TY - JOUR A1 - Walther, Grit A1 - Wagner, Lysett A1 - Kurzai, Oliver T1 - Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa JF - Journal of Fungi N2 - Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed. KW - Mucorales KW - taxonomy KW - pathogens KW - identification KW - ecology KW - Circinella KW - Lichtheimia KW - Mucor KW - Rhizomucor KW - Rhizopus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193081 SN - 2309-608X VL - 5 IS - 4 ER - TY - JOUR A1 - Pernitzsch, Sandy R. A1 - Alzheimer, Mona A1 - Bremer, Belinda U. A1 - Robbe-Saule, Marie A1 - De Reuse, Hilde A1 - Sharma, Cynthia M. T1 - Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori JF - Nature Communications N2 - The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB. KW - bacterial genetics KW - bacterial immune evasion KW - pathogens KW - small RNAs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261536 VL - 12 IS - 1 ER - TY - JOUR A1 - Schieferle, Sebastian A1 - Tappe, Beeke A1 - Korte, Pamela A1 - Mueller, Martin J. A1 - Berger, Susanne T1 - Pathogens and Elicitors Induce Local and Systemic Changes in Triacylglycerol Metabolism in Roots and in Leaves of Arabidopsis thaliana JF - Biology N2 - Simple Summary Abiotic and biotic stress conditions result in profound changes in plant lipid metabolism. Vegetable oil consists of triacylglycerols, which are important energy and carbon storage compounds in seeds of various plant species. These compounds are also present in vegetative tissue, and levels have been reported to increase with different abiotic stresses in leaves. This work shows that triacylglycerols accumulate in roots and in distal, non-treated leaves upon treatment with a fungal pathogen or lipopolysaccharide (a common bacterial-derived elicitor in animals and plants). Treatment of leaves with a bacterial pathogen or a bacterial effector molecule results in triacylglycerol accumulation in leaves, but not systemically in roots. These results suggest that elicitor molecules are sufficient to induce an increase in triacylglycerol levels, and that unidirectional long-distance signaling from roots to leaves is involved in pathogen and elicitor-induced triacylglycerol accumulation. Abstract Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses. KW - triacylglycerols KW - membrane remodeling KW - pathogens KW - elicitors KW - effectors Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246198 SN - 2079-7737 VL - 10 IS - 9 ER - TY - JOUR A1 - Selle, Martina A1 - Hertlein, Tobias A1 - Oesterreich, Babett A1 - Klemm, Theresa A1 - Kloppot, Peggy A1 - Müller, Elke A1 - Ehricht, Ralf A1 - Stentzel, Sebastian A1 - Bröker, Barbara M. A1 - Engelmann, Susanne A1 - Ohlsen, Knut T1 - Global antibody response to Staphylococcus aureus live-cell vaccination JF - Scientific Reports N2 - The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. KW - pathogens KW - bacterial infection KW - cell vaccines KW - Staphylococcus aureus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181245 VL - 6 ER - TY - JOUR A1 - Jarick, Marcel A1 - Bertsche, Ute A1 - Stahl, Mark A1 - Schultz, Daniel A1 - Methling, Karen A1 - Lalk, Michael A1 - Stigloher, Christian A1 - Steger, Mirco A1 - Schlosser, Andreas A1 - Ohlsen, Knut T1 - The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus JF - Scientific Reports N2 - The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels. KW - bacterial transcription KW - pathogens KW - cell wall synthesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177333 VL - 8 IS - 13693 ER - TY - JOUR A1 - Strobel, Lea A1 - Johswich, Kay O. T1 - Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection JF - Scientific Reports N2 - Neisseria meningitidis (meningococcus) causes invasive diseases such as meningitis or septicaemia. Ex vivo infection of human whole blood is a valuable tool to study meningococcal virulence factors and the host innate immune responses. In order to consider effects of cellular mediators, the coagulation cascade must be inhibited to avoid clotting. There is considerable variation in the anticoagulants used among studies of N. meningitidis whole blood infections, featuring citrate, heparin or derivatives of hirudin, a polypeptide from leech saliva. Here, we compare the influence of these three different anticoagulants, and additionally Mg/EGTA, on host innate immune responses as well as on viability of N. meningitidis strains isolated from healthy carriers and disease cases, reflecting different sequence types and capsule phenotypes. We found that the anticoagulants significantly impact on cellular responses and, strain-dependently, also on bacterial survival. Hirudin does not inhibit complement and is therefore superior over the other anticoagulants; indeed hirudin-plasma most closely reflects the characteristics of serum during N. meningitidis infection. We further demonstrate the impact of heparin on complement activation on N. meningitidis and its consequences on meningococcal survival in immune sera, which appears to be independent of the heparin binding antigens Opc and NHBA. KW - infection KW - pathogens KW - Neisseria meningitidis KW - anticoagulants Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176226 VL - 8 IS - 10225 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER -