TY - JOUR A1 - Zahran, Eman Maher A1 - Albohy, Amgad A1 - Khalil, Amira A1 - Ibrahim, Alyaa Hatem A1 - Ahmed, Heba Ali A1 - El-Hossary, Ebaa M. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation JF - Marine Drugs N2 - Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented. KW - Scleractinia KW - marine bacteria KW - marine fungi KW - zooxanthellae KW - marine natural products KW - ADME analysis KW - SARS-CoV-2 KW - molecular docking KW - RNA-dependent RNA polymerase KW - methyltransferase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220041 SN - 1660-3397 VL - 18 IS - 12 ER - TY - JOUR A1 - Hentschel, Ute A1 - Kamke, Janine A1 - Rinke, Christian A1 - Schwientek, Patrick A1 - Mavromatis, Kostas Mavromatis A1 - Ivanova, Natalia A1 - Sczyrba, Alexander A1 - Woyke, Tanja T1 - The Candidate Phylum Poribacteria by Single-Cell Genomics: New Insights into Phylogeny, Cell-Compartmentation, Eukaryote-Like Repeat Proteins, and Other Genomic Features N2 - The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake. KW - Candidate Phylum Poribacteria KW - protein domains KW - genomic databases KW - phylogenetic analysis KW - genome analysis KW - sponges KW - marine bacteria KW - phylogenetics KW - polyvinyl chloride Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112649 N1 - This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. ER -