TY - JOUR A1 - vom Dahl, Christian A1 - Müller, Christoph Emanuel A1 - Berisha, Xhevat A1 - Nagel, Georg A1 - Zimmer, Thomas T1 - Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies JF - Membranes N2 - Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering. KW - optogenetics KW - channelrhodopsin KW - voltage-gated Na\(^+\) channel KW - action potential KW - delayed rectifier potassium channel KW - hERG KW - long QT syndrome Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288228 SN - 2077-0375 VL - 12 IS - 10 ER - TY - JOUR A1 - Jones, Jeffrey J. A1 - Huang, Shouguang A1 - Hedrich, Rainer A1 - Geilfus, Christoph‐Martin A1 - Roelfsema, M. Rob G. T1 - The green light gap: a window of opportunity for optogenetic control of stomatal movement JF - New Phytologist N2 - Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet‐to‐blue and the red‐to‐far‐red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL‐activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL‐sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild‐type plants. Given that crop plants in controlled‐environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light‐emitting diodes), GL signals can be used as a remote‐control signal that controls stomatal transpiration and water consumption. KW - anion channel KW - channelrhodopsin KW - Chl KW - guard cell KW - ion channel KW - light‐gated KW - membrane potential KW - phototropin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293724 VL - 236 IS - 4 SP - 1237 EP - 1244 ER - TY - THES A1 - Duan, Xiaodong T1 - Development of new channelrhodopsin versions with enhanced plasma membrane targeting and high calcium/sodium conductance T1 - Entwicklung neuer Channelrhodopsin-Versionen mit verbessertem Plasmamembrantargeting und hoher Na+- und Ca2+-Leitfähigkeit N2 - The technique to manipulate cells or living animals by illumination after gene transfer of light-sensitive proteins is called optogenetics. Successful optogenetics started with the use of the light-gated cation channel channelrhodopsin-2 (ChR2). After early demonstrations of the power of ChR2, further light-sensitive ion channels and ion pumps were recruited to the optogenetic toolbox. Furthermore, mutations and chimera of ChR2 improved its versatility. However, there is still a need for improved optogenetic tools, e.g. with higher permeability for calcium or better expression in the plasma membrane. In this thesis, my work focuses on the design of highly functional channelrhodopsins with enhanced Na+ and Ca2+ conductance. First, I tested different N-terminal signal peptides to improve the plasma membrane targeting of Channelrhodopsins. We found that a N-terminal peptide, named LR, could improve the plasma membrane targeting of many rhodopsins. Modification with LR contributed to three to ten-fold larger photocurrents (than that of the original version) of multiple channelrhodopsins, like ChR2 from C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs, and the light-activated pump rhodopsins KR2, Jaw, HR. Second, by introducing point mutation, I could further improve the light sensitivity and photocurrent of different channelrhodopsins. For instance, ChR2-XXM 2.0, ChR2-XXL 2.0 and PsChR D139H 2.0 exhibited hundred times larger photocurrents than wild type ChR2 and they show high light sensitivity. Also, the Ca2+ permeable channelrhodopsins PsCatCh 2.0f and PsCatCh 2.0e show very large photocurrents and fast kinetics. In addition, I also characterized a novel bi-stable CeChR (from the acidophilic green alga Chlamydomonas eustigma) with a much longer closing time. Third, I analysed the ion selectivity of different ChRs, which provides a basis for rational selection of channelrhodopsins for different experimental purposes. I demonstrate that ChR2, Chronos, Chrimson, CheRiff and CeChR are highly proton conductive, compared with wild type PsChR. Interestingly, Chronos has the lowest potassium conductance among these channelrhodopsins. Furthermore, I found that mutation of an aspartate in TM4 of ChR2 (D156) and PsChR (D139) to histidine obviously increased both the sodium and calcium permeability while proton conductance was reduced. PsChR D139H 2.0 has the largest sodium conductance of any published channelrhodopsin variants. Additionally, I generated PsCatCh 2.0e which exhibits a ten-fold larger calcium current than the previously reported Ca2+ transporting CrChR2 mutant CatCh. In summary, my research work 1.) described strategies for improving plasma membrane trafficking efficiency of opsins; 2.) yielded channelrhodopsins with fast kinetics or high light sensitivity; 3.) provided optogenetic tools with improved calcium and sodium conductance. We could also improve the performance of channelrhodopsins with distinct action spectra, which will facilitate two-color neural excitation, both in-vitro and in-vivo. N2 - Die Technik, Zellen oder lebende Tiere nach dem Gentransfer lichtempfindlicher Proteine durch Belichtung zu manipulieren, wird als Optogenetik bezeichnet. Erfolgreiche Optogenetik begann mit der Verwendung des lichtgesteuerten Kationenkanals Channelrhodopsin-2 (ChR2). Nach frühen erfolgreichen Versuchen mit ChR2 wurden weitere lichtempfindliche Ionenkanäle und Ionenpumpen als optogenetische Werkzeuge etabliert. Darüber hinaus verbesserten Mutationen und Chimären von ChR2 seine Vielseitigkeit. Es besteht jedoch immer noch ein Bedarf an verbesserten optogenetischen Werkzeugen, z. mit höherer Permeabilität für Calcium oder besserer Expression in der Plasmamembran. In dieser Arbeit beschäftige ich mich mit dem Design hochfunktioneller Channelrhodopsine mit verbesserter Na+- und Ca2+-Leitfähigkeit. Zuerst habe ich verschiedene N-terminale Signalpeptide getestet, um die Anreicherung von Channelrhodopsinen in der Plasmamembran (“Plasmamembran-Targeting”) zu verbessern. Wir fanden heraus, dass ein N-terminales Peptid namens LR das Plasmamembran-Targeting vieler Rhodopsine verbessern kann. Die Modifikation mit LR trug zu drei- bis zehnfach größeren Photoströmen (als die der Originalversion) von mehreren Channelrhodopsinen bei, wie ChR2 von C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs und der lichtaktivierten Pump-Rhodopsine KR2, Jaw, HR. Zweitens konnte ich durch Mutagenese die Lichtempfindlichkeit und/oder den Photostrom verschiedener Channelrhodopsine weiter verbessern. Beispielsweise zeigten ChR2-XXM 2.0, ChR2-XXL 2.0 und PsChR D139H 2.0 hundertmal größere Photoströme als Wildtyp-ChR2 und sie zeigen eine hohe Lichtempfindlichkeit. Auch die Ca2+-permeablen Kanalrhodopsine PsCatCh 2.0f und PsCatCh 2.0e zeigen sehr große Photoströme und eine schnelle Kinetik. Außerdem habe ich ein neues bistabiles CeChR (aus der azidophilen Grünalge Chlamydomonas eustigma) mit einer viel längeren Schließzeit charakterisiert. Drittens analysierte ich die Ionenselektivität verschiedener ChRs, die eine Grundlage für die rationale Selektion von Channelrhodopsinen für verschiedene experimentelle Zwecke bietet. Ich zeige, dass ChR2, Chronos, Chrimson, CheRiff und CeChR im Vergleich zu Wildtyp-PsChR eine hohe Protonenleitfähigkeit aufweisen. Interessanterweise weist Chronos die niedrigste Kaliumleitfähigkeit unter diesen Channelrhodopsinen auf. Außerdem fand ich, dass die Mutation eines Aspartats in TM4 von ChR2 (D156) und PsChR (D139) zu Histidin offensichtlich sowohl die Natrium- als auch die Calciumpermeabilität erhöht, während die Protonenleitfähigkeit verringert ist. PsChR D139H 2.0 weist die größte Natriumleitfähigkeit aller veröffentlichten Channelrhodopsin-Varianten auf. Zusätzlich erzeugte ich PsCatCh 2.0e, das einen zehnmal größeren Calciumstrom als die zuvor berichtete Ca2+-transportierende CrChR2-Mutante CatCh aufweist. Zusammenfassend ergab meine Dissertationsarbeit: 1.) Strategien zur Verbesserung der Expression von Opsinen in der Plasmamembran; 2.) Gut exprimierende Channelrhodopsine mit schneller Kinetik oder hoher Lichtempfindlichkeit; 3.) Neue optogenetische Werkzeuge mit verbesserter Calcium- und Natriumleitfähigkeit. Auch konnte ich die Leistung von Channelrhodopsinen mit unterschiedlichen Aktionsspektren verbessern, was die zweifarbige neuronale Anregung sowohl in vitro als auch in vivo erleichtern sollte. KW - Optogenetik KW - Channelrhodopsinen KW - optogenetic KW - channelrhodopsin KW - molecular engineering KW - voltage clamp Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188397 ER -