TY - JOUR T1 - FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 JF - European Physical Journal C N2 - We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics. KW - Electroweak Phase-Transition KW - By-Light Scattering KW - Deep Inelastic-scattering KW - Strange Baryon Production KW - Dark-Matter KW - Radiative-corrections KW - E(+)E(-) collicions KW - Transverse-Momentum KW - Top-Quark KW - Branching fractions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226938 VL - 79 IS - 474 ER - TY - JOUR T1 - FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 JF - European Physical Journal - Special Topics N2 - In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries. KW - Multiple-Scattering KW - Top-Quark KW - CERN KW - Energy KW - Reduction KW - Impact Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226917 VL - 228 ER -