TY - THES A1 - Kobs, Konstantin T1 - Think outside the Black Box: Model-Agnostic Deep Learning with Domain Knowledge T1 - Think outside the Black Box: Modellagnostisches Deep Learning mit Domänenwissen N2 - Deep Learning (DL) models are trained on a downstream task by feeding (potentially preprocessed) input data through a trainable Neural Network (NN) and updating its parameters to minimize the loss function between the predicted and the desired output. While this general framework has mainly remained unchanged over the years, the architectures of the trainable models have greatly evolved. Even though it is undoubtedly important to choose the right architecture, we argue that it is also beneficial to develop methods that address other components of the training process. We hypothesize that utilizing domain knowledge can be helpful to improve DL models in terms of performance and/or efficiency. Such model-agnostic methods can be applied to any existing or future architecture. Furthermore, the black box nature of DL models motivates the development of techniques to understand their inner workings. Considering the rapid advancement of DL architectures, it is again crucial to develop model-agnostic methods. In this thesis, we explore six principles that incorporate domain knowledge to understand or improve models. They are applied either on the input or output side of the trainable model. Each principle is applied to at least two DL tasks, leading to task-specific implementations. To understand DL models, we propose to use Generated Input Data coming from a controllable generation process requiring knowledge about the data properties. This way, we can understand the model’s behavior by analyzing how it changes when one specific high-level input feature changes in the generated data. On the output side, Gradient-Based Attribution methods create a gradient at the end of the NN and then propagate it back to the input, indicating which low-level input features have a large influence on the model’s prediction. The resulting input features can be interpreted by humans using domain knowledge. To improve the trainable model in terms of downstream performance, data and compute efficiency, or robustness to unwanted features, we explore principles that each address one of the training components besides the trainable model. Input Masking and Augmentation directly modifies the training input data, integrating knowledge about the data and its impact on the model’s output. We also explore the use of Feature Extraction using Pretrained Multimodal Models which can be seen as a beneficial preprocessing step to extract useful features. When no training data is available for the downstream task, using such features and domain knowledge expressed in other modalities can result in a Zero-Shot Learning (ZSL) setting, completely eliminating the trainable model. The Weak Label Generation principle produces new desired outputs using knowledge about the labels, giving either a good pretraining or even exclusive training dataset to solve the downstream task. Finally, improving and choosing the right Loss Function is another principle we explore in this thesis. Here, we enrich existing loss functions with knowledge about label interactions or utilize and combine multiple task-specific loss functions in a multitask setting. We apply the principles to classification, regression, and representation tasks as well as to image and text modalities. We propose, apply, and evaluate existing and novel methods to understand and improve the model. Overall, this thesis introduces and evaluates methods that complement the development and choice of DL model architectures. N2 - Deep-Learning-Modelle (DL-Modelle) werden trainiert, indem potenziell vorverarbeitete Eingangsdaten durch ein trainierbares Neuronales Netz (NN) geleitet und dessen Parameter aktualisiert werden, um die Verlustfunktion zwischen der Vorhersage und der gewünschten Ausgabe zu minimieren. Während sich dieser allgemeine Ablauf kaum geändert hat, haben sich die verwendeten NN-Architekturen erheblich weiterentwickelt. Auch wenn die Wahl der Architektur für die Aufgabe zweifellos wichtig ist, schlagen wir in dieser Arbeit vor, Methoden für andere Komponenten des Trainingsprozesses zu entwickeln. Wir vermuten, dass die Verwendung von Domänenwissen hilfreich bei der Verbesserung von DL-Modellen bezüglich ihrer Leistung und/oder Effizienz sein kann. Solche modellagnostischen Methoden sind dann bei jeder bestehenden oder zukünftigen NN-Architektur anwendbar. Die Black-Box-Natur von DL-Modellen motiviert zudem die Entwicklung von Methoden, die zum Verständnis der Funktionsweise dieser Modelle beitragen. Angesichts der schnellen Architektur-Entwicklung ist es wichtig, modellagnostische Methoden zu entwickeln. In dieser Arbeit untersuchen wir sechs Prinzipien, die Domänenwissen verwenden, um Modelle zu verstehen oder zu verbessern. Sie werden auf Trainingskomponenten im Eingang oder Ausgang des Modells angewendet. Jedes Prinzip wird dann auf mindestens zwei DL-Aufgaben angewandt, was zu aufgabenspezifischen Implementierungen führt. Um DL-Modelle zu verstehen, verwenden wir kontrolliert generierte Eingangsdaten, was Wissen über die Dateneigenschaften benötigt. So können wir das Verhalten des Modells verstehen, indem wir die Ausgabeänderung bei der Änderung von abstrahierten Eingabefeatures beobachten. Wir untersuchen zudem gradienten-basierte Attribution-Methoden, die am Ausgang des NN einen Gradienten anlegen und zur Eingabe zurückführen. Eingabefeatures mit großem Einfluss auf die Modellvorhersage können so identifiziert und von Menschen mit Domänenwissen interpretiert werden. Um Modelle zu verbessern (in Bezug auf die Ergebnisgüte, Daten- und Recheneffizienz oder Robustheit gegenüber ungewollten Eingaben), untersuchen wir Prinzipien, die jeweils eine Trainingskomponente neben dem trainierbaren Modell betreffen. Das Maskieren und Augmentieren von Eingangsdaten modifiziert direkt die Trainingsdaten und integriert dabei Wissen über ihren Einfluss auf die Modellausgabe. Die Verwendung von vortrainierten multimodalen Modellen zur Featureextraktion kann als ein Vorverarbeitungsschritt angesehen werden. Bei fehlenden Trainingsdaten können die Features und Domänenwissen in anderen Modalitäten als Zero-Shot Setting das trainierbare Modell gänzlich eliminieren. Das Weak-Label-Generierungs-Prinzip erzeugt neue gewünschte Ausgaben anhand von Wissen über die Labels, was zu einem Pretrainings- oder exklusiven Trainigsdatensatz führt. Schließlich ist die Verbesserung und Auswahl der Verlustfunktion ein weiteres untersuchtes Prinzip. Hier reichern wir bestehende Verlustfunktionen mit Wissen über Label-Interaktionen an oder kombinieren mehrere aufgabenspezifische Verlustfunktionen als Multi-Task-Ansatz. Wir wenden die Prinzipien auf Klassifikations-, Regressions- und Repräsentationsaufgaben sowie Bild- und Textmodalitäten an. Wir stellen bestehende und neue Methoden vor, wenden sie an und evaluieren sie für das Verstehen und Verbessern von DL-Modellen, was die Entwicklung und Auswahl von DL-Modellarchitekturen ergänzt. KW - Deep learning KW - Neuronales Netz KW - Maschinelles Lernen KW - Machine Learning KW - Model-Agnostic KW - Domain Knowledge Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349689 ER - TY - JOUR A1 - Steininger, Michael A1 - Abel, Daniel A1 - Ziegler, Katrin A1 - Krause, Anna A1 - Paeth, Heiko A1 - Hotho, Andreas T1 - ConvMOS: climate model output statistics with deep learning JF - Data Mining and Knowledge Discovery N2 - Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts. KW - Klima KW - Modell KW - Deep learning KW - Neuronales Netz KW - climate KW - neural networks KW - model output statistics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324213 SN - 1384-5810 VL - 37 IS - 1 ER - TY - THES A1 - Steininger, Michael T1 - Deep Learning for Geospatial Environmental Regression T1 - Deep Learning für Regressionsmodelle mit georäumlichen Umweltdaten N2 - Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model’s generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location’s land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model’s output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment. N2 - Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten. Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen. Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlichkeit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich. (iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B. extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren enthalten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigenschaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von ML-Methoden für derlei Aufgaben dar. In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merkmalsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend, geeignete DL-Methoden für diesen Bereich zu entwickeln. In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressionsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen. (iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber- wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftverschmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt. (iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern? Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorgeschlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands unserer Umwelt führt. KW - Deep learning KW - Modellierung KW - Umwelt KW - Geospatial KW - Environmental KW - Regression KW - Neuronales Netz KW - Maschinelles Lernen KW - Geoinformationssystem Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313121 ER - TY - THES A1 - Brzoska, Jan T1 - Market forecasting in China: An Artificial Neural Network approach to optimize the accuracy of sales forecasts in the Chinese automotive market T1 - Marktprognosen in China: Einsatz eines Künstlichen Neuronalen Netzes zur Optimierung der monatlichen Absatzprognosequalität im chinesischen Automobilmarkt N2 - Sales forecasts are an essential determinant of operational planning in entrepreneurial organizations. However, in China, as in other emerging markets, monthly sales forecasts are particularly challenging for multinational automotive enterprises and suppliers. A chief reason for this is that conventional approaches to sales forecasting often fail to capture the underlying market dynamics. To that end, this dissertation investigates the application of Artificial Neural Networks with an implemented backpropagation algorithm as a more “unconventional” sales forecasting method. A key element of statistical modelling is the selection of superior leading indicators. These indicators were collected as part of the researcher’s expert interviews with multinational enterprises and state associations in China. The economic plausibility of all specified indicators is critically explored in qualitative-quantitative pre-selection procedures. The overall objective of the present study was to improve the accuracy of monthly sales forecasts in the Chinese automotive market. This objective was achieved by showing that the forecasting error could be lowered to a new benchmark of less than 10% in an out-of-sample forecasting application. N2 - Absatzprognosen sind ein zentraler Bestandteil der operativen Unternehmensplanung. In China, wie auch in anderen Schwellenländern, stellen vor allem monatliche Prognosen jedoch eine besondere Herausforderung für multinationale Automobilhersteller und deren Zulieferer dar. Ein Grund hierfür ist, dass konventionelle Prognoseverfahren der außergewöhnlich hohen Marktdynamik nicht ausreichend gerecht werden. In der vorliegenden Dissertationsschrift werden Künstliche Neuronale Netze mit integriertem Backpropagation-Algorithmus als alternatives Marktprognoseverfahren eingehend beleuchtet. Erprobt vor allem in hochvolatilen Finanzmarktanwendungen ist diese Form künstlicher Intelligenz imstande, hochkomplexe Zusammenhänge zu entschlüsseln und selbständig aus Prognosefehlern zu lernen. Ein Kernelement der statistischen Modellierung ist die Auswahl von geeigneten Frühwarnindikatoren, die unter anderem durch Experteninterviews in chinesischer Sprache bei Regierungsablegern erhoben wurden. Die ökonomische Plausibilität der genannten Indikatoren wird in qualitativ-quantitativen Vorauswahlverfahren kritisch reflektiert. Grundlegendes Ziel des Forschungsprojektes war es, die Güte der monatlichen Absatzprognosen im chinesischen Automobilmarkt zu verbessern. Dieses Ziel konnte mit Unterschreitung der entscheidenden 10%-Prognosefehlerschwelle im Validierungsdatensatz erreicht werden. KW - China KW - Kraftfahrzeugindustrie KW - Marktprognose KW - Neuronales Netz KW - Automotive industry KW - Chinese economy KW - Market forecasts KW - Artificial Neural Networks KW - Backpropagation Learning KW - Leading indicators KW - Institutional voids KW - Emerging markets KW - Resource-based view KW - International business strategy KW - Wirtschaft KW - Prognosen KW - Autoindustrie KW - Neuronale Netze Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203155 ER - TY - THES A1 - Herbort, Oliver T1 - Encoding Redundancy for Task-dependent Optimal Control : A Neural Network Model of Human Reaching T1 - Redundante Repräsentationen als Grundlage aufgabenbezogener optimaler Steuerung:Ein neuronales Netzwerk Modell menschlicher Zeigebewegungen N2 - The human motor system is adaptive in two senses. It adapts to the properties of the body to enable effective control. It also adapts to different situational requirements and constraints. This thesis proposes a new neural network model of both kinds of adaptivity for the motor cortical control of human reaching movements, called SURE_REACH (sensorimotor unsupervised learning redundancy resolving control architecture). In this neural network approach, the kinematic and sensorimotor redundancy of a three-joint planar arm is encoded in task-independent internal models by an unsupervised learning scheme. Before a movement is executed, the neural networks prepare a movement plan from the task-independent internal models, which flexibly incorporates external, task-specific constraints. The movement plan is then implemented by proprioceptive or visual closed-loop control. This structure enables SURE_REACH to reach hand targets while incorporating task-specific contraints, for example adhering to kinematic constraints, anticipating the demands of subsequent movements, avoiding obstacles, or reducing the motion of impaired joints. Besides this functionality, the model accounts for temporal aspects of human reaching movements or for data from priming experiments. Additionally, the neural network structure reflects properties of motor cortical networks like interdependent population encoded body space representations, recurrent connectivity, or associative learning schemes. This thesis introduces and describes the new model, relates it to current computational models, evaluates its functionality, relates it to human behavior and neurophysiology, and finally discusses potential extensions as well as the validity of the model. In conclusion, the proposed model grounds highly flexible task-dependent behavior in a neural network framework and unsupervised sensorimotor learning. N2 - Das motorische System des Menschen ist in zweierlei Hinsicht anpassungsfähig. Es passt sich den Eigenschaften des Körpers an, um diesen effektiv zu kontrollieren. Es passt sich aber auch unterschiedlichen situationsabhängigen Erfordernissen und Beschränkungen an. Diese Dissertation stellt ein neues neuronales Netzwerk Modell der motor-kortikalen Steuerung von menschlichen Zeigebewegungen vor, das beide Arten von Anpassungsfähigkeit integriert (SURE_REACH, Sensumotorische, unüberwacht lernende, redundanzauflösende Kontrollarchitektur). Das neuronale Netzwerk speichert kinematische und sensumotorische Redundanz eines planaren, dreigelenkigen Armes in aufgabenunabhängigen internen Modellen mittels unüberwachter Lernverfahrenen. Vor der Ausführung einer Bewegung bereitet das neuronale Netzwerk einen Bewegungsplan vor. Dieser basiert auf den aufgabenunabhängigen internen Modells und passt sich flexibel äu"seren, aufgabenabhängigen Erfordernissen an. Der Bewegungsplan wird dann durch propriozeptive oder visuelle Regelung umgesetzt. Auf diese Weise erklärt SURE_REACH Bewegungen zu Handzielen die aufgabenabhängige Erfordernisse berücksichtigen, zum Beispiel werden kinematische Beschränkungen miteinbezogen, Erfordernisse nachfolgender Aufgaben antizipiert, Hindernisse vermieden oder Bewegungen verletzter Gelenke reduziert. Desweiteren werden zeitliche Eigenschaften menschlicher Bewegungen oder die Ergebnisse von Primingexperimenten erklärt. Die neuronalen Netzwerke bilden zudem Eigenschaften motor-kortikaler Netzwerke ab, zum Beispiel wechselseitig abhängige Raumrepräsentationen, rekurrente Verbindungen oder assoziative Lernverfahren. Diese Dissertation beschreibt das neue Modell, vergleicht es mit anderen Modellen, untersucht seine Funktionalität, stellt Verbindungen zu menschlichem Verhalten und menschlicher Neurophysiologie her und erörtert schlie"slich mögliche Erweiterungen und die Validität des Models. Zusammenfassend stellt das vorgeschlagene Model eine Erklärung für flexibles aufgabenbezogenes Verhalten auf ein Fundament aus neuronalen Netzwerken und unüberwachten sensumotorischen Lernen. KW - Bewegungssteuerung KW - Motorisches Lernen KW - Redundanz KW - Neuronales Netz KW - Optimale Kontrolle KW - Computersimulation KW - Populationscodes KW - dynamisches Programmieren KW - flexibles Verhalten KW - population codes KW - dynamic programming KW - flexible behavior Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26032 ER -