TY - JOUR A1 - Schlee, Winfried A1 - Neff, Patrick A1 - Simoes, Jorge A1 - Langguth, Berthold A1 - Schoisswohl, Stefan A1 - Steinberger, Heidi A1 - Norman, Marie A1 - Spiliopoulou, Myra A1 - Schobel, Johannes A1 - Hannemann, Ronny A1 - Pryss, Rüdiger T1 - Smartphone-guided educational counseling and self-help for chronic tinnitus JF - Journal of Clinical Medicine N2 - Tinnitus is an auditory phantom perception in the ears or head in the absence of a corresponding external stimulus. There is currently no effective treatment available that reliably reduces tinnitus. Educational counseling is a treatment approach that aims to educate patients and inform them about possible coping strategies. For this feasibility study, we implemented educational material and self-help advice in a smartphone app. Participants used the educational smartphone app unsupervised during their daily routine over a period of four months. Comparing the tinnitus outcome measures before and after smartphone-guided treatment, we measured changes in tinnitus-related distress, but not in tinnitus loudness. Improvements on the Tinnitus Severity numeric rating scale reached an effect size of 0.408, while the improvements on the Tinnitus Handicap Inventory (THI) were much smaller with an effect size of 0.168. An analysis of user behavior showed that frequent and intensive use of the app is a crucial factor for treatment success: participants that used the app more often and interacted with the app intensively reported a stronger improvement in the tinnitus. Between study allocation and final assessment, 26 of 52 participants dropped out of the study. Reasons for the dropouts and lessons for future studies are discussed in this paper. KW - tinnitus KW - self-help KW - ecological momentary assessment KW - ehealth KW - smart-phone KW - intervention Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267295 SN - 2077-0383 VL - 11 IS - 7 ER - TY - JOUR A1 - Allgaier, Johannes A1 - Schlee, Winfried A1 - Probst, Thomas A1 - Pryss, Rüdiger T1 - Prediction of tinnitus perception based on daily life mHealth data using country origin and season JF - Journal of Clinical Medicine N2 - Tinnitus is an auditory phantom perception without external sound stimuli. This chronic perception can severely affect quality of life. Because tinnitus symptoms are highly heterogeneous, multimodal data analyses are increasingly used to gain new insights. MHealth data sources, with their particular focus on country- and season-specific differences, can provide a promising avenue for new insights. Therefore, we examined data from the TrackYourTinnitus (TYT) mHealth platform to create symptom profiles of TYT users. We used gradient boosting engines to classify momentary tinnitus and regress tinnitus loudness, using country of origin and season as features. At the daily assessment level, tinnitus loudness can be regressed with a mean absolute error rate of 7.9% points. In turn, momentary tinnitus can be classified with an F1 score of 93.79%. Both results indicate differences in the tinnitus of TYT users with respect to season and country of origin. The significance of the features was evaluated using statistical and explainable machine learning methods. It was further shown that tinnitus varies with temperature in certain countries. The results presented show that season and country of origin appear to be valuable features when combined with longitudinal mHealth data at the level of daily assessment. KW - tinnitus KW - gradient boosting machine KW - mobile health KW - machine learning KW - multimodal data KW - explainable machine learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281812 SN - 2077-0383 VL - 11 IS - 15 ER - TY - JOUR A1 - Kraft, Robin A1 - Reichert, Manfred A1 - Pryss, Rüdiger T1 - Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: an experiment with Android devices JF - Sensors N2 - The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users' individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable. KW - mHealth KW - crowdsensing KW - tinnitus KW - noise measurement KW - environmental sound Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252246 SN - 1424-8220 VL - 22 IS - 1 ER - TY - JOUR A1 - Schlee, Winfried A1 - Simoes, Jorge A1 - Pryss, Rüdiger T1 - Auricular acupressure combined with self-help intervention for treating chronic tinnitus: a longitudinal observational study JF - Journal of Clinical Medicine N2 - Tinnitus is a phantom sound perception in the ears or head and can arise from many different medical disorders. Currently, there is no standard treatment for tinnitus that reliably reduces tinnitus. Individual patients reported that acupressure at various points around the ear can help to reduce tinnitus, which was investigated here. With this longitudinal observational study, we report a systematic evaluation of auricular acupressure on 39 tinnitus sufferers, combined with a self-help smartphone app. The participants were asked to report on tinnitus, stress, mood, neck, and jaw muscle tensions twice a day using an ecological momentary assessment study design for six weeks. On average, 123.6 questionnaires per person were provided and used for statistical analysis. The treatment responses of the participants were heterogeneous. On average, we observed significant negative trends for tinnitus loudness (Cohen's d effect size: −0.861), tinnitus distress (d = −0.478), stress (d = −0.675), and tensions in the neck muscles (d = −0.356). Comparison with a matched control group revealed significant improvements for tinnitus loudness (p = 0.027) and self-reported stress level (p = 0.003). The positive results of the observational study motivate further research including a randomized clinical trial and long-term assessment of the clinical improvement. KW - tinnitus KW - acupressure KW - self-help KW - ecological momentary assessment KW - stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246209 SN - 2077-0383 VL - 10 IS - 18 ER - TY - JOUR A1 - Unnikrishnan, Vishnu A1 - Schleicher, Miro A1 - Shah, Yash A1 - Jamaludeen, Noor A1 - Pryss, Ruediger A1 - Schobel, Johannes A1 - Kraft, Robin A1 - Schlee, Winfried A1 - Spiliopoulou, Myra T1 - The effect of non-personalised tips on the continued use of self-monitoring mHealth applications JF - Brain Sciences N2 - Chronic tinnitus, the perception of a phantom sound in the absence of corresponding stimulus, is a condition known to affect patients' quality of life. Recent advances in mHealth have enabled patients to maintain a ‘disease journal’ of ecologically-valid momentary assessments, improving patients' own awareness of their disease while also providing clinicians valuable data for research. In this study, we investigate the effect of non-personalised tips on patients' perception of tinnitus, and on their continued use of the application. The data collected from the study involved three groups of patients that used the app for 16 weeks. Groups A & Y were exposed to feedback from the start of the study, while group B only received tips for the second half of the study. Groups A and Y were run by different supervisors and also differed in the number of hospital visits during the study. Users of Group A and B underwent assessment at baseline, mid-study, post-study and follow-up, while users of group Y were only assessed at baseline and post-study. It is seen that the users in group B use the app for longer, and also more often during the day. The answers of the users to the Ecological Momentary Assessments are seen to form clusters where the degree to which the tinnitus distress depends on tinnitus loudness varies. Additionally, cluster-level models were able to predict new unseen data with better accuracy than a single global model. This strengthens the argument that the discovered clusters really do reflect underlying patterns in disease expression. KW - tinnitus KW - ecological momentary assessments KW - physician feedback KW - mHealth KW - self-monitoring KW - non-personalised tips Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219435 SN - 2076-3425 VL - 10 IS - 12 ER - TY - JOUR A1 - Kraft, Robin A1 - Birk, Ferdinand A1 - Reichert, Manfred A1 - Deshpande, Aniruddha A1 - Schlee, Winfried A1 - Langguth, Berthold A1 - Baumeister, Harald A1 - Probst, Thomas A1 - Spiliopoulou, Myra A1 - Pryss, Rüdiger T1 - Efficient processing of geospatial mHealth data using a scalable crowdsensing platform JF - Sensors N2 - Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case. KW - mHealth KW - crowdsensing KW - tinnitus KW - geospatial data KW - cloud-native KW - stream processing KW - scalability KW - architectural design Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207826 SN - 1424-8220 VL - 20 IS - 12 ER - TY - JOUR A1 - Pryss, Rüdiger A1 - Schlee, Winfried A1 - Hoppenstedt, Burkhard A1 - Reichert, Manfred A1 - Spiliopoulou, Myra A1 - Langguth, Berthold A1 - Breitmayer, Marius A1 - Probst, Thomas T1 - Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study JF - Journal of Medical Internet Research N2 - Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify the daily moment-to-moment variations of their tinnitus symptoms. In all platforms developed for more than one OS, it is important to investigate whether the crowdsensed data predicts the OS that was used in order to understand the degree to which the OS is a confounder that is necessary to consider. KW - crowdsensing KW - ecological momentary assessment KW - mHealth KW - machine learning KW - mobile operating system differences KW - tinnitus KW - mobile phone Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229517 VL - 22 IS - 6 ER - TY - JOUR A1 - Vona, Barbara A1 - Nanda, Indrajit A1 - Shehata-Dieler, Wafaa A1 - Haaf, Thomas T1 - Genetics of Tinnitus: Still in its Infancy JF - Frontiers in Neuroscience N2 - Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention. KW - twin study KW - complex disorders KW - genetics KW - genetic heterogeneity KW - genome-wide association study (GWAS) KW - hearing loss KW - tinnitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170926 VL - 11 IS - 236 ER -