TY - JOUR A1 - Jazbutyte, Virginija A1 - Stumpner, Jan A1 - Redel, Andreas A1 - Lorenzen, Johan M. A1 - Roewer, Norbert A1 - Thum, Thomas A1 - Kehl, Franz T1 - Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo JF - PLoS One N2 - The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17b- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94615.5% vs. 17.163.62%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model. KW - smooth muscle cells KW - estrogens KW - heart KW - anesthetics KW - immunostaining KW - endothelial cells KW - gene expression KW - myocardial infarction Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151258 VL - 7 IS - 8 ER - TY - JOUR A1 - Lapa, Constantin A1 - Linsenmann, Thomas A1 - Lückerath, Katharina A1 - Samnick, Samuel A1 - Herrmann, Ken A1 - Stoffer, Carolin A1 - Ernestus, Ralf-Ingo A1 - Buck, Andreas K. A1 - Löhr, Mario A1 - Monoranu, Camelia-Maria T1 - Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy? JF - PLoS One N2 - Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM. KW - glioma KW - positron emission tomography KW - glioblastoma multiforme KW - macrophages KW - somatostatin KW - microglial cells KW - immunostaining KW - magnetic resonance imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125498 VL - 10 IS - 3 ER -