsichtlich ihrer inhärenten Reaktivität gegenüber Nukleophilen. Borafluorene sind von Natur aus stärkere Akzeptoren als ihre nicht benzannulierten Triarylboran-Derivate. In frühere Studien wurde bereits die Wirkung trifluormethylierter Aryle als exo-Aryl-Einheiten in Borfluororenen sowie die Auswirkung der Fluorierung auf das Rückgrat untersucht. Da letztere unter einer sehr geringen Stabilität leiden, wurden Systeme mit Trifluoromethylgruppen sowohl auf dem exo-Aromaten- als auch auf dem Borafluoren-Gerüst entwickelt, um sowohl die Stabilität als auch die Akzeptorstärke zu maximieren. Es wurden drei verschiedene perfluoralkylierte Borfluorene hergestellt und ihre elektronischen und photophysikalischen Eigenschaften untersucht. Die Systeme haben vier Trifluoromethylgruppen am Borafluoren-Gerüst sowie zwei Trifluoromethylgruppen an den ortho-Positionen ihrer exo-Aromaten. Sie unterscheiden sich in Bezug auf die para-Substituenten an ihren exo-Aromaten, die jeweils ein Proton (FXylFBf), eine Trifluormethylgruppe (FMesFBf) oder eine Dimethylaminogruppe (p NMe2 FXylFBf) sind. Des Weiteren wurde ein Acetonitril Addukt von FMesFBf isoliert und charakterisiert. Alle Derivate weisen außergewöhnlich niedrige Reduktionspotenziale auf, die mit denen von Perylendiimiden vergleichbar sind. Das elektronenärmste Derivat FMesFBf wurde ebenfalls chemisch reduziert und das korrespondierende radikalische Anion isoliert und charakterisiert. Eigenschaften aller Verbindungen untersucht. Alle Verbindungen weisen schwach erlaubte niederenergetischste Absorptionsmaxima, sowie sehr lange Fluoreszenzlebensdauern von ca. 250 ns bis zu 1,6 μs auf; die zugrunde liegenden Mechanismen, unterscheiden sich jedoch. Das donorsubstituierte Derivat p-NMe2-FXylFBf zeigt thermisch aktivierte verzögerte Fluoreszenz aus einem Ladungstransfer-(CT-)Zustand, während die Borafluorene FMesFBf und FXylFBf aufgrund ihrer Symmetrie und niedriger Übergangsdipolmomente nur schwach erlaubte lokal angeregte (LE-)Übergänge aufweisen, wie aus DFT- und TD-DFT-Berechnungen hervorgeht.   Kapitel 3 Konjugierte Dendrimere finden breite Anwendung in verschiedenen Bereichen, wie z.B. als Ladungstransport/-speicher- oder Emittermaterialien in organischen Solarzellen oder OLEDs. Bisherige Studien über borhaltige konjugierte Dendrimere sind rar gesät und verwenden meist einen konvergenten Syntheseansatz, dem ein einfacher, allgemein anwendbarer synthetischer Zugang fehlt. Ein neuer divergenter Ansatz wurde entwickelt und konjugierte Triarylboran-Dendrimere wurden bis einschließlich zur zweiten Generation synthetisiert. Die Synthesestrategie besteht aus drei Schritten: 1) Funktionalisierung durch Iridium-katalysierte C-H-Borylierung; 2) Aktivierung durch Fluorierung des erzeugten Boronatesters mit K[HF2] oder [N(nBu)4][HF2]; und 3) Expansion durch Reaktion der Trifluoroboratsalze mit Aryl-Grignard-Reagenzien. Das Konzept erwies sich auch auf einen konvergenten Ansatz übertragbar. Bis auf eine Ausnahme weisen alle konjugierten Boran-Dendrimere mehrere, isolierte und reversible Reduktionsprozesse auf, was sie zu potenziell interessanten Materialien für die Anwendung in molekularen Akkumulatoren macht. Basierend auf ihren photophysikalischen Eigenschaften zeigen die Dendrimere der 1. Generation eine gute Konjugation über das gesamte System. Bei der Erweiterung der Systeme zur zweiten Generation nimmt die Konjugation nicht weiter zu. Allerdings steigen die molaren Extinktionskoeffizienten linear mit der Anzahl der Triarylboran-Untereinheiten, was auf eine Möglichkeit für die Anwendung als photonische Antennen hindeutet.   Kapitel 4 Es wurde eine überraschend hohe, elektronisch gesteuerte Regioselektivität für die Iridium-katalysierte C-H-Borylierung mit [Ir(COD)OMe]2 (COD = 1,5-Cyclooctadien) als präkatalytische Spezies, Bis(pinacolato)diboran (B2pin2) als Borquelle und 4,4'-Di-tert-butyl-2,2'-bipyridin (dtbpy) als Ligand von D-π-A-Systemen mit Diphenylamin (1) oder Carbazolyl (Cbz-π (1)) als Donoren, Bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(FXyl)2) als Akzeptor und 1,4-Phenylen als π-Brücke beobachtet. Unter diesen Bedingungen wurde die Borylierung nur an den sterisch am wenigsten gehinderten para-Positionen der Akzeptorgruppen beobachtet. Da Boronatester vielseitige Bausteine für die organische Synthese sind (C-C-Kupplung, funktionelle Gruppentransformationen), stellt die C–H-Borylierung eine einfache, potentielle Methode zur Funktionalisierung dar, mit der elektronische oder andere Eigenschaften von D-π-A-Systemen für spezifische Anwendungen fein abgestimmt werden können. Die photophysikalischen und elektrochemischen Eigenschaften der borylierten (1-(Bpin)2) und unborylierten (1) diphenylaminosubstituierten D-π-A-Systeme wurden untersucht. Interessanterweise weist das borylierte Derivat eine Koordination von THF an die Boronatester-Einheiten auf, was die photophysikalischen Eigenschaften beeinflusst und die Nicht-Unschuld der Boronatester veranschaulicht. KW - Triarylborane KW - Cyclovoltammetrie KW - Verzögerte Fluoreszenz KW - Trifluormethylphenylgruppe KW - Fotophysik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211478 ER - TY - THES A1 - Reitzenstein, Dörte T1 - Donor-Acceptor Conjugated Polymers for Application in Organic Electronic Devices T1 - Donor-Akzeptor Konjugierte Polymere für die Anwendung in Organischen Elektronischen Bauteilen N2 - In the first part of the work three polycarbazoles poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-2,7-diyl P1, poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-3,6-diyl P2 and poly[N-(4-(diphenylmethylene)-phenyl)- carbazole]-2,7-diyl P3 were synthesized by Yamamoto coupling reaction and their spectroscopic and electrochemical properties were investigated. Absorption and fluorescence characteristics of P1 and P3 were found to be similar to other 2,7-linked polycarbazoles, whereas P2 shows a CT absorption band arising from a shift of electron density from the nitrogen of the carbazole donor to the triarylborane acceptor. This causes a negative solvatochromic absorption and a positive solvatochromic fluorescence behaviour and is responsible for the significantly enlarged fluorescence quantum efficiency in solution and solid state compared to other 3,6-linked polycarbazoles. Thus the spectroscopic properties are governed by the connection pattern: the 2,7-linked polycarbazoles are not affected by the acceptor substituent due to the rigid poly-para-phenylene-like backbone structure, whereas the 3,6-linked polycarbazole P2 is dominated by the properties of the monomer unit due to its more flexible (less conjugated) structure. The oxidative processes of P1-P3 have been investigated in detail by cyclic voltammetry, which are similar to known 2,7- and 3,6-polycarbazoles. The reversible reduction found for P1 and P2, respectively, is attributed to the reduction of the triarylborane moiety. No reduction process referring to the carbazole moiety was observed. Due to its better solubility compared to P1 and P3 only P2 was used as active layer in an OLED device (ITO/P2/Al). The electroluminescence spectrum revealed CIE coordinates of (0.17, 0.21). In the second part of the work the low band gap polyradical poly{[((2,3,4,5,6-pentachlorophenyl)-bis(2,3,5,6-tetrachlorophenyl)methyl radical)-4,4’-diyl]-alt-4,4’-bis(vinylphenyl)-4-(2-ethylhexyloxy)phenylamin} P4 was synthesized by Horner-Emmons reaction. It shows an IV-CT band in the NIR, which arises from an ET from the triarylamine donor to the PCTM radical acceptor. This transition is confined to one monomer unit as deduced from comparison with the monomer spectra. HOMO and LUMO of P4 determined by cyclic voltammetry are at -5.5 and -4.5 eV, respectively. The smaller electrochemical band gap (1.0 eV) compared to the optical band gap (1.2 eV) is probably caused by ion pairing effects in the electrochemical experiments and indicates a low exciton binding energy. Femtosecond-pump-probe transient absorption spectroscopy revealed the spectral features of the oxidized triarylamine donor and the reduced PCTM acceptor similar to the spectra obtained separately for positive and negative potentials by spectroelectrochemistry. Thus the ET event causing the IV-CT absorption band could unambiguously be identified. The decay of the IV-CT state was found to be biexponential. The fast solvent dependent decay component is ascribed to the direct decay from the IV-CT state to the ground state, whereas the slow solvent independent decay component is tentatively attributed to an equilibrium formation of the IV-CT state and a completely charge separated state formed by charge migration along the polymer backbone. Well balanced ambipolar charge transport with hole and electron mobilities of ca. 3 × 10-5 cm2 V-1 s-1 was found in OFET devices (BG/TC structure) comprising an additional insulating organic PPcB layer. Polymer/polymer BHJ solar cell devices with the structure glass/ITO/PEDOT:PSS/(P3HT/P4)/Ca/Al yielded a power conversion efficiency of 3.1 × 10-3 %, VOC = 0.38 V, JSC = 2.8 × 10-2 mA cm-2 and FF = 0.29 for the 1:4 (P3HT/P4) blend ratio. The improper solid state morphology of P4 that causes the unsatisfying performance of OFET and solar cell devices renders P4 less suitable for these applications, whereas the hypothesis of charge migration in the excited state is worth to be investigated in more detail. N2 - Im ersten Teil dieser Arbeit wurden die drei Polycarbazole Poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazol]-2,7-diyl P1, Poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazol]-3,6-diyl P2 und Poly[N-(4-(diphenylmethylen)-phenyl)-carbazol]-2,7-diyl P3 mittels Yamamoto Kupplung synthetisiert und ihre spektroskopischen und elektrochemischen Eigenschaften untersucht. Absorptions- und Fluoreszenzeigenschaften von P1 und P3 sind denen anderer 2,7-verknüpfter Polycarbazole ähnlich, wohingegen P2 eine CT Absorptionsbande zeigt, die durch die Verschiebung von Elektronendichte vom Stickstoff des Carbazoldonors zum Triarylboranakzeptor verursacht wird. Daraus ergeben sich negativ solvatochromes Absorptions- und positiv solvatochromes Fluoreszenzverhalten und eine deutlich erhöhte Fluoreszenzquantenausbeute in Lösung und im Festkörper verglichen mit anderen 3,6-verknüpften Polycarbazolen. Das bedeutet, dass die spektroskopischen Eigenschaften durch die Art der C-C-Verknüpfung gesteuert werden können: das 2,7-verknüpfte Polycarbazol P1 wird durch den Akzeptorsubstituenten aufgrund des starren Polymergerüsts, dem eine poly-para-phenylenartige und damit stärker delokalisierte Struktur zugrunde liegt, nicht beeinflusst. Im Gegensatz dazu treten beim 3,6-verknüpften Polycarbazol P2 die Eigenschaften der Monomereinheit aufgrund der flexibleren 1,4-diaminobiphenyl Struktur in den Vordergrund. Die Oxidationsprozesse von P1-P3 wurden im Detail mittels Cyclovoltammetrie untersucht. Die Ergebnisse stimmen mit Literaturwerten überein. Außerdem wurde bei den Messungen von P1 und P2 ein reversibler Reduktionsprozess, der am Boranzentrum stattfindet, beobachtet. Eine Reduktion der Carbazoleinheit konnte hingegen nicht gefunden werden. Mit der Herstellung von OLEDs der Struktur ITO/P2/Al konnte blaue Elektrolumineszenz mit den CIE Farbkoordinaten (0.17, 0.21) nachgewiesen werden. Im zweiten Teil der Arbeit wurde das low band gap Polyradikal Poly{[((2,3,4,5,6-pentachlorphenyl)-bis(2,3,5,6-tetrachlorphenyl)methyl radical)-4,4‘-diyl]-alt-4,4‘-bis(vinylphenyl)-4-(2-ethylhexyloxy)phenylamin} P4 mittels Horner-Emmons Reaktion synthetisiert. Im NIR beobachtet man eine IV-CT Absorptionsbande, die durch einen Elektronentransfer vom Triarylamindonor zum PCTM-Radikalakzeptor hervorgerufen wird. Dieser elektronische Übergang ist auf eine Monomereinheit begrenzt wie der Vergleich mit den Monomerabsorptionsspektren zeigt. HOMO und LUMO Energien von P4, die anhand der Cyclovoltammogramme bestimmt wurden, liegen bei -5.5 und -4.5 eV. Die im Vergleich zur optischen Energielücke (1.2 eV) kleinere elektrochemische Energielücke (1.9 eV) ist wahrscheinlich auf Ionenpaareffekte bei den elektrochemischen Messungen zurückzuführen, deutet aber auch auf eine geringe Excitonenbindungsenergie hin. Transiente Absorptionsspektren zeigen die spektralen Charakteristika von oxidiertem Triarylamindonor und reduziertem PCTM-Akzeptor vergleichbar mit den Spektren der spektroelektrochemischen Messungen, bei denen eine Lösung von P4 jeweils nacheinander reduziert und oxidiert wurde. Dadurch konnte der Elektronentransferprozess, der zur Ausbildung der IV-CT Bande führt, zweifelsfrei nachgewiesen werden. Der IV-CT Zustand zerfällt biexponentiell. Der schnelle, lösungsmittelabhängige Zerfall beschreibt den direkten Übergang vom IV-CT Zustand in den elektronischen Grundzustand. Dagegen wird der langsame, lösungsmittelunabhängige Zerfall einer Gleichgewichtseinstellung zwischen IV-CT Zustand und vollständig ladungsgetrenntem Zustand, der durch Ladungswanderung entlang der Polymerkette erreicht wird, zugeschrieben. In OFETs mit P4 als Halbleiter und einer zusätzlich isolierenden, organischen PPcB Schicht wurde ein ausgeglichener, ambipolarer Ladungstransport mit Loch- und Elektronenbeweglichkeiten von ca. 3 × 10-5 cm2 V-1 s-1 gefunden. Polymer/Polymer BHJ Solarzellenmodule mit der Struktur Glas/ITO/PEDOT:PSS/(P3HT/P4 1:4)/Ca/Al hatten einen Wirkungsgrad von 0.0031 % bei einer Leerlaufspannung VOC = 0.38 V, einem Kurzschlussstrom JSC = 0.028 mA cm-2 und einem Füllfaktor FF = 0.29. Die ungeeignete Morphologie der P4- und P3HT/P4-Schichten als Ursache für die unbefriedigende Performance von OFETs und Solarzellen lässt solche Anwendungen für P4 wenig sinnvoll erscheinen. Dagegen verdient die Hypothese der Ladungswanderung im angeregten Zustand eine vertiefte Untersuchung. KW - Carbazolderivate KW - Absorption KW - Fluoreszenz KW - Cyclovoltammetrie KW - Spektroelektrochemie KW - neutrales Polyradikal KW - Polycarbazole KW - OFETs KW - Cyclovoltammetrie KW - Transiente Absorption KW - Leitfähige Polymere KW - neutral polyradical KW - polycarbazole KW - OFETs KW - cyclic voltammetry KW - transient absorption Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53939 ER -