TY - JOUR A1 - Esmaeilpour, Donya A1 - Broscheit, Jens Albert A1 - Shityakov, Sergey T1 - Cyclodextrin-based polymeric materials bound to corona protein for theranostic applications JF - International Journal of Molecular Sciences N2 - Cyclodextrins (CDs) are cyclic oligosaccharide structures that could be used for theranostic applications in personalized medicine. These compounds have been widely utilized not only for enhancing drug solubility, stability, and bioavailability but also for controlled and targeted delivery of small molecules. These compounds can be complexed with various biomolecules, such as peptides or proteins, via host-guest interactions. CDs are amphiphilic compounds with water-hating holes and water-absorbing surfaces. Architectures of CDs allow the drawing and preparation of CD-based polymers (CDbPs) with optimal pharmacokinetic and pharmacodynamic properties. These polymers can be cloaked with protein corona consisting of adsorbed plasma or extracellular proteins to improve nanoparticle biodistribution and half-life. Besides, CDs have become famous in applications ranging from biomedicine to environmental sciences. In this review, we emphasize ongoing research in biomedical fields using CD-based centered, pendant, and terminated polymers and their interactions with protein corona for theranostic applications. Overall, a perusal of information concerning this novel approach in biomedicine will help to implement this methodology based on host-guest interaction to improve therapeutic and diagnostic strategies. KW - cyclodextrin KW - theranostics KW - protein corona KW - nanomedicine KW - therapy KW - polymers Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297399 SN - 1422-0067 VL - 23 IS - 21 ER - TY - JOUR A1 - Tessmer, Ingrid A1 - Kaur, Parminder A1 - Lin, Jiangguo A1 - Wang, Hong T1 - Investigating bioconjugation by atomic force microscopy JF - Journal of Nanobiotechnology N2 - Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. KW - nanorobot KW - biosensors KW - nanomedicine KW - nanolithography KW - nanoelectronics KW - bioconjugation KW - nanotechnology KW - atomic force microscopy (AFM) KW - DNA origami KW - single molecule Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129477 VL - 11 IS - 25 ER -