TY - THES A1 - Busch, Albert Franz Jakob T1 - Prälamin A und Progerie – verursachende Mutanten im Kontext nukleärer Transportprozesse, der Kernlaminaintegrität und CaaX – Prozessierung T1 - Prelamin A und truncated mutations in nuclear export, lamina integrity and CaaX processing N2 - Zur Charakterisierung nukleärer Proteinexportvorgänge wurde in dieser Arbeit zum ersten Mal ein System heterodimerisierender Fusionsproteine auf Basis des kommerziell verfügbaren ARGENT™ Regulated Heterodimerization Kit 2.0 von ARIAD verwendet. Die Expressionsvektoren wurden so verändert, dass ein CRM1 – vermittelter Proteinexport über die Zellkernhülle mittels Fluoreszenzmikroskopie in HeLa – Zellen und humanen Fibroblasten live oder nach Fixation dargestellt werden konnte. Der Export folgte in HeLa – zellen einer exponentiellen Kinetik, FN/C – Bestimmungen zwischen Wildtyp – und RD (Restriktive Dermopathie) – Fibroblasten ergaben keinen Unterschied im Proteinexport. Eine Inhibition der initialen CaaX - Prozessierung von trunkiertem Prälamin A (head/rod) durch Mevinolin ergab keine signifikante Akkumulationsveränderung des trunkierten Prälamins im Zellkern. Ergänzende subzelluläre Lokalisationsstudien unter Zuhilfenahme ausgewählter CaaX – Mutanten, um die gezeigte Unabhängigkeit der CaaX – Prozessierung zu verifizieren, stehen noch aus. FRAP – Untersuchungen in HeLa – Zellen zeigten für die episomal exprimierten trunkierten Fusionsproteine DsRed – Prälamin A Δ50 und DsRed – Prälamin A Δ90 keinen Unterschied in der lateralen Mobilität. Gegenüber dem Wildtyp – DsRed – Prälamin A ist die Beweglichkeit jedoch signifikant reduziert. Bei der Applikation von thermischem Stress (37°C – 51°C) auf Prälamin A, Prälamin A Δ50 oder Prälamin A Δ90 exprimierende HeLa – Zellen, konnte keine Veränderung hinsichtlich der subzellulären Verteilung des zusätzlich koexprimierten Markerproteins GFP – ß – Galaktosidase im Sinne nukleären Schrankenstörung festgestellt werden. Somit scheint die Kernhülle trotz der zu Zellkerndysmorphien und KPK – Fehllokalisationen führenden Prälamin A – Mutanten hinsichtlich ihrer Schrankenfunktion intakt zu bleiben. N2 - Lamin A and truncated forms were investigated adressing nuclear export, caax processing and laminar integrity. Nuclear export processes were investigated in vivo and in vivo via a modified heterdimerization assay. No difference was seen in human fibroblasts from wildtype and restrictive dermopathy patients concerning crm1-mediated nuclear export truncated prelamin A showed no enhanced nuclear localisation after inhibition of farnesylsynthesis. HGPS- and RD lamin A showed significantly decreased lateral mobility after 30 seconds in FRAP experiments. Applying heat stress to HeLa-cells showed no increased influx of the marker protein gfp-ß-galactosidase after 60 minutes. KW - Progeria infantilum KW - Progerie KW - Restriktive Dermopathie KW - Lamin A KW - Kerntransport KW - nuclear export KW - lamin A KW - progeria KW - restrictive dermopathy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71662 ER - TY - THES A1 - Busch, Albert Franz Jakob T1 - Modification of angiogenesis to abrogate abdominal aortic aneurysm growth T1 - Modifikation von Angiogenese um das Wachstum abdominaler Aortenaneurysmen zu beeinflussen N2 - Introduction: Abdominal aortic aneurysm (AAA) is a pathological saccular enlargement most often of the infrarenal aorta. Eventual rupture is fatal, making preemptive surgical therapy upon a diameter threshold of >50mm the treatment of choice. The pathophysiology, especially the initial trigger aortic remodeling is still largely unknown. However, some characteristic features involved in aneurysm growth have been established, such as medial angiogenesis, low-grade inflammation, vascular smooth muscle cell (VSMC) phenotype switch, extracellular remodeling, altered hemodynamics and an eventual humoral immune answer. Currently, no medical treatment options are available. RNA therapeutics and drug repurposing offer new possibilities to overcome this shortage. Using such to target angiogenesis in the aneurysm wall and investigate their potential mechanisms is the aim of this thesis. Material and Methods: We test our hypothesis by targeting the long non-coding RNA H19 and re-use the anti-cancer drug Lenvatinib in two murine inducible AAA models and one preclinical large animal model in the LDLR-/- pig. Furthermore, a H19-/- mouse is included to verify the results. AAA and control samples from a human biobank along with a primary human cell culture are used to verify results ex vivo by qPCR, WesternBlot, live cell imaging, histo- and immunohistochemistry along with gene array analysis, RNA knockdown, pull-down- and promotor assays. Results: H19 is significantly upregulated in AAA mice models and its knockdown limited aneurysm growth. It is well known that H19 interacts with several transcription factors. We found that cytoplasmic interaction between H19 and hypoxia-inducible factor 1-alpha (HIF1α) increased apoptosis in cultured SMCs associated with sequential p53 stabilization. In contrast, the knockdown of H19 was associated with markedly decreased apoptotic cell rates. Our data underline that HIF1α was essential in mediating the pro-apoptotic effects of H19. Secondly, Lenvatinib was applied both systemically and locally by endovascular means in mice with an established AAA. The drug significantly halted aneurysm growth and array analysis revealed myosin heavy chain 11 (MYH11) as the most differentially regulated target. This was shown to be up regulated after Lenvatinib treatment of primary AAA smooth muscle cells suggesting a salvage mechanism to obtain a contractile phenotype based on gene expression and immunohistochemistry. The same results were shown upon a local endovascular Lenvatinib-coated balloon angioplasty in the established aneurysmatic lesion of a novel atherosclerotic LDLR-/- Yucatan minipig model. Decreased phosphorylation of extracellular-signal regulated kinases 1-2 (ERK1-2) is the downstream effect of Lenvatinib-specific blockage of the vascular endothelial growth factor receptor (VEGFR2). Conclusion: Taking into account the heterogeneity of the disease, inhibition of VSMC phenotype switch, extracellular remodeling and angiogenesis seem promising targets in some if not all AAA patients. Together with surveillance and surgical therapy, these new non-invasive treatment strategies would allow for a more personalized approach to treat this disease. N2 - Einleitung: Das abdominale Aortenaneurysma (AAA) ist eine Erweiterung der infrarenalen Aorta. Die größte Gefahr ist eine Ruptur, sodass eine präemptive chirurgische Ausschaltung ab 50mm Durchmesser empfohlen wird. Insbesondere die initialen Triggermechanismen zur AAA Entstehung sind weiterhin unklar. Einige charakteristische Eigenschaften des Aneurysmawachstums sind z.B. Angiogenese in der Media, low-grade Entzündung, die vascular smooth muscle cell (VSMC) Phänotyp-Änderung, Remodelling der extrazellulären Matrix, eine veränderte Hämodynamik und eine humorale Immunantwort. Gegenwärtig sind neben den chirurgischen, keine medikamentösen Therapiealternativen vorhanden. RNA-Therapien und drug repurposing könnten dies ändern. Ziel dieser Arbeit ist die Beeinflussung der Angiogenese, um das Wachstum von AAAs zu verändern. Material und Methoden: Um diese Hypothese zu überprüfen wurden zwei verschiedene Ansätze verfolgt: Inhibition der long non-coding RNA H19 und die Verwendung von Lenvatinib in zwei Mausmodellen mit induzierbarem AAA und einem präklinischen Großtiermodell im LDLR-/- Schwein. Zusätzlich wurden Versuche in einer H19-/- Maus durchgeführt. AAA und Kontrollen aus einer humanen Biobank in Kombination mit der Verwendung einer primären Zellkultur aus AAA Patientenproben, wurden mittels qPCR, WesternBlot, live cell imaging, Histo- und Immunhistochemie sowie Microarray Analysen und RNA knockdown untersucht. Ergebnisse: Wir zeigen, dass experimenteller knockdown von H19, mittels antisense Oligonukleotiden (LNA-GapmeRs) in vivo das AAA Wachstum signifikant einschränkt. In vitro reduziert dieser knockdown deutlich die Apoptoserate von menschlichen aortalen VSMCs. Mittels array Analyse wurde hypoxia-inducible factor 1-alpha (HIF1α) als Zielgen identifiziert. Zytoplasmatische Interaktion zwischen H19 und HIF1α führt zu einer Stabilisierung von p53. Dieser Mechanismus konnte auch in H19-/- Mäusen bestätigt werden, die nach AAA Induktion kein Aneurysma entwickelten. Zweitens konnte Lenvatinib sowohl bei systemischer, wie auch bei lokaler Applikation in Mäusen mit etabliertem AAA deren Wachstum signifikant einschränken. In einer Microarray Analyse wurde hier myosin heavy chain 11 (MYH11) als am deutlichsten verändertes Gen identifiziert. In primären humanen AAA Zellen war dies nach Lenvatinib Behandlung deutlich hochreguliert und deutet damit einen Erhalt des kontraktilen VSMC Phänotyps an. Der gleiche Effekt konnte im Großtiermodell nach lokaler endovaskulärer Behandlung mit einem Lenvatinib-coated balloon in einem neuen LDLR-/- Yucatan minipig Modell gezeigt werden. Reduzierte Phophorylierung von ERK1-2 ist das Ergebnis der Lenvatinib-spezifischen Blockade von vascular endothelial growth factor receptor (VEGFR2). Schlussfolgerung: Zieht man die Heterogenität der Erkrankung AAA in Betracht, ist die Inhibition von VSMC Phänotyp Änderung, Remodelling der Matrix und Angiogenese möglicherweise ein guter Mechanismus um die Aneurysmen einiger Patienten zu behandeln. Diese neuen Ansätze werden möglicherweise in Kombination mit Überwachung und chirurgischer Therapie einen personalisierten Ansatz in der Therapie erlauben. KW - Aortenaneurysma KW - drug repurposing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241356 ER -