TY - JOUR A1 - Nguemeni, Carine A1 - Homola, György A. A1 - Nakchbandi, Luis A1 - Pham, Mirko A1 - Volkmann, Jens A1 - Zeller, Daniel T1 - A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis JF - Frontiers in Human Neuroscience N2 - Background: Multiple sclerosis (MS) may cause variable functional impairment. The discrepancy between functional impairment and brain imaging findings in patients with MS (PwMS) might be attributed to differential adaptive and consolidation capacities. Modulating those abilities could contribute to a favorable clinical course of the disease. Objectives: We examined the effect of cerebellar transcranial direct current stimulation (c-tDCS) on locomotor adaptation and consolidation in PwMS using a split-belt treadmill (SBT) paradigm. Methods: 40 PwMS and 30 matched healthy controls performed a locomotor adaptation task on a SBT. First, we assessed locomotor adaptation in PwMS. In a second investigation, this training was followed by cerebellar anodal tDCS applied immediately after the task ipsilateral to the fast leg (T0). The SBT paradigm was repeated 24 h (T1) and 78 h (T2) post-stimulation to evaluate consolidation. Results: The gait dynamics and adaptation on the SBT were comparable between PwMS and controls. We found no effects of offline cerebellar anodal tDCS on locomotor adaptation and consolidation. Participants who received the active stimulation showed the same retention index than sham-stimulated subjects at T1 (p = 0.33) and T2 (p = 0.46). Conclusion: Locomotor adaptation is preserved in people with mild-to-moderate MS. However, cerebellar anodal tDCS applied immediately post-training does not further enhance this ability. Future studies should define the neurobiological substrates of maintained plasticity in PwMS and how these substrates can be manipulated to improve compensation. Systematic assessments of methodological variables for cerebellar tDCS are urgently needed to increase the consistency and replicability of the results across experiments in various settings. KW - multiple sclerosis KW - cerebellar tDCS KW - split-belt treadmill KW - locomotor adaptation KW - consolidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215291 SN - 1662-5161 VL - 14 ER - TY - JOUR A1 - Herbort, Oliver A1 - Butz, Martin V. T1 - Too good to be true? Ideomotor theory from a computational perspective N2 - In recent years, Ideomotor Theory has regained widespread attention and sparked the development of a number of theories on goal-directed behavior and learning. However, there are two issues with previous studies’ use of Ideomotor Theory. Although Ideomotor Theory is seen as very general, it is often studied in settings that are considerably more simplistic than most natural situations. Moreover, Ideomotor Theory’s claim that effect anticipations directly trigger actions and that action-effect learning is based on the formation of direct action-effect associations is hard to address empirically. We address these points from a computational perspective. A simple computational model of Ideomotor Theory was tested in tasks with different degrees of complexity.The model evaluation showed that Ideomotor Theory is a computationally feasible approach for understanding efficient action-effect learning for goal-directed behavior if the following preconditions are met: (1) The range of potential actions and effects has to be restricted. (2) Effects have to follow actions within a short time window. (3) Actions have to be simple and may not require sequencing. The first two preconditions also limit human performance and thus support Ideomotor Theory. The last precondition can be circumvented by extending the model with more complex, indirect action generation processes. In conclusion, we suggest that IdeomotorTheory offers a comprehensive framework to understand action-effect learning. However, we also suggest that additional processes may mediate the conversion of effect anticipations into actions in many situations. KW - Psychologie KW - ideomotor theory KW - associative learning KW - computational model KW - planning KW - consolidation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76383 ER -