TY - THES A1 - Karl, Veronika T1 - Augmented Lagrangian Methods for State Constrained Optimal Control Problems T1 - Augmentierte Lagrange-Verfahren für zustandsbeschränkte Optimalsteuerungsprobleme N2 - This thesis is concerned with the solution of control and state constrained optimal control problems, which are governed by elliptic partial differential equations. Problems of this type are challenging since they suffer from the low regularity of the multiplier corresponding to the state constraint. Applying an augmented Lagrangian method we overcome these difficulties by working with multiplier approximations in $L^2(\Omega)$. For each problem class, we introduce the solution algorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with numerical examples. The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal control problems. We start by studying linear-quadratic objective functionals, which include the standard tracking type term and an additional regularization term as well as the case, where the regularization term is replaced by an $L^1(\Omega)$-norm term, which makes the problem ill-posed. We deepen our study of the augmented Lagrangian algorithm by examining the more complicated class of optimal control problems that are governed by a semilinear partial differential equation. The second part investigates the broader class of multi-player control problems. While the examination of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs. The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to the analysis of the uniqueness of normalized equilibria. N2 - Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Regularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Problemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multiplikatoren in $L^2(\Omega)$ verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsalgorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen Ergebnisse durch numerische Beispiele. Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klassischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit konvexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie einem $L^2(\Omega)$-Regularisierungsterm oder einem $L^1(\Omega)$-Term zusammen. Wir erweitern unsere Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrundeliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimalsteuerungsproblems maßgeblich. Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und untersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Generalized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert betrachtet. KW - Optimale Kontrolle KW - Optimierung KW - Nash-Gleichgewicht KW - optimal control KW - state constraints KW - augmented Lagrangian method KW - Elliptische Differentialgleichung KW - Optimale Steuerung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213846 ER - TY - THES A1 - Pörner, Frank T1 - Regularization Methods for Ill-Posed Optimal Control Problems T1 - Regularisierungsverfahren für schlecht gestellte Optimalsteuerungsprobleme N2 - This thesis deals with the construction and analysis of solution methods for a class of ill-posed optimal control problems involving elliptic partial differential equations as well as inequality constraints for the control and state variables. The objective functional is of tracking type, without any additional \(L^2\)-regularization terms. This makes the problem ill-posed and numerically challenging. We split this thesis in two parts. The first part deals with linear elliptic partial differential equations. In this case, the resulting solution operator of the partial differential equation is linear, making the objective functional linear-quadratic. To cope with additional control constraints we introduce and analyse an iterative regularization method based on Bregman distances. This method reduces to the proximal point method for a specific choice of the regularization functional. It turns out that this is an efficient method for the solution of ill-posed optimal control problems. We derive regularization error estimates under a regularity assumption which is a combination of a source condition and a structural assumption on the active sets. If additional state constraints are present we combine an augmented Lagrange approach with a Tikhonov regularization scheme to solve this problem. The second part deals with non-linear elliptic partial differential equations. This significantly increases the complexity of the optimal control as the associated solution operator of the partial differential equation is now non-linear. In order to regularize and solve this problem we apply a Tikhonov regularization method and analyse this problem with the help of a suitable second order condition. Regularization error estimates are again derived under a regularity assumption. These results are then extended to a sparsity promoting objective functional. N2 - Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse von Lösungsverfahren für schlecht gestellte Steuerungsprobleme. Die Nebenbedingungen sind in der Form von elliptischen partiellen Differentialgleichungen, sowie Ungleichungsrestriktionen für die Steuerung und den zugehörigen Zustand gegeben. Das Zielfunktional besteht aus einem Tracking-Type-Term ohne zusätzliche \(L^2\)-Regularisierungsterme. Dies führt dazu, dass das Optimalsteuerungsproblem schlecht gestellt ist, was die numerische Berechnung einer Lösung erschwert. Diese Arbeit ist in zwei Teile aufgeteilt. Der erste Teil beschäftigt sich mit linearen elliptischen partiellen Differentialgleichungen. In diesem Fall ist der zugehörige Lösungsoperator der partiellen Differentialgleichung linear und das Zielfunktional linear-quadratisch. Um die zusätzlichen Steuerungsrestriktionen zu behandeln, betrachten wir ein iteratives Verfahren welches auf einer Regularisierung mit Bregman-Abständen basiert. Für eine spezielle Wahl des Regularisierungsfunktionals vereinfacht sich dieses Verfahren zu dem Proximal-Point-Verfahren. Die Analyse des Verfahrens zeigt, dass es ein effizientes und gut geeignetes Verfahren ist, um schlecht gestellte Optimalsteuerungsprobleme zu lösen. Mithilfe einer Regularitätsannahme werden Konvergenzraten für den Regularisierungsfehler hergeleitet. Diese Regularitätsannahme ist eine Kombination einer Source-Condition sowie einer struktuellen Annahme an die aktiven Mengen. Wenn zusätzlich Zustandsrestriktionen vorhanden sind, wird zur Lösung eine Kombination aus dem Augmented Lagrange Ansatz sowie einer Tikhonov-Regularisierung angewendet. Der zweite Teil dieser Arbeit betrachtet nicht-lineare partielle Differentialgleichungen. Dies erhöht die Komplexität des Optimalsteuerungsproblem signifikant, da der Lösungsoperator der partiellen Differentialgleichung nun nicht-linear ist. Zur Lösung wird eine Tikhonov-Regularisierung betrachtet. Mithilfe einer geeigneten Bedingung zweiter Ordnung wird dieses Verfahren analysiert. Auch hier werden Konvergenzraten mithilfe einer Regularitätsannahme bestimmt. Anschließend werden diese Methoden auf ein Funktional mit einem zusätzlichen \(L^1\)-Term angewendet. N2 - Ill-posed optimization problems appear in a wide range of mathematical applications, and their numerical solution requires the use of appropriate regularization techniques. In order to understand these techniques, a thorough analysis is inevitable. The main subject of this book are quadratic optimal control problems subject to elliptic linear or semi-linear partial differential equations. Depending on the structure of the differential equation, different regularization techniques are employed, and their analysis leads to novel results such as rate of convergence estimates. KW - Optimale Steuerung KW - Regularisierung KW - Elliptische Differentialgleichung KW - optimal control KW - partial differential equation KW - Bregman distance KW - regularization KW - error estimate Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163153 SN - 978-3-95826-086-3 (Print) SN - 978-3-95826-087-0 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-086-3, 26,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER -